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Preface 

This book presents a comprehensive treatment of the analysis and design of control sys- 
tems. It is written at the level of the senior engineering (mechanical, electrical, aero- 
space, and chemical) student and is intended to be used as a text for the first course in 
control systems. The prerequisite on the part of the reader is that he or she has had 
introductory courses on differential equations, vector-matrix analysis, circuit analysis, 
and mechanics. 

The main revision made in the fourth edition of the text is to present two-degrees- 
of-freedom control systems to design high performance control systems such that steady- 
state errors in following step, ramp, and acceleration inputs become zero. Also, newly 
presented is the computational (MATLAB) approach to determine the pole-zero loca- 
tions of the controller to obtain the desired transient response characteristics such that 
the maximum overshoot and settling time in the step response be within the specified 
values. These subjects are discussed in Chapter 10. Also, Chapter 5 (primarily transient 
response analysis) and Chapter 12 (primarily pole placement and observer design) are 
expanded using MATLAB. Many new solved problems are added to these chapters so 
that the reader will have a good understanding of the MATLAB approach to the analy- 
sis and design of control systems. Throughout the book computational problems are 
solved with MATLAB. 

This text is organized into 12 chapters.The outline of the book is as follows. Chapter 1 
presents an introduction to control systems. Chapter 2 deals with Laplace transforms of 
commonly encountered time functions and some of the useful theorems on Laplace 
transforms. (If the students have an adequate background on Laplace transforms, this 
chapter may be skipped.) Chapter 3 treats mathematical modeling of dynamic systems 



(mostly mechanical, electrical, and electronic systems) and develops transfer function 
models and state-space models. This chapter also introduces signal flow graphs. Discus- 
sions of a linearization technique for nonlinear mathematical models are included in 
this chapter. 

Chapter 4 presents mathematical modeling of fluid systems (such as liquid-level sys- 
tems, pneumatic systems, and hydraulic systems) and thermal systems. Chapter 5 treats 
transient response analyses of dynamic systems to step, ramp, and impulse inputs. 
MATLAB is extensively used for transient response analysis. Routh's stability criteri- 
on is presented in this chapter for the stability analysis of higher order systems. Steady- 
state error analysis of unity-feedback control systems is also presented in this chapter. 

Chapter 6 treats the root-locus analysis of control systems. Plotting root loci with 
MATLAB is discussed in detail. In this chapter root-locus analyses of positive-feedback 
systems, conditionally stable systems, and systems with transport lag are included. Chap- 
ter 7 presents the design of lead, lag, and lag-lead compensators with the root-locus 
method. Both series and parallel compensation techniques are discussed. 

Chapter 8 presents basic materials on frequency-response analysis. Bode diagrams, 
polar plots, the Nyquist stability criterion, and closed-loop frequency response are dis- 
cussed including the MATLAB approach to obtain frequency response plots. Chapter 
9 treats the design and compensation techniques using frequency-response methods. 
Specifically, the Bode diagram approach to the design of lead, lag, and lag-lead com- 
pensators is discussed in detail. 

Chapter 10 first deals with the basic and modified PID controls and then presents 
computational (MATLAB) approach to obtain optimal choices of parameter values 
of controllers to satisfy requirements on step response characteristics. Next, it presents 
two-degrees-of-freedom control systems. The chapter concludes with the design of 
high performance control systems that will follow a step, ramp, or acceleration input 
without steady-state error. The zero-placement method is used to accomplish such 
performance. 

Chapter 11 presents a basic analysis of control systems in state space. Concepts of 
controllability and observability are given here. This chapter discusses the transforma- 
tion of system models (from transfer-function model to state-space model, and vice 
versa) with MATLAB. Chapter 12 begins with the pole placement design technique, 
followed by the design of state observers. Both full-order and minimum-order state ob- 
servers are treated. Then, designs of type 1 servo systems are discussed in detail. In- 
cluded in this chapter are the design of regulator systems with observers and design of 
control systems with observers. Finally, this chapter concludes with discussions of quad- 
ratic optimal regulator systems. ' 

In this book, the basic concepts involved are emphasized and highly mathematical 
arguments are carefully avoided in the presentation of the materials. Mathematical 
proofs are provided when they contribute to the understanding of the subjects pre- 
sented. All the material has been organized toward a gradual development of control 
theory. 

Throughout the book, carefully chosen examples are presented at strategic points so 
that the reader will have a clear understanding of the subject matter discussed. In addi- 
tion, a number of solved problems (A-problems) are provided at the end of each chap- 
ter, except Chapter 1. These solved problems constitute an integral part of the text. 
Therefore, it is suggested that the reader study all these problems carefully to obtain a 



deeper understanding of the topics discussed. In addition, many problems (without so- 
lutions) of various degrees of difficulty are provided (B-problems).These problems may 
be used as homework or quiz purposes. An instructor using this text can obtain a com- 
plete solutions manual (for B-problems) from the publisher. 

Most of the materials including solved and unsolved problems presented in this book 
have been class tested in senior level courses on control systems at the University of 
Minnesota. 

If this book is used as a text for a quarter course (with 40 lecture hours), most of the 
materials in the first 10 chapters (except perhaps Chapter 4) may be covered. [The first 
nine chapters cover all basic materials of control systems normally required in a first 
course on control systems. Many students enjoy studying computational (MATLAB) 
approach to the design of control systems presented in Chapter 10. It is recommended 
that Chapter 10 be included in any control courses.] If this book is used as a text for a 
semester course (with 56 lecture hours), all or a good part of the book may be covered 
with flexibility in skipping certain subjects. Because of the abundance of solved prob- 
lems (A-problems) that might answer many possible questions that the reader might 
have, this book can also serve as a self-study book for practicing engineers who wish to 
study basic control theory. 

I would like to express my sincere appreciation to Professors Athimoottil V. Mathew 
(Rochester Institute of Technology), Richard Gordon (University of Mississippi), Guy 
Beale (George Mason University), and Donald T. Ward (Texas A & M University), who 
made valuable suggestions at the early stage of the revision process, and anonymous re- 
viewers who made many constructive comments. Appreciation is also due to my former 
students, who solved many of the A-problems and B-problems included in this book. 

Katsuhiko Ogata 
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Introduction 
to Control Systems 

Automatic control has played a vital role in the advance of engineering and science. In 
addition to its extreme importance $ space-vehicle systems, missile-guidance systems, 
robotic systems, and the like, automatic control has become an important and integral 
part of modern manufacturing and industrial processes. For example, automatic control 
is essential in the numerical control of machine tools in the manufacturing industries, 
in the design of autopilot systems in the aerospace industries, and in the design of cars 
and trucks in the automobile industries. It is also essential in such industrial operations 
as controlling pressure, temperature, humidity, viscosity, and flow in the process 
industries. 

Since advances in the theory and practice of automatic control provide the means for 
attaining optimal performance of dynamic systems, improving productivity, relieving 
the drudgery of many routine repetitive manual operations, and more, most engineers 
and scientists must now have a good understanding of this field. 

Historical Review. The first significant work in automatic control was James Watt's 
centrifugal governor for the speed control of a steam engine in the eighteenth century. 
Other significant works in the early stages of development of control theory were due 
to Minorsky, Hazen, and Nyquist, among many others. In 1922, Minorsky worked on 
automatic controllers for steering ships and showed how stability could be determined 
from the differential equations describing the system. In 1932,Nyquist developed a rel- 
atively simple procedure for determining the stability of closed-loop systems on the 



basis of open-loop response to steady-state sinusoidal inputs. In 1934, Hazen, who in- 
troduced the term servomechanisms for position control systems, discussed the design 
of relay servomechanisms capable of closely following a changing input. 

During the decade of the 1940s, frequency-response methods (especially the Bode 
diagram methods due to Bode) made it possible for engineers to design linear closed- 
loop control systems that satisfied performance requirements. From the end of the 1940s 
to the early 1950s, the root-locus method due to Evans was fully developed. 

The frequency-response and root-locus methods, which are the core of classical con- 
trol theory, lead to systems that are stable and satisfy a set of more or less arbitrary per- 
formance requirements. Such systems are, in general, acceptable but not optimal in any 
meaningful sense. Since the late 1950s, the emphasis in control design problems has been 
shifted from the design of one of many systems that work to the design of one optimal 
system in some meaningful sense. 

As modern plants with many inputs and outputs become more and more complex, 
the description of a modern control system requires a large number of equations. Clas- 
sical control theory, which deals only with single-input-single-output systems, becomes 
powerless for multiple-input-multiple-output systems. Since about 1960, because the 
availability of digital computers made possible time-domain analysis of complex sys- 
tems, modern control theory, based on time-domain analysis and synthesis using state 
variables, has been developed to cope with the increased complexity of modern plants 
and the stringent requirements on accuracy, weight, and cost in military, space, and in- 
dustrial applications. 

During the years from 1960 to 1980, optimal control of both deterministic and sto- 
chastic systems, as well as adaptive and learning control of complex systems, were fully 
investigated. From 1980 to the present, developments in modern control theory cen- 
tered around robust control, H ,  control, and associated topics. 

Now that digital computers have become cheaper and more compact, they are used 
as integral parts of control systems. Recent applications of modern control theory include 
such nonengineering systems as biological, biomedical, economic, and socioeconomic 
systems. 

Definitions. Before we can discuss control systems, some basic terminologies must 
be defined. 

Controlled Variable and Manipulated Variable. The controlled variable is 
the quantity or condition that is measured and controlled. The manipulated variable 
is the quantity or condition that is varied by the controller so as to affect the value of 
the controlled variable. Normally, the controlled variable is the output of the system. 
Control means measuring the value of the controlled variable of the system and ap- 
plying the manipulated variable to the system to correct or limit deviation of the meas- 
ured value from a desired value. 

In studying control engineering, we need to define additional terms that are neces- 
sary to describe control systems. 

Plants. A plant may be a piece of equipment, perhaps just a set of machine parts 
functioning together, the purpose of which is to perform a particular operation. In this 
book, we shall call any physical object to be controlled (such as a mechanical device, a 
heating furnace, a chemical reactor, or a spacecraft) a plant. 

Chapter 1 / Introduction to  Control Systems 



Processes. The Merriam-Webster Dictionary defines a process to be a natural, pro- 
gressively continuing operation or development marked by a series of gradual changes 
that succeed one another in a relatively fixed way and lead toward a particular result or 
end; or an artificial or voluntary, progressively continuing operation that consists of a se- 
ries of controlled actions or movements systematically directed toward a particular re- 
sult or end. In this book we shall call any operation to be controlled aprocess. Examples 
are chemical, economic, and biological processes. 

Systems. A system is a combination of components that act together and perform 
a certain objective. A system is not limited to physical ones. The concept of the system 
can be applied to abstract, dynamic phenomena such as those encountered in econom- 
ics. The word system should, therefore, be interpreted to imply physical, biological, eco- 
nomic, and the like, systems. 

Disturbances. A disturbance is a signal that tends to adversely affect the value of 
the output of a system. If a disturbance is generated within the system, it is called inter- 
nal, while an external disturbance is generated outside the system and is an input. 

Feedback Control. Feedback control refers to an operation that, in the presence 
of disturbances, tends to reduce the difference between the output of a system and some 
reference input and does so on the basis of this difference. Here only unpredictable dis- 
turbances are so specified, since predictable or known disturbances can always be com- 
pensated for within the system. 

1-2 WWPLES OF CONTROL SYSTEMS 

In this section we shall present several examples of control systems. 

Speed Control System. The basic principle of a Watt's speed governor for an 
engine is illustrated in the schematic diagram of Figure l-1.The amount of fuel admitted 

Figure 1-11 
Speed control Control 
system. valve 
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'Thermometer 
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Figure 1-2 
Temperature ( 
system. 

to the engine is adjusted according to the difference between the desired and the actual 
engine speeds. 

The sequence of actions may be stated as follows:The speed governor is adjusted such 
that, at the desired speed, no pressured oil will flow into either side of the power cylin- 
der. If the actual speed drops below the desired value due to disturbance, then the de- 
crease in the centrifugal force of the speed governor causes the control valve to move 
downward, supplying more fuel, and the speed of the engine increases until the desired 
value is reached. On the other hand, if the speed of the engine increases above the de- 
sired value, then the increase in the centrifugal force of the governor causes the control 
valve to move upward. This decreases the supply of fuel, and the speed of the engine 
decreases until the desired value is reached. 

In this speed control system, the plant (controlled system) is the engine and the con- 
trolled variable is the speed of the engine. The difference between the desired speed 
and the actual speed is the error signal.The control signal (the amount of fuel) to be ap- 
plied to the plant (engine) is the actuating signal. The external input to disturb the con- 
trolled variable is the disturbance. An unexpected change in the load is a disturbance. 

Temperature Control System. Figure 1-2 shows a schematic diagram of tem- 
perature control of an electric furnace. The temperature in the electric furnace is meas- 
ured by a thermometer, which is an analog device. The analog temperature is converted 
to a digital temperature by an N D  converter. The digital temperature is fed to a con- 
troller through an interface.This digital temperature is compared with the programmed 
input temperature, and if there is any discrepancy (error), the controller sends out a sig- 
nal to the heater, through an interface, amplifier, and relay, to bring the furnace tem- 
perature to a desired value. 

EXAMPLE 1-1 Consider the temperature control of the passenger compartment of a car.The desired temperature 
(converted to a voltage) is the input to the controller. The actual temperature of the passenger 
compartment must be converted to a voltage through a sensor and fed back to the controller for 
comparison with the input. 

Figure 1-3 is a functional block diagram of temperature control of the passenger compartment 
of a car. Note that the ambient temperature and radiation heat transfer from the sun, which are 
not constant while the car is driven, act as disturbances. 

4 Chapter 1 / Introduction to Control Systems 
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Radiation 
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Desired compartment 
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(Input) conditioner 
- compartment (Output) 

Figure G . 3  A 

The temperature of the passenger compartment differs considerably depending on the place 
where it is measured. Instead of using multiple sensors for temperature measurement and 
averaging the measured values, it is economical to install a small suction blower at the place where 
passengers normally sense the temperature. The temperature of the air from the suction blower 
is an indication of the passenger compartment temperature and is considered the output of the 
system. 

The controller receives the input signal, output signal, and signals from sensors from 
disturbance sources. The controller sends out an optimal control signal to the air conditioner or 
heater to control the amount of cooling air or warm air so that the passenger compartment 
temperature is about the desired temperature. 

Temperature control 
of passenger 
compartment 

Business Systems. A business system may consist of many groups. Each task 
assigned to a group will represent a dynamic element of the system. Feedback methods 
of reporting the accomplishments of each group must be established in such a system for 
proper operation.'~he cross-coupling between functional groups must be made a mini- 
mum in order to reduce undesirable delay times in the system. The smaller this cross- 
coupling, the smoother the flow of work signals and materials will be. 

A business system is a closed-loop system. A good design will reduce the manageri- 
al control required. Note that disturbances in this system are the lack of personnel or ma- 
terials, interruption of communication, human errors, and the like. 

The establishment of a well-founded estimating system based on statistics is manda- 
tory to proper management. Note that it is a well-known fact that the performance of 
such a system can be improved by the use of lead time, or anticipation. 

To apply control theory to improve the performance of such a system, we must rep- 
resent the dynamic characteristic of the component groups of the system by a relative- 
ly simple set of equations. 

Although it is certainly a difficult problem to derive mathematical representations 
of the component groups, the application of optimization techniques to business sys- 
tems significantly improves the performance of the business system. 

- 

Section 1-2 / Examples of Control Systems 5 

of a car. 



Figure 1-4 
Block diagram of an engineering organizational system. 

Required 

EXAMPLE 1-2 An engineering organizational system is composed of major groups such as management, research 
and development, preliminary design, experiments, product design and drafting, fabrication and 
assembling, and testing.These groups are interconnected to make up the whole operation. 

Such a system may be analyzed by reducing it to the most elementary set of components 

product 
+ 

I I G L G ~ ~ ~ I ~  L I I ~ L  L ~ I I  ~ I O V I U G  L I ~ G  aIialyLical uetall loquircu a n u  uy IepIesenilIlg Lne uynarrilc cnar- 
acteristics of each component by a set of simple equations. (The dynamic performance of such a 
system may be determined from the relation between progressive accomplishment and time.) 
Draw a functional block diagram showing an engineering organizational system. 

A functional block diagram can be drawn by using blocks to represent the functional activi- 
ties and interconnecting signal lines to represent the information or product output of the system 
operation. A possible block diagram is shown in Figure 14. 

1-3 CLOSED-LOOP CONTROL VERSUS OPEN-LOOP CONTROL 

h t 
Management 

Feedback Control Systems. A system that maintains a prescribed relationship 
between the output and the reference input by comparing them and using the difference 
as a means of control is called a feedback control system. An example would be a room- 
temperature control system. By measuring the actual room temperature and comparing 
;t ..Ath thn mfnmnon t n m n o r ~ t ~ ~ r a  /Ancl;mA t o m n o r ~ t ~ ~ r o \  tho t h e r m n r t ~ t  tnmr the hes t .  
1 L  W l L l l  Lllb 1 b l L l b 1 I C . b  L b I I I Y b L  LILUI b \ U b J I I  V U  L b I I I Y V I  ULUIb,, CIIb LII.21 IIIVLICUL L"111.3 CllU 1 I V U L  

ing or cooling equipment on or off in such a way as to ensure that the room tempera- 
ture remains at a comfortable level regardless of outside conditions. 

Feedback control systems are not limited to engineering but can be found in various 
nonengineering fields as well. The human body, for instance, is a highly advanced feed- 
back control system. Both body temperature and blood pressure are kept constant by 
means of physiological feedback. In fact, feedback performs a vital function: It makes 
the human body relatively insensitive to external disturbances, thus enabling it to func- 
tion properly in a changing environment. 

-+ 

Closed-Loop Control Systems. Feedback control systems are often referred to 
as closed-loop control systems. In practice, the terms feedback control and closed-loop 
control are used interchangeably. In a closed-loop control system the actuating error 
signal, which is the difference between the input signal and the feedback signal (which 
may be the output signal itself or a function of the output signal and its derivatives 
and/or integrals), is fed to the controller so as to reduce the error and bring the output 
of the system to a desired value.The term closed-loop control always implies the use of 
feedback control action in order to reduce system error. 

Research 
and 

development 

Open-Loop Control Systems. Those systems in which the output has no effect 
on the control action are called open-loop control systems. In other words, in an open- 

- 
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loop control system the output is neither measured nor fed back for comparison with the 
input. One practical example is a washing machine. Soaking, washing, and rinsing in the 
washer operate on a time basis. The machine does not measure the output signal, that 
is, the cleanliness of the clothes. 

In any open-loop control system the output is not compared with the reference input. 
Thus, to each reference input there corresponds a fixed operating condition; as a result, 
the accuracy of the system depends on calibration. In the presence of disturbances, an 
open-loop control system will not perform the desired task. Open-loop control can be 
used, in practice, only if the relationship between the input and output is known and if 
there are neither internal nor external disturbances. Clearly, such systems are not feed- 
back control systems. Note that any control system that operates on a time basis is open 
loop. For instance, traffic control by means of signals operated on a time basis is another 
example.of open-loop control. 

Closed-Loop versus Open-Loop Control Systems. An advantage of the closed- 
loop control system is the fact that the use of feedback makes the system response rel- 
atively insensitive to external disturbances and internal variations in system parameters. 
It is thus possible to use relatively inaccurate and inexpensive components to obtain 
the accurate control of a given plant, whereas doing so is impossible in the open-loop 
case. 

From the point of view of stability, the open-loop control system is easier to build be- 
cause system stability is not a major problem. On the other hand, stability is a major 
problem in the closed-loop control system, which may tend to overcorrect errors and 
thereby can cause oscillations of constant or changing amplitude. 

It should be emphasized that for systems in which the inputs are known ahead of time 
and in which there are no disturbances it is advisable to use open-loop control. Closed- 
loop control systems have advantages only when unpredictable disturbances and/or un- 
predictable variations in system components are present. Note that the output power 
rating partially determines the cost, weight, and size of a control system.The number of 
components used in a closed-loop control system is more than that for a corresponding 
open-loop control system. Thus, the closed-loop control system is generally higher in 
cost and power. To decrease the required power of a system, open-loop control may be 
used where applicable. A proper combination of open-loop and closed-loop controls is 
usually less expensive and will give satisfactory overall system performance. 

EXAMPLE 1-3 Most analyses and designs of control systems presented in this book are concerned with closed- 
loop control systems. Under certain circumstances (such as where no disturbances exist or the 
output is hard to measure) open-loop control systems may be desired.Therefore, it is worthwhile 
to summarize the advantages and disadvantages of using open-loop control systems. 

The major advantages of open-loop control systems are as follows: 

1. Simple construction and ease of maintenance. 

2. Less expensive than a corresponding closed-loop system. 

3. There is no stability problem. 

4. Convenient when output is hard to measure or measuring the output precisely is economi- 
cally not feasible. (For example, in the washer system,it would be quite expensive to provide 
a device to measure the quality of the washer's output, cleanliness of the clothes.) 
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The major disadvantages of open-loop control systems are as follows: 

1. Disturbances and changes in calibration cause errors, and the output may be different from 
what is desired. 

2. To maintain the required quality in the output, recalibration is necessary from time to time. 

1-4 OUTLINE OF THE BOOK 

We briefly describe here the organization and contents of the book. 
Chapter 1 has given introductory materials on control systems. Chapter 2 presents 

basic Laplace transform theory necessary for understanding the control theory pre- 
sented in this book. Chapter 3 deals with mathematical modeling of dynamic systems in 
terms of transfer functions and state-space equations. It discusses mathematical model- 
ing of mechanical systems and electrical and electronic systems. This chapter also in- 
cludes the signal flow graphs and linearization of nonlinear mathematical models. 
Chapter 4 treats mathematical modeling of liquid-level systems, pneumatic systems, hy- 
draulic systems, and thermal systems. Chapter 5 treats transient-response analyses of 
first-,and second-order systems as well as higher-order systems. Detailed discussions of 
transient-response analysis with MATLAB are presented. Routh's stability criterion 
and steady-state errors in unity-feedback control systems are also presented in this 
chapter. 

Chapter 6 gives a root-locus analysis of control systems. General rules for constructing 
root loci are presented. Detailed discussions for plotting root loci with MATLAB are in- 
cluded. Chapter 7 deals with the design of control systems via the root-locus method. 
Specifically, root-locus approaches to the design of lead compensators, lag compensators, 
and lag-lead compensators are discussed in detail. Chapter 8 gives the frequency- 
response analysis of control systems. Bode diagrams, polar plots, Nyquist stability crite- 
rion, and closed-loop frequency response are discussed. Chapter 9 treats control systems 
design via the frequency-response approach. Here Bode diagrams are used to design 
lead compensators, lag compensators, and lag-lead compensators. Chapter 10 discusses 
the basic and modified PID controls. In this chapter two-degrees-of-freedom control 
systems are introduced. We design high-performance control systems using two-degrees- 
of-freedom configuration. MATLAB is extensively used in the design of such systems. 

Chapter 11 presents basic materials for the state-space analysis of control systems. 
The solution of the time-invariant state equation is derived and concepts of controlla- 
bility and observability are discussed. Chapter 12 treats the design of control systems in 
state space. This chapter begins with the pole-placement problems, followed by the de- 
sign of state observers, and the design of regulator systems with observers and control 
systems with observers. Finally, quadratic optimal control is discussed. 
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The Laplace Transform * 

2-1 INTRODUCTION 

The Laplace transform method is an ope~ational method that can be used advanta- 
geously for solving linear differential equations. By use of Laplace transforms, we can 
convert many common functions, such as sinusoidal functions, damped sinusoidal func- 
tions, and exponential functions, into algebraic functions of a complex variable s. Op- 
erations such as differentiation and integration can be replaced by algebraic operations 
in the complex plane.Thus, a linear differential equation can be transformed into an al- 
gebraic equation in a complex variable s. If the algebraic equation in s is solved for the 
dependent variable, then the solution of the differential equation (the inverse Laplace 
transform of the dependent variable) may be found by use of a Laplace transform table 
or by use of the partial-fraction expansion technique, which is presented in Section 2-5 
and 2-6. 

An advantage of the Laplace transform method is that it allows the use of graphical 
techniques for predicting the system performance without actually solving system dif- 
ferential equations. Another advantage of the Laplace transform method is that, when 
we solve the differential equation, both the transient component and steady-state com- 
ponent of the solution can be obtained simultaneously. 

Outline of the Chapter. Section 2-1 presents introductory remarks. Section 2-2 
briefly reviews complex variables and complex functions. Section 2-3 derives Laplace 

*This chapter may be skipped if the student is already familiar with Laplace transforms. 



transforms of time functions that are frequently used in control engineering. Section 
2-4 presents useful theorems of Laplace transforms, and Section i-5 treats the inverse 
Laplace transformation using the partial-fraction expansion of B(s) /A(s ) ,  where A(s)  
and B(s) are polynomials in s. Section 2-6 presents computational methods with MAT- 
LAB to obtain the partial-fraction expansion of B(s ) /A ( s ) ,  as well as the zeros and 
poles of B(s) /A(s ) .  Finally, Section 2-7 deals with solutions of linear time-invariant dif- 
ferential equations by the Laplace transform approach. 

2-2 REVIEW OF COMPLEX VARIABLES 
AND COMPLEX FUNCTIONS 

Before we present the Laplace transformation, we shall review the complex variable 
and complex function. We shall also review Euler's theorem, which relates the sinu- 
soidal functions to exponential'functions. 

Complex Variable. A complex number has a real part and an imaginary part, both 
of which are constant. If the real part and/or imaginary part are variables, a complex 
quantity is called a complex variable. In the Laplace transformation we use the notation 
s  as a complex variable; that is, 

where a is the real part and w is the imaginary part. 

Complex Function. A complex function G(s ) ,  a function of s, has a real part and 
an imaginary part or 

G(s )  = Gx + jG, 

where Gx and G,  are real quantities. The magnitude of G ( s )  is I/-, and the 
angle 13 of G(s )  is t a n - ' ( ~ , / ~ , ) .  The angle is measured counterclockwise from the pos- 
itive real axis. The complex conjugate of G ( s )  is G ( s )  = G, - jG,. 

Complex functions commonly encountered in linear control systems analysis are 
single-valued functions of s  and are uniquely determihed for a given value of s. 

A complex function G(s )  is said to be analytic in a region if G ( s )  and all its deriva- 
tives exist in that region. The derivative of an analytic function G ( s )  is given by 

d . G(s  + As) - G(s )  
-G( s )  = lim 

AG 
= lim -- 

d ~  A S + ~  AS As+O As 

Since As = A a  + jAw, As can approach zero along an infinite number of different 
paths. It can be shown, but is stated without a proof here, that if the derivatives taken 
along two particular paths, that is, As = Au and As = jAw, are equal, then the deriva- 
tive is unique for any other path As = A a  + jAw and so the derivative exists. 

For a particular path As = Au (which means that the path is parallel to the real 
axis). 
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For another particular path As = jAw (which means that the path is parallel to the 
imaginary axis). 

d dGx , AGy 
- G(s) = lim 
ds - j -+-- 

If these two values of the derivative are equal, 

or if the following two conditions 

are satisfied, then the derivative dG (s)/ ds is uniquely determined.These two conditions 
are known as the Cauchy-Riemann conditions. If these conditions are satisfied, the func- 
tion G(s) is analytic. 

As an example, consider the following G(s): 

Then 

where 

a + 1 -w 
Gx = and Gy = 

( a  + + w2 ( a  + + w2 

It can be seen that, except at s = -1 (that is, a = -1, w = 0), G(s) satisfies the 
Cauchy-Riemann conditions: 

dGx aGy w2 - ( a  + 1)2 -- - -- - 
dff [ ( u  + 1)2 + w2I2 

Hence G(s) = l / (s  + 1) is analytic in the entire s plane except at s = -1.The deriva- 
tive dG (s)/ ds, except at s = 1, is found to be 

Note that the derivative of an analytic function can be obtained simply by differentiat- 
ing G(s) with respect to s. In this example, 
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Points in the s  plane at which the function G ( s )  is analytic are called ordinary points, 
while points in the s  plane at which the function G ( s )  is not analytic are called singular 
points. Singular points at which the function G ( s )  or its derivatives approach infinity 
are calledpoles. Singular points at which the function G ( s )  equals zero are called zeros. 

If G ( s )  approaches infinity as s  approaches -p and if the function 

has a finite, nonzero value at s  = -p, then s  = - p  is called a pole of order n. If n = 1, 
the pole is called a simple pole. If n = 2,3,. . . , the pole is called a second-order pole, a 
third-order pole, and so on. 

To illustrate, consider the complex function 

G ( s )  has zeros at s  = -2, s  = -10, simple poles at s  = 0,  s  = -1, s  = -5, and a double 
pole (multiple pole of order 2) at s  = -15. Note that G ( s )  becomes zero at s  = co. Since 
for large values of s  

G ( s )  possesses a triple zero (multiple zero of order 3)  at s  = co. If points at infinity are 
included, G ( s )  has the same number of poles as zeros.To summarize, G ( s )  has five zeros 
( s  = -2, s  = -10, s  = co, s  = co, s  = co) and five poles ( s  = 0, s  = -1, s  = -5, 
s  = -15, s  = -15). 

Euler's Theorem. The power series expansions of cos 0 and sin 0 are, respectively, 

And so 

Since 

we see that 

cos 8 + j sin 0 = eis 

This is known as Euler's theorem. 
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By using Euler's theorem, we can express sine and cosine in terms of an exponen- 
tial function. Noting that e-j0 is the complex conjugate of eiO and that 

eje = cos 9 + j sin9 

e-je = cos 9 - j sin 0 

we find, after adding or subtracting these two equations, that 

2-3 LAPIACE TRANSFORMATION 

1 
cos 9 = - (ejO + e-jO) 

2 

We shall first present a definition of the Laplace transformation and a brief discussion 
of the condition for the existence of the Laplace transform and then provide examples 
for illustrating the derivation of Laplace transforms of several common functions. 

Let us define 

f ( t )  = a function of time t such that f ( t )  = 0 for t < 0 

s = a complex variable 

2 = an operational symbol indicating that the quantity that it prefixes is to 
be transformed by the Laplace integral some-" dt 

F ( s )  = Laplace transform off ( t )  

Then the Laplace transform off ( t )  is given by 

9 [ f  ( t ) ]  = F ( s )  = l m e "  d t [ f  ( t ) ]  = S m f ( t ) e - " d t  
0 

T h e  reverse process of finding the time function f ( t )  from the Laplace transform F ( s )  
is called the inverse Laplace transformation.The notation for the inverse Laplace trans- 
formation is Y1, and the inverse Laplace transform can be found from F ( s )  by the fol- 
lowing inversion integral: 

T 1 [ ~ ( s ) ]  = f ( t )  = - / c t J m ~ ( s ) e s t  ds, for t > 0 
2~ c - j m  

(2-4) 

where c, the abscissa of convergence, is a real constant and is chosen larger than the real 
parts of all singular points of F ( s ) .  Thus, the path of integration is parallel to the jw axis 
and is displaced by the amount c from it.This path of integration is to the right of all sin- 
gular points. 

Evaluating the inversion integral appears complicated. In practice, we seldom use this 
integral for finding f ( t ) .  There are simpler methods for finding f ( t ) .  We shall discuss 
such simpler methods in Sections 2-5 and 2-6. 

It is noted that in this book the time function f ( t )  is always assumed to be zero for 
negative time; that is, 

f ( t )  = 0, for t < 0 
I 
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Existence of Lapiace Transform. The Laplace transform of a function f (t) ex- 
ists if the Laplace integral converges.The integral will converge iff (t) is sectionally con- 
tinuous in every finite interval in the range t > 0 and if it is of exponential order as t 
approaches infinity. A function f (t) is said to be of exponential order if a real, positive 
constant a exists such that the function 

approaches zero as t approaches infinity. If the limit of the function e-"'1 f (t)l approaches 
zero for a greater than a, and the limit approaches infinity for a less than cr,, the value 
o, is called the abscissa of convergence. 

For the function f (t) = Ae-"' 

lim e-"'I~e-~'l 
t-00 

approaches zero if a > -a. The abscissa of convergence in this case is a, = -a. The in- 
tegral hmf (t)e-st dt converges only if a ,  the real part of s, is greater than the abscissa of 
convergence a,.Thus the operator s must be chosen as a constant such that this integral 
converges. 

In terms of the poles of the function F(s) ,  the abscissa of convergence a, corre- 
sponds to the real part of the pole located farthest to the right in the s plane. For example, 
for the following function F(s), 

the abscissa of convergence a, is equal to -1. It can be seen that for such functions as t, 
sin wt, and t sin wt the abscissa of convergence is equal to zero. For functions like 
e-Cl te-ct , , e-,' sin wt, and so on, the abscissa of convergence is equal -c. For functions 
that increase faster than the exponential function, however, it is impossiple to fipd suit- 
able values of the abcissa of convergence.Therefore, such functions as e' and te' do not 
possess Laplace transforms. 

The reader should be cautioned that although et2(for 0 r t r co) does not possess 
a Laplace transform, the time function defined by 

f (t) = etZ, for 0 5 t 5 T < co 
= 0, fort < 0, T < t 

does possess a Laplace transform since f (t) = et2 for only a limited time interval 
0 5 t T and not for 0 5 t 5 m. Such a signal can be physically generated. Note that the 
signals that we can physically generate always have corresponding Laplace transforms. 

If a function f (t) has a Laplace transform, then the Laplace transform of Af (t), 
where A is a constant, is given by 

This is obvious from the definition of the Laplace transform. Since Laplace transforma- 
tion is a linear operation, if functions f,(t) and f,(t) have Laplace transforms, Fl(s) and 
F,(s), respectively, then the Laplace transform of the function a&(t) + Pf,(t) is given by 

Z[af1(t) + Pf2(t)l = aF,(s) + PF,(s) 

In what follows, we derive Laplace transforms of a few commonly encountered functions. 
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Exponential Function. Consider the exponential function 

f (t) = 0, fort < 0 

= Ae-"I, for t 1 0 

where A and a are constants.The Laplace transform of this exponential function can be 
obtained as follows: 

It is seen that the exponential function produces a pole in the complex plane. 
In deriving the Laplace transform off ( t)  = Ae-"I, we required that the real part 

of s be greater than -a (the abscissa of convergence). A question may immediately 
arise as to whether or not the Laplace transform thus obtained is valid in the range 
where a < -a in the s plane. To answer this question, we must resort to the theory 
of complex variables. In the theory of complex variables, there is a theorem known 
as the analytic extension theorem. It states that, if two analytic functions are equal for 
a finite length along any arc in a region in which both are analytic, then they are 
equal everywhere in the region. The arc of equality is usually the real axis or a por- 
tion of it. By using this theorem the form of F(s)  determined by an integration in 
which s is allowed to have any real positive value greater than the abscissa of con- 
vergence holds for any complex values of s a t ~ h i c h  F(s)  is analytic.Thus, although 
we require the real part of s to be greater than the abscissa of convergence to make 
the integral Lmf (t)e"' dt absolutely convergent, once the Laplace transform F(s) is 
obtained, F(s)  can be considered valid throughout the entire s plane except at the 
poles of F(s). 

Step Function. Consider the step function 

f ( t )  = 0, for t < 0 

= A, fort  > 0 

where A is a constant. Note that it is a special case of the exponential function Ae-*', 
where a = 0. The step function is undefined at t = 0. Its Laplace transform is given by 

In performing this integration, we assumed that the real part of s was greater than zero 
(the abscissa of convergence) and therefore that lim e-" was zero. As stated earlier, the 

t--tm 
Laplace transform thus obtained is valid in the entire s plane except at the pole s = 0. 

The step function whose height is unity is called unit-step function. The unit-step 
function that occurs at t = to is frequently written as l ( t  - to). The step function of 
height A that occurs at t = 0 can then be written as f (t) = Al(t). The Laplace trans- 
form of the unit-step function, which is defined by 

l ( t ) = O ,  f o r t < O  

= 1, fort > 0 
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Physically, a step function occurring at t  = 0 corresponds to a constant signal suddenly 
applied to the system at time t  equals zero. 

Ramp Function. Consider the ramp function 

f ( t )  = 0, for t  < 0 

= At, fort 2 0 

where A  is a constant. The Laplace transform of this ramp function is obtained as 

4" % [ A t ]  = Ate-" dt = At - dt 

Sinusoidal Function. The Laplace transform of the sinusoidal function 

f ( t )  = 0, for t  < 0 

= A sin wt, for t  2 0 

where A  and o are constants, is obtained as follows. Referring to Equation (2-3), sin wt 
can be written 

Hence 

Similarly, the Laplace transform of A  cos wt can be derived as follows: 

As 
2 [ A  cos wt]  = --- 

s2 + u2 

Comments. The Laplace transform of any Laplace transformable function f ( t )  can 
be found by multiplying f ( t )  by e-" and then integrating the product from t  = 0 to 
t  = m. Once we know the method of obtaining the Laplace transform, however, it is 
not necessary to derive the Laplace transform off ( t )  each time. Laplace transform ta- 
bles can conveniently be used to find the transform of a given function f ( t ) .  Table 2-1 
shows Laplace transforms of time functions that will frequently appear in linear control 
systems analysis. 
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Table 2-1 Laplace Transform Pairs 
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F ( s )  

1 

1  - 
S 

1 - 
s2 

1 - 
sn 

n! 
- s n + ~  

1 - 
s + a  

1 

( s  + a)2  

1  
( S  + a)" 

n! 
( s  + a)"+' 

w 

sZ + w2 

S 

s2 + w2 

0 

sZ - w2 

S 

s2 - w2 

1 
s ( s  + a )  

1 
( S  + a ) ( s  + b )  

S 

( S  + a ) ( s  + b)  

1 
S ( S  + a ) ( s  + b )  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

f ( t )  

Unit impulse 6 ( t )  

Unit step l ( t )  

t  

tn-1  

(n = 1,2,3,  ... ) 
( n  - I)! 

tn ( n = 1 , 2 , 3 ,  ...) 

e-'" 

te-"' 

1 n - 1  -ut t e  ( n  = 1,2,3, ...) 
( n  - I)! 

tne-a~ ( n  = 1,2,3 ,...) 

sin wt 

COS wt 

sinh wt 

cosh wt 

1 - (1 - e-") 
a 

1  __ ( e - ~ r  - e-bt) 

b  - a 

1 ---- (be-" - ae-'I) 
b - a  

1 1 

- [ l  
+ - (beP  - ~ze-~ ' ) ]  

ab a - b  



Table 2-1 (continued) 
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19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

1 - (1  - e-L'' - at -at 1 a2 

1 
- (at - 1 + e-"') 
a2 

e-'" sin wt 

e-"' cos wt 

w" e - i " J s i n w , m t  ( 0 1 5 1 1 )  - 
- e-cw*~' s i n ( w n m t  - +) - 

4 = tan-' 
fl 

5 
(0 < 5 < 1, o'< + < 7 ~ 1 2 )  

1  

I - -  
e-co,J sin(w,-t + +) 

rn 4 = tan-I 
5 

(0 < 5 < 1, 0  < + < n-12) 

1 - coswt 

wt - sinwt 

sin wt - wt cos wt 

1 
- t sinwt 
2~ 

t cos wt 

1  
(cos w,t - cos w2t)  (wf + w;) 

w; - 0: 

1 
- (sin wt + wt cos w t )  
2 0  

1 
s(s + a)' 

1  
s2(s + a )  

w 

(s  + a)' + w2 

s + a 

( s  + a)2 + w2 

2 
w ,, 

s2 + 2Jwns + of 

S 

s2 + 250,s + w2, 

2 
o n  

s(s2 + 2fwns + w f )  

w2 

s(s2 + w2) 

w3 

s2(s2 + w2) 

203 

(s2 + ~ 2 ) ~  

S 

( s ~  + w2)2 

s2 - w2 

(s2 + w2)2 

S 

(s2 + w:)(s2 + w;) 

s2 

(s2 + w2)2 



In the following discussion we present Laplace transforms of functions as well as the- 
orems on the Laplace transformation that are useful in the study of linear control systems. 

Translated Function. Let us obtain the Laplace transform of the translated func- 
tion f ( t  - a ) l ( t  - a ) ,  where a  r 0. This function is zero for t  < a. The functions 
f ( t ) l ( t )  and f ( t  - a ) l ( t  - a )  are shown in Figure 2-1. 

By definition, the Laplace transform of'f ( t  - a ) l ( t  - a )  is 

g [ f ( t  - a ) l ( t  - a ) ]  = f ( t  - a ) l ( t  - a)e-sf dt l 
By changing the independent variable from t  to r ,  where r  = t - a, we obtain 

Since in this book we always assume that f ( t )  = 0 for t  < 0, f ( r ) l ( r )  = 0 for 7 < 0. 
Hence we can change the lower limit of integration from -a to 0. Thus 

where 

And so 

This last equation states that the translation of the time function f ( t ) l ( t )  by a (where 
a  2 0) corresponds to the multiplication of the transform F(s)  by e-as. 

Figure 2-1 
Function f ( t ) l  ( t )  
and translated 
function 
f ( t  - a) l ( t  -a). 
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Pulse Function. Consider the pulse function n, 
a t 

= 0, for t < 0, to < t 

where A and to are constants. 
The pulse function here may be considered a step function of height Alto that begins 

at t = 0 and that is superimposed by a negative step function of height Alto beginning 
at t = to; that is, 

Then the Laplace transform off ( t )  is obtained as 

Impulse Function. The impulse function is a special limiting case of the pulse 
function. Consider the impulse function 

= 0, fort < 0, to < t 

Since the height of the impulse function is Alto and the duration is to ,  the area under the 
impulse is equal to A. As the duration to approaches zero, the height Alto approaches 
infinity, but the area under the impulse remains equal to A. Note that the magnitude of 
the impulse is measured by its area. 

Referring to Equation (2-5), the Laplace transform of this impulse function is shown 
to be 

Thus the Laplace transform of the impulse function is equal to the area under the 
impulse. 
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The impulse function whose area is equal to unity is called the unit-impulse function 
or the Dirac delta function. The unit-impulse function occurring at t = to is usually de- 
noted by 6(t - to). 6(t - to) satisfies the following: 

6(t - to) = 0, for t # to 

~ ( t  - to) = m, for t  = to 

S?(t - to) dt = l 

It should be mentioned that an impulse that has an infinite magnitude and zero 
duration is mathematical fiction and does not occur in physical systems. If, however, 
the magnitude of a pulse input to a system is very large and its duration is very short 
compared to the system time constants, then we can approximate the pulse input by 
an impulse function. For instance, if a force or torque input f ( t)  is applied to a sys- 
tem for a very short time duration, 0 < t < to, where the magnitude off  (t) is suffi- 
ciently large so that the integral J;;'Sf (t)dt is not negligible, then this input can be 
considered an impulse input. (Note that when we describe the impulse input the area 
or magnitude of the impulse is most important, but the exact shape of the impulse is 
usually immaterial.) The impulse input supplies energy to the system in an infinites- 
imal time. 

The concept of the impulse function is quite useful in differentiating discontinuous 
functions. The unit-impulse function 6(t - to) can be considered the derivative of the 
unit-step function l ( t  - to) at the point of discontinuity t = to or 

Conversely, if the unit-impulse function 6(t - to) is integrated, the result is the unit-step 
function l ( t  - to). with the concept of the impulse function we can differentiate a func- 
tion containing discontinuities, giving impulses, the magnitudes of which are equal to 
the magnitude of each corresponding discontinuity. 

Multiplication of f(t) by e-"t. Iff (t) is Laplace transformable, its Laplace trans- 
form being F(s) ,  then the Laplace transform of ePtf (t) is obtained as 

s[e-atf (t)] = i*e-~f (t)e-. dt = F ( s  + a )  

We see that the multiplication off (t) by e-"' has the effect of replacing s  by ( s  + a )  in 
the Laplace transform. Conversely, changing s  to (s + a) is equivalent to multiplying f (t) 
by e-"'. (Note that a may be real or complex.) 

The relationship given by Equation (2-6) is useful in finding the Laplace transforms 
of such functions as e-"' sin o t  and e-"' cos wt. For instance, since 
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it follows from Equation (2-6) that the Laplace transforms of e-"' sin wt and e-"' cos ot 
are given, respectively, by 

s + a  
~ [ e - " ~  cos ot]  = G(s + a )  = 

( s  + a)' + u2 

Change of Time Scale. In analyzing physical systems, it is sometimes desirable 
to change the time scale or normalize a given time function.The result obtained in terms 
of normalized time is useful because it can be applied directly to different systems hav- 
ing similar mathemetical equations. 

If t  is changed into t / a ,  where a is a positive constant, then the function f ( t )  is 
changed into f ( t l a ) .  If we denote the Laplace transform of f ( t )  by F(s ) ,  then the 
Laplace transform of f  ( t l a )  may be obtained as follows: 

Letting t /a  = tl and as = sl ,  we obtain 

As an example, consider f ( t )  = e-' and f ( t /5)  = e-0.2'. We obtain 

I 
9 [ f  ( t ) ]  = ~ [ e - ' 1  = F(s)  = - 

s + l  

Hence 

This result can be verified easily by taking the Laplace transform of e-0.2' directly as fol- 
lows: 

Comments on the Lower Limit of the Laplace Integral. In some cases, f ( t )  
possesses an impulse function at t  = 0.Then the lower limit of the Laplace integral must 
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be clearly specified as to whether it is 0- or 0+, since the Laplace transforms off (t) dif- 
fer for these two lower limits. If such a distinction of the lower limit of the Laplace 
integral is necessary, we use the notations 

2+[f ( t ) ]  = Smf (tte" dt 
0+ 

Iff (t) involves an impulse function at t = 0, then 

%+[f ( t>l  + 3-[f <t)l  

since 

for such a case. Obviously, iff (t) does not possess an impulse function at t = 0 (that is, 
if the function to be transformed is finite between t = 0- and t = Of), then 

2-4 MIPLACE TRANSFORM THEOREMS 

This section presents several theorems on Laplace transformation that are important in 
control engineering. 

Real Differentiation Theorem. The Laplace transform of the derivative of a func- 
tion f (t) is given by 

% - f (t) = sF( s )  - f (0) 
K t  I 

where f (0) is the initial value. of f (t) evaluated at t = 0. [Here we assumed 
f (0-1 = f (O+) = f (01.1 

For a given function f ( t ) ,  the values off (O+) and f (0-) may be the same or differ- 
ent, as illustrated in Figure 2-2. The distinction between f (O+) and f (0-) is important 
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when f  ( t )  has a discontinuity at t  = 0  because in such a case df  ( t ) / d t  will involve an im-' 
pulse function at t  = 0. Iff (O+) # f  (0-) ,  Equation (2-7) must be modified to 

2 - f )  = s F ( s )  - f(O+) 
[ i t  I 

2- - f ( t )  = s F ( s )  - f  (0-)  
[ i t  I 

To prove the real differentiation theorem, Equation (2-7), we proceed as follows. In- 
* 

tegrating the Laplace integral by parts gives 

Hence 

It follows that 

2 - f  ( t )  = s F ( s )  - f  ( 0 )  
[ i t  I 

Similarly, we obtain the following relationship for the second derivative off ( t ) :  

3 --z f ( t )  = s 2 F ( s )  - s f  ( 0 )  - f (0) [f I 
where f ( 0 )  is the value of df ( t ) /  dt evaluated at t  = O.To derive this equation, define 

Then 

Similarly, for the nth derivative off ( t ) ,  we obtain 

(n-1)  
where f  ( 0 ) ,  f ( 0 ) ,  . . . , f  ( 0 )  represent the values off ( t ) ,  df ( t ) /  dt, . . . , dn-'f ( t ) /  dtn-l, 
respectively, evaluated at t  = 0. If the distinction between 9, and 9- is necessary, we sub- 
stitute t = O+ or t  = 0- into f  ( t ) ,  df ( t ) /  dt, . . . , dn-'f ( t ) /  dt "-', depending on whether 
we take 9, or 2-. 

Note that, in order for Laplace transforms of derivatives of f ( t )  to exist, 
dnf ( t ) /  dtn (n = 1,2,3,.  . .) must be Laplace transformable. 
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Note also that, if all the initial values off ( t )  and its derivatives are equal to zero, then 
the Laplace transform of the nth derivative off ( t )  is given by snF(s) .  

EXAMPLE 2-1 Consider the cosine function: 

g(t)  = 0, fort  < 0 

= cos wt, for t 2 0 

The Laplace transform of this cosine function can be obtained directly as in the case of the sinu- 
soidal functioh considered earlier. The use of the real differentiation theorem, however, will be 
demonstrated,here by deriving the Laplace transform of the cosine function from the Laplace 
transform of the sine function. If we define 

f ( t )  = 0, for t < 0 

= sin wt, for t 2 0 
then 

The Laplace transform of the cosine function is obtained as 

2[cos wt] = Y - - sinwt = - [ s ~ ( s )  - f ( o ) ]  b t )I b 

Final-Value Theorem. The final-value theorem relates the steady-state behavior 
off ( t )  to the behavior of s F ( s )  in the neighborhood of s  = 0. This theorem, however, 
applies if and only if lirn f ( t )  exists [which means that f ( t )  settles down to a definite 

,Am 

value for t  -+ oo]. If ~1 l '~o les  of s F ( s )  lie in the left half s plane, lirn f ( t )  exists. But if 
t+M 

s F ( s )  has poles on the imaginary axis or in the right half s  plane, f ( t )  will contain os- 
cillating or exponentially increasing time functions, respectively, and lirn f ( t )  will not 

I-m 

exist. The final-value theorem does not apply to such cases. For instance, iff ( t )  is the si- 
nusoidal function sin o t ,  s F ( s )  has poles at s  = f j w  and f ( t )  does not exist. There- 
fore, this theorem is not applicable to such a function. 

The final-value theorem may be stated as follows. Iff ( t )  and df ( t ) /  dt are Laplace 
transformable, if F ( s )  is the Laplace transform off ( t ) ,  and if lirn f ( t )  exists, then 

t+m 

lirn f ( t )  = l i m s F ( s )  
t+m s+o 

To prove the theorem, we let s approach zero in the equation for the Laplace transform 
of the derivative off ( t )  or 

lirn Sm[$ f (t)Ie-" dt = lim [ s ~ ( s )  - f (o)] 
s+o s+O 
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from which 
f (co) = lim f (t) = limsF(s) 

f+co s+o 

The final-value theorem states that the steady-state behavior off (t) is the same as the 
behavior of sF(s)  in the neighborhood of s = O.Thus, it is possible to obtain the value 
off (t) at t = co directly from F(s) .  

EXAMPLE 2-2 Given 
1 

Z [ f  ( t ) l  = f ( s )  = 

what is lim f  ( t ) ?  
f+W 

Since the pole of s F ( s )  = l / ( s  + 1 )  lies in the left half s  plane, lim f  ( t )  exists. So the final- 
I+Cc 

value theorem is applicable in this case. 

S 1  
lirn f  ( t )  = f ( m )  = l i m s F ( s )  = lim ------ = lim - = 1 
L-+W s-0 s-0 S ( S  + 1 )  s-0 s + 1  

In fact, this result can easily be verified, since 

f  ( t )  = 1  - e-', for t 2 0 

Initial-Value Theorem. The initial-value theorem is the counterpart of the final- 
value theorem. By using this theorem, we are able to find the value off (t) at t = O+ di- 
rectly from the Laplace transform off  (t). The initial-value theorem does not give the 
value off (t) at exactly t = 0 but at a time slightly greater than zero. 

The initial-value theorem may be stated as follows: I f f  (t) and df (t)/dt are both 
Laplace transformable and if lim sF(s) exists, then 

S + W  

f (O+) = lim sF(s) 
S+OO 

To prove this theorem, we use the equation for the 2, transform of df (t)/ dt: 

2+ - f (t) = sF(s)  - f (O+)  
[ i t  I 

For the time interval O+ 5 t 5 co, as s approaches infinity, e-" approaches zero. (Note 
that we must use 3, rather than 2- for this condition.) And so 

or 
f (O+) = lim sF(s) 

S-+W 

In applying the initial-value theorem, we are not limited as to the locations of the poles 
of sF(s).Thus the initial-value theorem is valid for the sinusoidal function. 

It should be noted that the initial-value theorem and the final-value theorem provide 
a convenient check on the solution, since they enable us to predict the system behavior 
in the time domain without actually transforming functions in s back to time functions. 

Real-Integration Theorem. Iff (t) is of exponential order and f (0-) = f (O+) = f (0), 
then the Laplace transform of If (t) dt exists and is given by 
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where F(s) = %[f (t)] and f-'(0) = If (t) dt evaluated at t = 0. 
Note that iff ( t )  involves an impulse function at t = 0, then f-'(of) f fT1(O-). So 

iff (t) involves an impulse function at t = 0, we must modify Equation (2-8) as follows: 

F(s) + f-'(0-1 
%-[/f (t) dt] = , -- s 

The real-integration theorem given by Equation (2-8) can be proved in the following 
way. Integration by parts yields 

and the theorem is proved. 
We see that integration in the time domain is converted into division in the s do- 

main. If the initial value of the integral is zero, the Laplace transform of the integral of 
f (t ) is given by F (s) 1s. 

The preceding real-integration theorem given by Equation (2-8) can be modified 
slightly to deal with the definite integral off  (t). I f f  (t) is of exponential order, the 
Laplace transform of the definite integral lf (t) dt is given by 

where F(s) = Z[f (t)]. This is also referred to as the real-integration theorem. Note 
that iff (t) involves an impulse function at t = 0 then &+ f (t) dt # l- f (t) dt and the f01- 
lowing distinction must be observed: 

To prove Equation (2-9), first note that 
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where f-'(0) is equal to S f  ( t )  dt evaluated at t  = 0  and is a constant. Hence 

2[ J>( t )  d t ]  = 2[ J f ( t )  d t ]  - %[f- ' (o ) l  
0 

Noting that fW'(O) is a constant so that 

we obtain 

Complex-Differentiation  heo or em. Iff ( t )  is Laplace transformable, then, except 
at poles of F ( s ) ,  

where F ( s )  = 2[f ( t ) ] .  This is known as the complex-differentiation theorem. Also, 

In general, 

.d" 
9 [ t n f  ( t ) ]  = (-1)" -- F ( s ) ,  for n = 1,2,3, .  . . 

ds" 

To prove the complex-differentiation theorem, we proceed as follows: 
W " d 

%[rf ( t ) ]  = / tf (t)e" dt = -6 f  ( t )  (e-'I) dl  
0 

Hence the theorem. Similarly, by defining t f  ( t )  = g ( t ) ,  the result is 
d  

%[t2f ( t ) ]  = 2 [ t g ( t ) ]  = - - G ( s )  = - 
ds 

Repeating the same process, we obtain 

d" 
2 [ t n f  ( t ) ]  = (-1)" - F ( s ) ,  for n = 1,2,3 , .  

ds" 

Convolution Integral. Consider the Laplace transform of 
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This integral is often written as 

f l ( t )  * fz(t) 

The mathematical operation f l( t)  * f2(t) is called convolution. Note that if we put 
t  - r  = (,then 

Hence 

If f l( t)  and fz(t)  are piecewise continuous and of exponential order, then the Laplace 
transform of 

can be obtained as follows: 

where 

To prove Equation (2-10) note that fi(t - r ) l ( t  - r )  = 0 for T > t. Hence 

Then 
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Substituting t - T = A in this last equation and changing the order of integration, which 
is valid in this case becausef,(t) and fi(t) are Laplace transformable, we obtain 

This last equation gives the Laplace transform of the convolution integral. Conversely, 
if the Laplace transform of a function is given by a product of two Laplace transform 
functions, F,(s) F2(s), then the corresponding time function (the inverse Laplace trans- 
form) is given by the convolution integral f,(t) * f2(t). 

Laplace Transform of Product of Two Time Functions. The Laplace transform 
of the product of two Laplace transformable functions f (t) and g(t) can be given by 

1 C+Jw 

%[f(t)g(t)i = J F(P)G(~  - P ) ~ P  (2-11) 
c-Jw 

To show this, we may proceed as follows: The Laplace transform of the product off ( t )  
and g(t) can be written as 

(2-12) 

Note that the inversion integral is 
1 c+Jw 

f ( t ) = , i J  F(s)e5'ds, f o r t > O  
c-jw 

where c is the abscissa of convergence for F(s).Thus, 
1 '00 c+/w 

ie[f (t)g(t)] = 7 / / F(p)ePi dp g(t)e-" dt 
2.rr~ 0 c-100 

Because of the uniform convergence of the integrals considered, we may invert the order 
of integration: 

~ [ f ( t ) ~ ( t ) j  = 1 Jci 'w~(p) dp l>(t)e-(s-p)i dt 
2 ~ 1  c-jw 

Noting that 

we obtain 
1 cfjw 

n [ f ( t ) g ( t ) ~  = J F(P)G(S - P) d~ 
c-jw 

Summary. Table 2-2 summarizes properties and theorems of the Laplace trans- 
forms. Most of them have been derived or proved in this section. 
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Table 2-2 Properties of Laplace Transforms 
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1 

2  

3 

4 

5 

6 

7  

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

~ [ ~ f ( t ) l  = 

Z [ f l ( t )  4 f2(t)l  = F1(s) F2(s) 

= s F ( s )  - f  ( O f )  

= s 2 ~ ( s )  - s f  ( O f )  - f ( o f )  

n (k-1)  

2,[$ f ( t ) ]  = s n F ( s )  - x ~ ~ - ~ f ( O i )  
k=l  

( k - 1 )  dk-1 
where f  ( t )  = - f  ( t )  

dtk-' 

2,[ J f ( t ) d t ]  = - + ' [ / f ( t ) d t ]  s s [=01 

% . [ I . -  J f ( t ) ( d t ) n ]  = + k=l 2 & S 
[ J... J f ( t ) ( d t ) * ]  f=o+ 

laf ( t )  dt = !% F ( s )  if Lmf ( t )  d t  exists 

~ [ e - ~ ' f  ( t ) ]  = F ( s  + a )  

2 [ f ( t - a ) l ( t - a ) ] = e - a s F ( s )  a 2 0  

d F ( s )  
Y [ t f  ( t ) l  = - , 

d2 
2 [ t 2 f  ( t ) ]  = - F ( s )  

ds2 

dn  
2 [ t n f  ( t ) ]  = (-1)" - F ( s )  (n = 1,2 ,3 , .  . . ) 

dsn 

1  
F ( s )  ds  if ky ; f  ( t )  exists 

~ [ f  (:)I = a F ( a s )  

2[ J>,(t - r ) f 2 ( T ) d T ]  = F I ( S ) F ~ ( ~ )  
0 

1 c+lm 

f = / F ( P ) G ( s  - P ) ~ P  
2 ~ 1  c-1, 



2-5 INVERSE LAPLACE TRANSFORMATION 

As noted earlier, the inverse Laplace transform can be obtained by use of the inversion 
integral given by Equation (2-4). However, the inversion integral is complicated and, 
therefore, its use is not recommended for finding inverse Laplace transforms of com- 
monly encountered functions in control engineering. 

A convenient method for obtaining inverse Laplace transforms is to use a table of 
Laplace transforms. In this case, the Laplace transform must be in a form immediately 
recognizable in such a table. Quite often the function in question may not appear in ta- 
bles of Laplace transforms available to the engineer. If a particular transform F(s)  can- 
not be found in a table, then we may expand it into partial fractions and write F(s) in 
terms of simple functions of s for which the inverse Laplace transforms are already 
known. 

Note that these simpler methods for finding inverse Laplace transforms are based 
on the fact that the unique correspondence of a time function and its inverse Laplace 
transform holds for any continuous time function. 

Partial-Fraction Expansion Method for Finding Inverse Laplace Transforms. 
For problems in control systems analysis, F(s), the Laplace transform off (t), frequently 
occurs in the form 

where A(s) and B(s) are polynomials in s. In the expansion of F(s) = B(s)/A(s) into a 
partial-fraction form, it is important that the highest power of s in A(s) be greater than 
the highest power of s in B(s). If such is not the case, the numerator B(s) must be divid- 
ed by the denominator A(s) in order to produce a polynomial in s plus a remainder (a ratio 
of polynomials in s whose numerator is of lower degree than the denominator). 

If F(s)  is broken up into components, 

and if the inverse Laplace transforms of F,(s), F2(s), . . . , F,(s) are readily available, 
then 

wheref,(t),f,(t),. . . , f,(t) are the inverse Laplace transforms of F,(s), F2(s), . . . , Fn(s), 
respectively.The inverse Laplace transform of F(s) thus obtained is unique except pos- 
sibly at points where the time function is discontinuous. Whenever the time function is 
continuous, the time function f (t) and its Laplace transform F(s) have a one-to-one 
correspondence. 

The advantage of the partial-fraction expansion approach is that the individual terms 
of F(s), resulting from the expansion into partial-fraction form, are very simple functions 
of s; consequently, it is not necessary to refer to a Laplace transform table if we memo- 
rize several simple Laplace transform pairs. It should be noted, however, that in apply- 
ing the partial-fraction expansion technique in the search for the inverse Laplace 
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transform of F ( s )  = B ( s ) / A ( s )  the roots of the denominator polynomial A ( s )  must be 
obtained in advance. That is, this method does not apply until the denominator polyno- 
mial has been factored. 

Partial-Fraction Expansion when F(s) Involves Distinct Poles Only. Consider 
F ( s )  written in the factored form 

B ( s )  - ~ ( s  + zl)(s + z2) ... ( s  + z,) 
F ( s )  = - - , for rn < n 

4 s )  ( s + ~ l ) ( s + p 2 ) . . . ( ~ + ~ ~ )  

where p,, p,, . . . , pn and z,, z2, .  . . , z,  are either real or complex quantities, but for each 
complex pi or z,  there will occur the complex conjugate of p, or z,, respectively. If F ( s )  
involves distinct poles only, then it can be expanded into a sum of simple partial fractions 
as follows: 

where ak (k = 1,2,. . . , n) are constants.The coefficient ak is called the residue at the pole 
at s = - p k .  The value of a, can be found by multiplying both sides of Equation (2-14) 
by ( s  + p,) and letting s = -pk ,  which gives 

= ak 

We see that all the expanded terms drop out with the exception of ak.  Thus the residue 
ak is found from 

Note that, since f ( t )  is a real function of time, if p1 and p2 are complex conjugates, then 
the residues al and a, are also complex conjugates. Only one of the conjugates, a, or a,, 
needs to be evaluated because the other is known automatically. 

Since 
- - 

f ( t )  is obtained as 

f ( t )  = ~ - ' [ F ( s ) ]  = a,e-P~' + a2e-pzr + + ane-P.', for t 2 0 

1 EXAMPLE 2-3 Find the inverse Laplace transform of 
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The partial-fraction expansion of F(s) is 

where a, and a, are found by using Equation (2-15): 

Thus 

- ze-l - e-21 - , fort  2 0 

I EXAMPLE 2-4 Obtain the inverse Laplace transform of 

Here, since the degree of the numerator polynomial is higher than that of the denominator 
polynomial, we must divide the numerator by the denominator. 

Note that the Laplace transform of the unit-impulse function S(t) is 1 and that the Laplace trans- 
form of dS(t)/ dt is s.The third term on the right-hand side of this last equation is F ( s )  in Exam- 
ple 2-3. So the inverse Laplace transform of G(s) is given as 

d 
g(t) = - S(t) + 26(t) -t 2e-' - eA2', for t 2- 0- 

dt 

I EXAMPLE 2-5 Rnd the inverse Laplace transform of 

Notice that the denominator polynomial can be factored as 

s2 + 2s + 5 = (s  + 1 + j2)(s + 1 - j2) 

If the function F(s)  involves a pair of complex-conjugate poles, it is convenient not to expand 
F(s) into the usual partial fractions but to expand it into the sum of a damped sine and a damped 
cosine function. 

Noting that s2 + 2s + 5 = (s + 1)' + 2' and referring to the Laplace transforms of e-"' sinwt 
and e-"' cos wt, rewritten thus, 

0 
~ [ e " '  sin wt] = 

(s + a)2 + w2 

s + a 
2[e-ar cos wt] = 

(s  + a)' + w2 
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I the given F(s) can be written as a sum of a damped sine and a damped cosine function. 

It follows that 

f ( t )  = z- ' [~ ( s ) l  

= 5e-' sin2t + 2e-' cos2t, fort 2 0 

Partial-Fraction Expansion when F ( s )  Involves Multiple Poles. Instead of dis- 
cussing the general case, we shall use an example to show how to obtain the partial- 
fraction expansion of F ( s ) .  

Consider the following F ( s ) :  

The partial-fraction expansion of this F ( s )  involves three terms, 

where b3, b2, and b, are determined as follows. By multiplying both sides of this last 
equation by ( s  + I ) ~ ,  we have 

Then letting s  = -1, Equation (2-16) gives 

Also, differentiation of both sides of Equation (2-16) with respect to s yields 

If we Iet s  = -1 in Equation (2-17), then 

By differentiating both sides of Equation (2-17) with respect to s, the result is 
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From the preceding analysis it can be seen that the values of b,, b2, and b1 are found 
systematically as follows: 

We thus obtain 

f (t) = T - l [ ~ ( s ) l  

= (1 + t2)e-', fort r 0 

Comments. For complicated functions with denominators involving higher-order 
polynomials, partial-fraction expansion may be quite time consuming. In such a case, 
use of MATLAB is recommended. (See Section 2-6.) 

2-6 PARTIAL-FRACTION EXPANSION WITH MATLAB 

MATLAB has a command to obtain the partial-fraction expansion of B(s ) /A(s ) .  It also 
has a command to obtain the zeros and poles of B ( s ) / A ( s ) .  

We shall first present the MATLAB approach to obtain the partial-fraction expan- 
sion of B ( s ) / A ( s ) .  Then we discuss the MATLAB approach to obtain the zeros and 
poles of B ( s ) / A ( s ) .  

Partial-Fraction Expansion with MATLAB. Consider the following function 

B(s )  /A(s ) :  

B ( s )  num bosn + blsn-l + ... + bn -=-= 
A ( s )  den sn + alsn-l + + an 
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EXAMPLE 2-6 

Section 2-6 / Partial-Fraction Expansion with MATLAB 

where some of ai and bj may be zero. In MATLAB row vectors num and den specify the 
coefficients of the numerator and denominator of the transfer function. That is, 

num = [b, b, ... b,] 
den = [I  a, ... a,] 

The command 

finds the residues (r),  poles ( p ) ,  and direct terms ( k )  of a partial-fraction expansion of 
the ratio of two polynomials B ( s )  and A ( s ) .  

The partial-fraction expansion of B ( s ) / A ( s )  is given b y  

Comparing Equations (2-14) and (2-18), we note that p(1 )  = -pl,  p (2 )  = -p2, ... , 
p ( n )  = -pn; r (1)  = al ,  r (2 )  = a2,. . . , r ( n )  = a,. [ k ( s )  is a direct term.] 

Consider the following transfer function, 

For this function, 

num= [2 5 3 61 
den = [l 6  11 61 

The command 

[r,p,kl = residue(num,den) 

gives the following result: 



(Note that the residues are returned in column vector r, the pole locations in column vector p, and 
the direct term in row vector k.) This is the MATLAB fepresentation of the following partial- 
fraction expansion of B ( s ) / A ( s ) :  

The residue command can also be used to form the polynomials (numerator and denominator) 
from its partial-fraction expansion. That is, the command 

where r, p, and k are as given in the previous MATLAB output, converts the partial-fraction 
expansion back to the polynomial ratio B ( s ) / A ( s ) ,  as follows: 

The command 

prints the numfden in terms of the ratio of polynomials in s. 
Note that if p ( j )  = p ( j  + 1 )  = ... = p( j  + rn - 1 )  [that is,p, = p, + , = ... = p, +, - l],the 

pole p ( j )  is a pole of multiplicity m. In such a case, the expansion includes terms of the form 

r ( j )  + r ( j  + 1 )  r ( j  + rn - 1) + ... + 
s - ~ ( i )  [ s  - p ( j ) ]  [ s  - p( i ) Im 

For details, see Example 2-7. 

I EXAMPLE 2-7 Expand the following B ( s ) / A ( s )  into partial-fractions with MATLAB. 

For this function, we have 

num = [O 1 2 31 
den = [I 3 3 I ]  

The command 

gives the result shown on the next page. It is the MATLAB representation of the following partial- 
fraction expansion of B ( s )  / A  (s): 
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num = [O 1 2 31; 
den= [I  3 3 11; 
[r,p,k] = residue(num,den) 

r = 

1 .oooo 
0.0000 
2.0000 

P = 

-1 .oooo 
-1 .oooo 
-1 .oooo 

k = 

[I 

Note that the direct term k is zero. 
To obtain the original function B(s ) /A(s )  from r, p, and k, enter the following program to the 

computer: 

Then the computer will show the num/den as follows: 

Finding Zeros and Poles of B(s)/A(s) with MATLAB. MATLAB has a command 

to obtain the zeros, poles, and gain K of B ( s ) / A ( s ) .  
Consider the system defined by 

To obtain the zeros (z), poles (p), and gain (K), enter the following MATLAB program 
into the computer: 

Then the computer will produce the following output on the screen: 
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The zeros are at s = -3 and -1. The poles are at s = 0, -6, -4, and -2. The gain K is 4. 
If the zeros, poles, and gain K are given, then the following MATLAB program will 

yield the original numlden. 

z = [-I; -31; 
p = [O; -2; -4; -61; 
K = 4; 
[num,den] = zp2tf(z,p,K); 
printsys(num,den,'s') 

numlden = 

4sA2 + 16s + 12 
sA4 + 1 2sA3 + 44sA2 + 48s 

2-7 SOLVING LINEAR, TIME-INVARIANT, 
DIFFERENTIAL EQUATIONS 

In this section we are concerned with the use of the Laplace transform method in solv- 
ing linear, time-invariant, differential equations. 

The Laplace transform method yields the complete solution (complementary solu- 
tion and particular solution) of linear, time-invariant, differential equations. Classical 
methods for finding the complete solution of a differential equation require the evalu- 
ation of the integration constants from the initial conditions. In the case of the Laplace 
transform method, however, this requirement is unnecessary because the initial condi- 
tions are automatically included in the Laplace transform of the differential equation. 

If all initial conditions are zero, then the Laplace transform of the differential equa- 
tion is obtained simply by replacing d /  dt with s, d2/ dt2 with s2, and so on. 

In solving linear, time-invariant, differential equations by the Laplace transform 
method, two steps are involved. 
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1. By taking the Laplace transform of each term in the given differential equation, 
convert the differential equation into an algebraic equation in s and obtain the 
expression for the Laplace transform of the dependent variable by rearranging 
the algebraic equation. 

2. The time solution of the differential equation is obtained by finding the inverse 
Laplace transform of the dependent variable. 

In the following discussion, two examples are used to demonstrate the solution of 
linear, time-invariant, differential equations by the Laplace transform method. 

E M P L E  2-8 Find the solution x ( t )  of the differential equation 

where a and b  are constants. 
By writing the Laplace transform of x ( t )  as X ( s )  or 

Z [ x ( t ) l  = X ( s )  

we obtain 

elx] = S X ( S )  - X ( O )  

Z [ X ]  = s2X(s )  - sx(0) - k ( 0 )  

And so the given differential equation becomes 

[ s 2 x ( s )  - sx(0) - k ( 0 ) ]  + 3 [ s ~ ( s )  - x ( 0 ) ]  + 2 X ( s )  = 0  

By substituting the given initial conditions into this last equation, we obtain 

Solving for X ( s ) ,  we have 

The inverse Laplace transform of X ( s )  gives 

= (2a + b)e-' - ( a  + b)e-*', fort 2 0  

which is the solution of the given differential equation. Notice that the initial conditions a and b 
appear in the solution.Thus x ( t )  has no undetermined constants. 

EXAMPLE 2-9 Find the solution x ( t )  of the differential equation 

x + 25 + 5x = 3, x (0 )  = 0, i ( 0 )  = 0  

Noting that %[3] = 3/s, x ( 0 )  = 0, and k ( 0 )  = 0, the Laplace transform of the differential 
equation becomes 
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I Solving for X(s),  we find 

Hence the inverse Laplace transform becomes 

~ ( t )  = e - ' [ x ( ~ ) ]  

- - 3 3 3 
- - - e-' sin 2t - - e-' cos 2t, 
5 10 5 

fort  2 0 

which is the solution of the given differential equation. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-2-1. Find the poles of the 'following F(s): 

1 
F(s) = - . 1 - e-" 

Solution. The poles are found from 

e-" = 1 

or 

e - ( ~ + ~ ~ )  = -U e (coso - jsinw) = 1 

From this it follows that u = 0, w = S n r  (n = 0,1,2, .  ..).Thus, the poles are located at 

s=r t j2n?r  ( n = 0 , 1 , 2 ,  . . . )  

A4-2. Find the Laplace transform off ( t)  defined by 

f (t) = 0, for t  < 0 

= reV3', for t r 0 

Solution. Since 

referring to Equation (2-6), we obtain 

A-2-3. What is the Laplace transform of 

f (t) = 0, for t  < 0 

= sin(wt + O), for t  2 0 
where O is a constant? 
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Figure 2-3 
Function f ( t ) .  

Solution. Noting that 
sin (wt + 0 )  = sin wt cos 0 + cos ot sin 0 

we have 
%[sin(ot + o ) ]  = cos 0 %[sin wt] + sin0 %[cos wt] 

W S 
= cos 0 ------ + sin 0 ------ 

s2 + W2 s2 + W2 

A-2-4. Find the Laplace transform F(s )  o f  the function f ( t )  shown in Figure 2-3. where f ( t )  = 0 for 
t < 0 and 2a 5 t. Also find the limiting value o f  F(s )  as a approaches zero. 

Solution. The function f ( t )  can be written 
1 2 1 

f ( t )  = - l ( t )  - - l ( t  - a)  + - l ( t  - 2a) 
a2 a2 a2 

Then 
F(s )  = T [ f  ( t ) l  

1 2 1 
= - T [ l ( t ) ]  - ,T[l(t - a ) ]  + , ~ [ l ( t  - 2a)] 

a2 a a 

As a approaches zero, we have 

d - (1 - Ze-aS + e-2"~) 
1 - ze-as + e-2as da 

lim F(s )  = $2 = lim 
n+O a2s a+O d - (a2s) 

da 

zSe-as - zse-2as e - a ~  - e-2as 

= lim = lim 
a+O 2a.9 a+O a 
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A-2-5. Find the initial value of df ( t ) /  dt when the Laplace transform o f f  ( t )  is given by 

Solution. Using the initial-value theorem, 

s(2s + 1 )  
lim f ( t )  = f(O+) = !iirsF(s) = lim 

I+@+ 
= 2 

s--s2+s+ 1 

Since the 2, transform o f  df ( t ) /  dt = g(t)  is given by 

the initial value o f  df ( t ) /  dt is obtained as 

lim = g(@+) = lim s [ s ~ ( s )  - f ((I+)] 
[ - t o t  dt S-+OO 

-s2 - 2s 
= lim = -1 

S + W s 2 + ~ +  1 

A-2-6. The derivative of the unit-impulse function 6( t)  is called a unit-doublet function. (Thus, the inte- 
gral of the unit-doublet function is the unit-impulse function.) Mathematically, an example of the 
unit-doublet function, which is usually denoted by u2(t), may be given by 

Obtain the Laplace transform of  u2(t). 

Solution. The Laplace transform o f  u2(t) is given by 

1 
= lim - [tzs2 + (higher-order terms in tos)] = s 

to-0 t;s 

A-2-7. Find the Laplace transform off ( t )  defined by 

f ( t )  = 0, fort < 0 

= t2 sinwt, for t 2 0 

Solution. Since 

W 
%[sin wt] = --- 

s2 + w2 

applying the complex-differentiation theorem 
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to this problem, we have 

w -2w3 + 60s' 
2 [ f  ( t ) ]  = 2 [ t 2  sinwt] = - ----- = is:[sz+w2] ( s 2 + d y  

A-2-8. Prove that if f  ( t )  is of exponential order and if Amf ( t )  dt  exists [which means that Amf ( t )  d t  
assumes a definite value] then 

Lmf ( t )  dt = lii F ( s )  

where F ( s )  = 2 [ f  ( t ) ] .  

Solution. Note that 

Referring to Equation (2-9), 

Y [ l ; ( t )  d t ]  = iFo s 

Since J;P"f ( t )  dt  exists, by applying the final-value theorem to this case, 

A-2-9. Prove that iff ( t )  is a periodic function with period T, then 

lTf ( t ) i g  dt 

2 [ f ( t ) l  = 1 - e-Ts 

Solution. 
w (n+l)T 

2 [ f  ( t ) ]  = J W f  (t)e-" dt = 2 lT f  (t)e-st dt  
0 n=O 

By changing the independent variabk from t  to T, where T = t  - nT, 

where we used the fact that f  ( T  + nT) = f  (7) because the function f  ( t )  is periodic with period 
T. Noting that 
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we obtain 

It follows that 

A-2-10. What is the Laplace transform of the periodic function shown in Figure 2-4? 

Solution. Note that 

Referring to Problem A-2-9, we have 
r T  

A-2-11. Find the inverse Laplace transform of F(s), where 

F(s) = 
1 

s(s2 + 2s + 2) 
Solution. Since 

s2 + 2s + 2 = (s + 1 + jl)(s + 1 - jl) 

Figure 2-4 
Periodic function 
(square wave). 
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we notice that F ( s )  involves a pair of complex-conjugate poles, and so we expand F ( s )  into the 
form 

where a l ,  a2, and a, are determined from 

1 = a,(s2 + 2s + 2 )  + (a2s + a3)s 

By comparing coefficients of s2, s,  and so terms on both sides of this last equation, respectively, we 
obtain 

a ,  + a2 = 0, 2a1 + a3 = 0, 2al = 1 

from which 

Therefore. 

The inverse Laplace transform of F ( s )  gives 

1 1  1  
f ( t )  = - - - e-' sin t - - e-' cost, for t 2 0 

2 2 2 

A-2-12. Obtain the inverse Laplace transform of 

Solution. 

where 
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Thus 

The inverse Laplace transform of F(s)  is 

25 10 5 5 
f (t) = - - + - t + - e-' + - e-3', for t 2 0 

9 3 2  18 

A-213. Find the inverse Laplace transform of 

Solution. Since the numerator polynomial is of higher degree than the denominator polynomial, 
by dividing the numerator by the denominator until the remainder is a fraction, we obtain 

where 

It follows that 

The inverse Laplace transform of F(s) is 

d2 d 
f (t) = T 1 [ ~ ( s ) ]  = - S(t) + - S(t) + 2S(t) + 5 - 3e-', for t  2 0- 

dt2 dt 

A-2-14. Derive the inverse Laplace transform of 

Solution. 

Hence the inverse Laplace transform of F(s)  is obtained as 

1 
f (t) = z-'[F(s)] = - (1 - coswt), for t  2 0 

w2 

A-2-15. Obtain the inverse Laplace transform of the following F(s). [Use MATLAB to find the partial- 
fraction expansion of F(s)  .] 
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Solution. The following MATLAB I;rogram will produce the partial-fraction expansion of F(s ) :  

num = [ I  8 23 35 28 31; 
den = [O 0 1 6 8 01; 
[r,p,kl = residue(num,den) 

Note that k = [I 2 31 means that F ( s )  involves s2 f 2s + 3 as shown below: 

Hence, the inverse Laplace transform of F ( s )  is given by 

d2 d 
f ( t )  = - 8 ( t )  i. 2 - 8 ( r )  + 38( t )  + 0.375e-4r + 0.25e"' + 0.375, for t  > 0- 

dt2 dt 
p,FISbv' 

e 
A-2-16. Given the zero(s), pole(s), and gain K of B ( s ) / A ( s ) ,  obtain the function B ( s ) / A ( s )  using MAT- 

LAB. Consider the three cases below. 

(1) There is no zero. Poles are at -1 + 2j and -1 - 2j. K = 10. 

(2) A zero is at 0.  Poles are at -1 + 2j and -1 - 2j. K = 10. 
(3) A zero is at -1. Poles are at -2, -4 and -8. K = 12. 

Solution. MATLAB programs to obtain B ( s ) / A ( s )  = numlden for the three cases are shown 
below. 

z = [O]; 
p = [-I +2*j; -1 -2*j]; 
K = 10; 
Inum,denl = zp2tf(z,p,K); 
printsys(num,den) 

numiden = 

10s 

sA2 + 2s + 5 

1 numiden = I 
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A-2-17. Solve the following differential equation: 

x + 2k + lox  = t2,  x(0)  = 0, k ( 0 )  = 0 

Solution. Noting that the initial conditions are zeros, the Laplace transform of the equation 
becomes as follows: 

Hence 

We need to find the partial-fraction expansion of X(s). Since the denominator involves a triple 
pole, it is simpler to use MATLAB to obtain the partial-fraction expansion.The following MAT- 
LAB program may be used: 

num = [O 0 0 0 0 21; 
den=[1 2 10 0 0 01; 
[r,p,k] = residue(num,den) 

r = 

0.0060- 0.0087i 
0.0060+ 0.0087i 

-0.01 20 
-0.0400 
0.2000 

P = 

-1 .OOOO+ 3.0000i 
-1 .OOOO- 3.0000i 
0 
0 
0 

k = 

I1 

From the MATLAB output, we find 

Combining the first two terms on the right-hand side of the equation, we get 

The inverse Laplace transform of X(s) gives 

x ( t )  = 0.012e-' cos3t + 0.0174e-' sin3t - 0.012 - 0.04t + O.ltz', for t r 0 
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PROBLEMS 

B-2-1. Find the Laplace transforms of the following 
functions: 

(a) fi( t)  = 0, fort  < O 
= e-O 4r cos 12t, fort  2 0 

(b) f2(t) = 0, fort  < O 

B-2-2. Find the Laplace transforms of the following 
functions: 

(a) fi(t) = 0, for t < 0 
= 3 sin(5t + 45"), fort r 0 

(b) f2(t) = 0, fort < O 
=0.03(1-cos2t), f o r t 2 0  

B-2-3. Obtain the Laplace transform of the function de- 
fined by 

f ( t )  = 0, for t < 0 
- - t2e-ar , fort  2 0 

B-2-4. Obtain the Laplace transforms of the following 
functions: 

(a) f (t)  = 0, fort  < 0 
=sinwt.coswt, f o r t 2 0  

(b) f (t)  = 0, for t < O 

= te-' sin 5t, for t 2 0 

B-2-5. Obtain the Laplace transform of the function de- 
fined by 

f ( t )  = 0, for t < 0 

= cos2ot cos3wt, for t 2 0 

B-2-7. Obtain the Laplace transform of the function f (t)  
shown in Figure 2-6. 

0 T ' Function f (t) 

B-2-8. Find the Laplace transform of the function f (t) 
shown in Figure 2-7.Als0, find the limiting value of Y[f (t)] 
as a approaches zero. 

B-2-6. What is the Laplace transform of the function f (t) 
shown in Figure 2-5? B-2-9. By applying the final-value theorem, find the final 

value off  (t) whose Laplace transform is given by 

10 
F(s) = ---- 

S ( S  + 1) 

Verify this result by taking the inverse Laplace transform 
of F ( s )  and letting t -+ m. 

B-2-10. Given 

1 
F(s) = - 

(s  + 2)2 
Figure 2-5 determine the values off  (O+) and f (0+). (Use the initial- 

0 a a + b t Function f (t). value theorem.) 
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B-2-11. Find the inverse Laplace transform of B-2-17. A function B ( s ) / A ( s )  consists of the following 
zeros, poles, and gain K: 

s + l  
F ( s )  = 

s(s2 + S + 1) zeros at s  = -1, s  = -2 
poles at s  = 0, s  = -4, s  = -6 B-2-12. Obtain the inverse Laplace transform of the fol- 
gain K = 5  

lowing function: 

Obtain the expression for B ( s ) / A ( s )  = numlden with 
MATLAB. 

B-2-13. Find the inverse Laplace transforms of the follow- B-2-18. What is the solution of the following differential 
ing functions: equation? 

B-2-19. Solve the differential equation 

B-2-14. Find the inverse Laplace transforms of the follow- .i + 2x = S( t ) ,  x(O-) = 0  
ing functions: 

I B-2-20. Solve the following differential equation: - 

x + 2(w,k + mix = 0, x (0 )  = a, i ( 0 )  = b 
w  ', 

(b) 
F2(s) = s(s2 + 2&0,,s + w',) 

(0  < 5 < 1 )  
where a and b are constants. 

B-2-15. Obtain the partial-fraction expansion of the fol- 
lowing function witW MATLAB: B-2-21. Obtain the solution of the differential equation 

= ( "1 - 
( S  + 1) ( s  + 3) ( s  + 5)2 

B-2-22. Obtain the solution of the differential equation 
Then, obtain the inverse Laplace transform of F(s) .  

B-2-16. Consider the following function F(s):  

s4 + 5s3 + 6s' + 9s + 30 B-2-23. Solve the following differential equation: 
F ( s )  = 

s4 + 6s3 + 21s2 + 46s + 30 x + 2 i  + l ox  = e-', x (0 )  = 0, i ( 0 )  = 0  

Using MATLAB, obtain the partial-fraction expansion of The foreing function e-' is given at t  = 0  when the system is 
F(s) .  Then, obtain the inverse Laplace transform of F(s) .  at rest. 
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Mathematical Modeling 
of Dynamic Systems 

3-1 INTRODUCTION 

In studying control systems the reader must be able to model dynamic systems and 
analyze dynamic characteristics. A mathematical model of a dynamic system is defined 
as a set of equations that represents the dynamics of the system accurately or, at least, 
fairly well. Note that a mathematical model is not unique to a given system. A system 
may be represented in many different ways and, therefore, may have many mathemat- 
ical models, depending on one's perspective. 

The dynamics of many systems, whether they are mechanical, electrical, thermal, 
economic, biological, and so on, may be described in terms of differential equations. 
Such differential equations may be obtained by using physical laws governing a partic- 
ular system, for example, Newton's laws for mechanical systems and Kirchhoff's laws for 
electrical systems. We must always keep in mind that deriving reasonable mathematical 
models is the most important part of the entire analysis of control systems. 

Throughout this book we assume that the principle of causality applies to the systems 
considered.This means that the current output of the system (the output at time t = 0) 
depends on the past input (the input for t < 0) but does not depend on the future input 
(the input for t > 0). 

Mathematical Models. Mathematical models may assume many different forms. 
Depending on the particular system and the particular circumstances, one mathemati- 
cal model may be better suited than other models. For example, in optimal control prob- 
lems, it is advantageous to use state-space representations. On the other hand, for the 



transient-response or frequency-response analysis of single-input-single-output, linear, 
time-invariant systems, the transfer function representation may be more convenient 
than any other. Once a mathematical model of a system is obtained, various analytical 
and computer tools can be used for analysis and synthesis purposes. 

Simplicity Versus Accuracy. In obtaining a mathematical model, we must make 
a compromise between the simplicity of the model and the accuracy of the results of 
the analysis. In deriving a reasonably simplified mathematical model, we frequently find 
it necessary to ignore certain inherent physical properties of the system. In particular, 
if a linear lumped-parameter mathematical model (that is, one employing ordinary dif- 
ferential equations) is desired, it is always necessary to ignore certain nonlinearities and 
distributed parameters that may be present in the physical system. If the effects that 
these ignored properties have on the response are small, good agreement will be obtained 
between the results of the analysis of a mathematical model and the results of the 
experimental study of the physical system. 

In general, in solving a new problem, it is desirable to build a simplified model so that 
we can get a general feeling for the solution. A more complete mathematical model may 

I .  then be built and used for a more accurate analysis. 
We must be well aware of the fact that a linear lumped-parameter model, which may 

be valid in low-frequency operations, may not be valid at sufficiently high frequencies 
sin* the neglected property of distributed parameters may become an important fac- 
tor in the dynamic behavior of the system. For example, the mass of a spring may be 
neglected in low-frequency operations, but it becomes an important property of the sys- 
tem at high frequencies. (For the case where a mathematical model involves consider- 
able errors, robust control theory may be applied.) 

Linear Systems. A system is called linear if the principle of superposition 
applies. The principle of superposition states that the response produced by the 
simultaneous application of two different forcing functions is the sum of the two 
individual responses. Hence, for the linear system, the response to several inputs can 
be calculated by treating one input at a time and adding the results. It is this principle 
that allows one to build up complicated solutions to the linear differential equation 
from simple solutions. 

In an experimental investigation of a dynamic system, if cause and effect are pro- 
portional, thus implying that the principle of superposition holds, then the system can 
be considered linear. 

Linear Time-Invariant Systems and Linear Time-Varying Systems. A differ- 
ential equation is linear if the coefficients are constants or functions only of the inde- 
pendent variable. Dynamic systems that are composed of linear time-invariant 
lumped-parameter components may be described by linear time-invariant (constant- 
coefficient) differential equations. Such systems are called linear time-invariant (or linear 
constant-coefficient) systems. Systems that are represented by differential equations 
whose coefficients are functions of time are called linear time-varying systems. An ex- 
ample of a time-varying control system is a spacecraft control system. (The mass of a 
spacecraft changes due to fuel consumption.) 
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Outline of the Chapter. Section 3-1 has presented an introduction to the math- 
ematical modeling of dynamic systems. Section 3-2 presents the transfer function and 
impulse-response function. Section 3-3 introduces automatic control systems and Sec- 
tion 3-4 discusses concepts of modeling in state space. Section 3-5 presents state-space 
representation of dynamic systems. Section 3-6 discusses transformation of mathemat- 
ical models with MATLAB. Section 3-7 treats mathematical modeling of mechanical sys- 
tems and discusses Newton's approach to modeling mechanical systems. Section 3-8 
deals with mathematical modeling of electrical and electronic systems. Section 3-9 treats 
signal flow graphs and Mason's gain formula useful to control systems analysis. Finally, 
Section 3-10 discusses linearization of nonlinear mathematical models. 

3-2 TRANSFER FUNCTION AND IMPULSE- 
RESPONSE FUNCTION 

In control theory, functions called transfer functions are commonly used to character- 
ize the input-output relationships of components or systems that can be described by lin- 
ear, time-invariant, differential equations. We begin by defining the transfer function 
and follow with a derivation of the transfer function of a mechanical system. Then we 
discuss the impulse-response function. 

Transfer Function. The transfer function of a linear, time-invariant, differential 
equation system is defined as the ratio of the Laplace transform of the output (response 
function) to the Laplace transform of the input (driving function) under the assumption 
that all initial conditions are zero. 

Consider the linear time-invariant system defined by the following differential equation: 
( a )  (n-1) 

a,  y + a,y f ... + an-,y + a,,y 

where y is the output of the system and x is the input. The transfer function of this sys- 
tem js the ratio of the Laplace transformed output to the Laplace transformed input 
when all initial conditions are zero, or 

Y ( s )  b,,sm + b1sJn-' + ... + bmPls + bm -- - - - 

X ( s )  a,sn + a,sn-' + ... + an-,s + an 

2[output] 
Transfer function = G ( s )  = 

By using the concept of transfer function, it is possible to represent system dynam- 
ics by algebraic equations in s. If the highest power of s in the denominator of the trans- 
fer function is equal to n, the system is called an nth-order system. 

zero initial conditions 

Comments on Transfer Function. The applicability of the concept of the trans- 
fer function is limited to linear, tinie-invariant, differential equation systems. The trans- 
fer function approach, however, is extensively used in the analysis and design of such 
systems. In what follows, we shall list important comments concerning the transfer func- 
tion. (Note that in the list a system referred to is one described by a linear, time-invariant, 
differential equation.) 
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1. The transfer function of a system is a mathematical model in that it is an opera- 
tional method of expressing the differential equation that relates the output vari- 
able to the input variable. 

2. The transfer function is a property of a system itself, independent of the magnitude 
and nature of the input or driving function. 

3. The transfer function includes the units necessary to  relate the input to the output; 
however, it does not provide any information concerning the physical structure of 

' 

the system. (The transfer functions of many physically different systems can be 
identical.) 

4. If the transfer function of a system is known, the output or response can be stud- 
ied for various forms of inputs with a view toward understanding the nature of 
the system. 

5. If the transfer function of a system is unknown, it may be established experimen- 
tally by introducing known inputs and studying the output of the system. Once 
established, a transfer function gives a full description of the dynamic character- 
istics of the system, as distinct from its physical description. 

EXAMPLE 3-1 Consider the satellite attitude control system shown in Figure 3-1.The diagram shows the con- 
trol of only the yaw angle 6. (In the actual system there are controls about three axes.) Small jets 
apply reaction forces to rotate the satellite body into the desired attitude. The two skew sym- 
metrically placed jets denoted by A or B operate in pairs. Assume that each jet thrust is F/2  and 
a torque T = Fl is applied to the system.The jets are applied for a certain time duration and thus 
the torque can be written as T(t).The moment of inertia about the axis of rotation at the center 
of mass is J. 

Let us obtain the transfer function of this system by assuming that torque T(t) is the input, 
and the angular displacement 0 ( t )  of the satellite is the output. (We consider the motion only in 
the plane of the page.) 

To derive the transfer function, we proceed according to the following steps. 

1. Write the differential equation for the system. 
2. Take the Laplace transform of the differential equation, assuming all initial conditions are 

zero. 
3. Take the ratio of the output O(s) to the input T(s). This ratio is the transfer function. 

Applying Newton's second law to the present system and noting that there is no friction in the 
environment of the satellite, we have 

Figure 3-1 
Schematic diagram 
of a satellite attitude 
control system. Reference 
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Taking the Laplace transform of both sides of this last equation and assuming all initial conditions 
to be zero yields 

where O(s) = 2[O( t ) ]  = T ( s )  and T ( s )  = % [ ~ ( t ) ] .  The transfer function of the system is thus 
obtained as 

@(s)  - 1_ Transfer function = ---- - 
T ( s )  .Is2 

Convolution Integral. For a linear, time-invariant system the transfer function 
G(s )  is 

where X ( s )  is the Laplace transform of the input and Y ( s )  is the Laplace transform of 
the output, where we assume that all initial conditions involved are zero. It follows that 
the output Y (s )  can be written as the product of G(s )  and X ( s ) ,  or 

Note that multiplication in the complex domain is equivalent to convolution in the time 
domain (see Section 2-4), so the inverse Laplace transform of Equation (3-1) is given 
by the following convolution integral: 

y ( t )  = L t x ( r ) g ( t  - r ) d r  d----=--- --- 
; of$! '1"e;..-n(d ,& six' *-jj& /;"., ,\ 

---- 
where both g ( t )  and x ( t )  are 0 for t  < 0. 

Impulse-Response Function. Consider the output (response) of a system to a 
unit-impulse input when the initial conditions are zero. Since the Laplace transform of 
the unit-impulse function is unity, the Laplace transform of the output of the system is 

The inverse Laplace transform of the output given by Equation (3-2) gives the impulse 
response of the system.The inverse Laplace transform of G(s) ,  or 

is called the impulse-response function. This function g ( t )  is also called the weighting 
function of the system. 

The impulse-response function g ( t )  is thus the response of a linear system to a unit- 
impulse input when the initial conditions are zero. The Laplace transform of this func- 
tion gives the transfer function. Therefore, the transfer function and impulse-response 
function of a linear, time-invariant system contain the same information about the sys- 
tem dynamics. It is hence possible to obtain complete information about the dynamic 
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characteristics of the system by exciting it with an impulse input and measuring the re- 
sponse. (In practice, a pulse input with a very short duration compared with the signif- 
icant time constants of the system can be considered an impulse.) 

3-3 AUTOMATIC CONTROL SYSTEMS 

A control system may consist of a number of components. To show the functions 
performed by each component, in control engineering, we commonly use a diagram 
called the block diagram. This section first explains what a block diagram is. Next, it 
discusses introductory aspects of automatic control systems, including various control 
actions.Then, it presents a method for obtaining block diagrams for physical systems, and, 
finally, discusses techniques to simplify such diagrams. 

Block Diagrams. A block diagram of a system is a pictorial representation of the 
functions performed by each component and of the flow of signals. Such a diagram de- 
picts the interrelationships that exist among the various components. Differing from a 
purely abstract mathematical representation, a block diagram has the advantage of 
indicating more realistically the signal flows of the actual system. 

In a block diagram all system variables are linked to each other through functional 
blocks.The functional block or simply block is a symbol for the mathernatical operation 
on the input signal to the block that produces the output. The transfer functions of the 
components are usually entered in the corresponding blocks, which are connected by ar- 
rows to indicate the direction of the flow of signals. Note that the signal can pass only 
in the direction of the arrows.Thus a block diagram of a control system explicitly shows 
a unilateral property. 

Figure 3-2 shows an element of the block diagram.The arrowhead pointing toward 
the block indicates the input, and the arrowhead leading away from the block repre- 
sents the output. Such arrows are referred to as signals. 

Note that the dimensions of the output signal from the block is the dimensions of the 
input signal multiplied by the dimensions of the transfer function in the block. 

The advantages of the block diagram representation of a system lie in the fact that 
it is easy to form the overall block diagram for the entire system by merely connecting 
the blocks of the components according to the signal flow and that it is possible to eval- 
uate the contribution of each component to the overall performance of the system. 

In general, the functional operation of the system can be visualized more readily by 
examining the block diagram than by examining the physical system itself. A block di- 
agram contains information concerning dynamic behavior, but it does not include any 
information on the physical construction of the system. Consequently, many dissimilar 
and unrelated systems can be represented by the same block diagram. 

It should be noted that in a block diagram the main source of energy is not explicit- 
ly shown and that the block diagram of a given system is not unique. A number of dif- 
ferent block diagrams can be drawn for a system, depending on the point of view of the 
analysis. 

r-----l 
Figure 3-2 
Element of a block 
diagram. 

Trnnsfer 
function -1 G1.s) k* 
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Summing Point. Referring to Figure 3-3, a circle with a cross is the symbol that 
indicates a summing operation. The plus or minus sign at each arrowhead indicates 
whether that signal is to be added or subtracted. It is important that the quantities being 
added or subtracted have the same dimensions and the same units. 

Branch Point. A branch point is a point from which the signal from a block goes 
Figure 3-3 concurrently to other blocks or summing points. 
Summing point. 

Block Diagram of a Closed-Loop System. Figure 3-4 shows an example of a 
block diagram of a closed-loop system. The output C(s)  is fed back to the summing 
point, where it is compared with the reference input R(s). The closed-loop nature of 
the system is clearly indicated by the figure. The output of the block, C(s) in this case, 
is obtained by multiplying the transfer function G(s) by the input to the block, E(s). Any 
linear control system may be represented by a block diagram consisting of blocks, sum- 
ming points, and branch points. 

When the output is fed back to the summing point for comparison with the input, it 
is necessary to convert the form of the output signal to that of the input signal. For 
example, in a temperature-control system, the output signal is usually the controlled 
temperature. The output signal, which has the dimension of temperature, must be con- 
verted to a force or position or voltage before it can be compared with the input signal. 
This conversion is accomplished by the feedback element whose transfer function is 
H ( s ) ,  as shown in Figure 3-5.The role of the feedback element is to modify the output 
before it is compared with the input. (In most cases the feedback element is a sensor that 
measures the output of the p1ant.The output of the sensor is compared with the system 
input, and the actuating error signal is generated.) In the present example, the feedback 
signal that is fed back to the summing point for comparison with the input is B(s) 
= H(s)C(s). 

Figure 3-4 
Block diagram of a 
closed-loop system. 

Figure 3-5 
Closed-loop system. 

Summing 
point 

Branch 
point 

Section 3-3 / Automatic Control Systems 



Open-Loop Transfer Function and Feedforward Transfer Function. Refer- 
ring to Figure 3-5, the ratio of the feedback signal B ( s )  to the actuating error signal 
E ( s )  is called the open-loop transfer function. That is, 

Open-loop transfer function = = G ( s ) H ( s )  
E ( s )  

The ratio of the output C ( s )  to the actuating error signal E ( s )  is called the feed- 
forward transfer function, so that 

C ( s )  Feedforward transfer function = - = G ( s )  
E ( s )  

If the feedback transfer function H ( s j  is unity, then the open-loop transfer function and 
the feedforward transfer function are the same. 

Closed-Loop Transfer Function. For the system shown in Figure 3-5, the output 
C ( s )  and input R ( s )  are related as follows: since 

C ( s )  = G ( s ) E ( s )  

E ( s )  = R ( s )  - B ( s )  

= R ( s )  - H ( s ) C ( s )  

eliminating E ( s )  from these equations gives 

The transfer function relating C ( s )  to R ( s )  is called the closed-loop transferfunction.This 
transfer function relates the closed-loop system dynamics to the dynamics of the feed- 
forward elements and feedback elements. 

From Equation (3-3), C ( s )  is given by 

Thus the output of the closed-loop system clearly depends on both the closed-loop trans- 
fer function and the nature of the input. 
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Figure 3-16 
(a) Cascaded system; 
(b)~ parallel system; 
(c) feedback (closed- 
loop) system. 

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions 
with MATLAB. In control systems analysis, we frequently need to calculate the cas- 
caded transfer functions, parallel-connected transfer functions, and feedback-connected 
(closed-loop) transfer functions. MATLAB has convenient commands to obtain the cas- 
caded, parallel, and feedback (closed-loop) transfer functions. 

Suppose that there are two components Gl(s )  and G2(s) connected differently as 
shown in Figure 3-6, where 

numl num2 
G I ( ~ )  = d e n l y  G2(s) = -- 

den2 

To obtain the transfer functions of the cascaded system, parallel system, or feedback 
(closed-loop) system, the following commands may be used: 

[num, denl = series(num1 ,den1 ,num2,den2) 
[num, denl = parallel(num1 ,den1 ,num2,den2) 
[num, denl = feedbackhum1 ,den1 ,num2,den2) 

As an example, consider the case where 

10 - numl -- 5 - num2 
G1(s) = s2 + 2s + 10 denl ' G 2 ( s )  = - den? 

MATLAB Program 3-1 gives C(s) /R(s )  = num/den for each arrangement of Gl(s)  
and Gz(s).  Note that the command 

displays the num/den [that is, the transfer function C ( s ) / ~ ( s ) ]  of the system considered. 
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I MATLAB Program 3-1 I 
numl = [O 0 101; 
denl = [I 2 101; 
num2 = [O 51; 
den2 = [I 51; 
[num, denl = series(num1 ,den1 ,num2,den2); 
printsys(num,den) 

I numlden = I 

[num, denl = parallel(num1 ,den1 ,num2,den2); 
printsys(num,den) 

I numlden = I 

[num, denl = feedbackhum1 ,den1 ,num2,den2); 
printsys(num,den) 

I numlden = I 

Automatic Controllers. An automatic controller compares the actual value of 
the plant output with the reference input (desired value), determines the deviation, and 
produces a control signal that will reduce the deviation to zero or to a small value. 
The manner in which the automatic controller produces the control signal is called 
the control action. Figure 3-7 is a block diagram of an industrial control system, which 

Automatic controller 
I_____- - - - - - - - - - -_ - - - - - - - -  

I 

I Error detector 
I  
I  
I  
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consists of an automatic controller, an actuator, a plant, and a sensor (measuring ele- 
ment).The controller detects the actuating error signal, which is usually at a very low 
power level, and amplifies it to a sufficiently high level. The output of an automatic 
controller is fed to an actuator, such as an electric motor, a hydraulic motor, or a 

- 

pneumatic motor or valve. (The actuator is a power device that produces the input to 
the plant according to the control signal so that the output signal will approach the 
reference input signal.) 

The sensor or measuring element is a device that converts the output variable into 
another suitable variable, such as a displacement, pressure, or voltage, that can be used 
to compare the output to the reference input signal.This element is in the feedback path 
of the closed-loop system. The set point of the controller must be converted to a refer- 
ence input with the same units as the feedback signal from the sensor or measuring 
element. 

Classifications of Industrial Controllers. Industrial controllers may be classi- 
fied according to their control actions as: 

1. Two-position or on-off controllers 
2. Proportional controllers 
3. Integral controllers 
4. Proportional-plus-integral controllers 
5. Proportional-plus-derivative controllers 
6. Proportional-plus-integral-plus-derivative controllers 

Most industrial controllers use electricity or pressurized fluid such as oil or air as 
power sources. Consequently, controllers may also be classified according to the kind of 
power employed in the operation, such as pneumatic controllers, hydraulic controllers, 
or electronic controllers. What kind of controller to use must be decided based on the 
nature of the plant and the operating conditions, including such considerations as safety, 
cost, availability, reliability, accuracy, weight, and size. 

Two-Position or On-Off Control Action. In a two-position control system, the 
actuating element has only two fixed positions, which are, in many cases, simply on and 
off.Two-position or on-off control is relatively simple and inexpensive and, for this rea- 
son, is very widely used in both industrial and domestic control systems. 

Let the output signal from the controller be u ( t )  and the actuating error signal be e ( t ) .  
In two-position control, the signal u ( t )  remains at either a maximum or minimum value, 
depending on whether the actuating error signal is positive or negative, so that 

u ( t )  = Ul,  for e ( t )  > 0 

= U2, for e ( t )  < 0 

where U,  and U2 are constants. The minimum value U2 is usually either zero or -Ul. 
Two-position controllers are generally electrical devices, and an electric solenoid-oper- 
ated valve is widely used in such controllers. Pneumatic proportional controllers with very 
high gains act as two-position controllers and are sometimes called pneumatic two- 
position controllers. 

Section 3-3 / Automatic Control Systems 63 



Differential gap \ 

Figure 3-8 .P'1. T ~ - '  * 

.I-+-- 

- 
>--+ + 

(a) Block diagram of 
an on-off controller; - u2 
(b) block diagram of 
an on-off controller 
with differential gap. (a) (b) 

Figures 3-8 (a) and (b) show the block diagrams for two-position or on-off con- 
trollers.The range through which the actuating error signal must move before the switch- 
ing occurs is called the differential gap. A differential gap is indicated in Figure 3-8(b). 
Such a differential gap causes the controller output u( t )  to maintain its present value until 
the actuating error signal has moved slightly beyond the zero value. In some cases, the 
differential gap is a result of unintentional friction and lost motion; however, quite often 
it is intentionally provided in order to prevent too frequent operation of the on-off 
mechanism. 

Consider the liquid-level control system shown in Figure 3-9(a), where the electro- 
magnetic valve shown in Figure 3-9(b) is used for controlling the inflow rate.This valve 
is either open or closed. With this two-position control, the water inflow rate is either a 
positive constant or zero. As shown in Figure 3-10, the output signal continuously moves 
between the two limits required to cause the actuating element to move from one fixed 
position to the other. Notice that the output curve follows one of two exponential curves, 
one corresponding to the filling curve and the other to the emptying curve. Such output 
oscillation between two limits is a typical response characteristic of a system under two- 
position control. 

From Figure 3-10, we notice that the amplitude of the output oscillation can be 
reduced by decreasing the differential gap. The decrease in the differential gap, howev- 
er, increases the number of on-off switchings per minute and reduces the useful life of 
the component.Thg~agnitude of the differential gap must be determined from such con- 
siderations as the accuracy required and the life of the component. 

Figure 3-9 
(a) Liquid-level 
control system; 
(b) electromagnetic 
valve. 

Movable iron core 
/ 

(a) (b) 
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Figure 3-10 
Level h( t )  versus t 
curve for the system 
shown in Figure 3-9(a). 

Proportional Control Action. For a controller with proportional control action, 
the relationship between the output of the controller u ( t )  and the actuating error signal 
e ( t )  is 

or, in Laplace-transformed quantities, 

where Kp is termed the proportional gain. 
Whatever the actual mechanism may be and whatever the form of the operating 

power, the proportional controller is essentially an amplifier with an adjustable gain. 

Integral Control Action. In a controller with integral control action, the value of 
the controller output u ( t )  is changed at a rate proportional to the actuating error signal 
e( t ) .  That is, 

where Ki is an adjustable constant. The transfer function of the integral controller is 
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Figure 3-11 
Block diagram of a 
proportional-plus- 
integral-plus- 

.. derivative controller. 

Proportional-Plus-Integral Control Action. The control action of a proportional- 
plus-integral controller is defined by 

or the transfer function of the controller is 

where 7;. is called the integral time. 

Proportional-Plus-Derivative Control Action. The control action of a proportional- 
plus-derivative controller is defined by 

and the transfer function is 

where Td is called the derivative time. 

Proportional-Plus-Integral-Plus-Derivative Control Action. The combination of 
proportional control action, integral control action, and derivative control action is 
termed proportional-plus-integral-plus-derivative control action.This combined action 
has the advantages of each of the three individual control actions. The equation of a 
controller with this combined action is given by 

or the transfer function is 

where K, is the proportional gain, T, is the integral time, and T, is the derivative time. 
The block diagram of a proportional-plus-integral-plus-derivative controller is shown in 
Figure 3-11. 
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Disturbance 
D(s) 

Figure 3-12 
Closed-loop system 
subjected to a 
disturbance. 

Closed-Loop System Subjected to a Disturbance. Figure 3-12 shows a closed- 
loop system subjected to a disturbance. When two inputs (the reference input and dis- 
turbance) are present in a linear system, each input can be treated independently of the 
other; and the outputs corresponding to each input alone can be added to give the com- 
plete output.The way each input is introduced into the system is shown at the summing 
point by either a plus or minus sign. 

Consider the system shown in Figure 3-12. In examining the effect of the distur- 
bance D ( s ) ,  we may assume that the reference input is zero; we may then calculate the 
response CD(s)  to the disturbance only. This response can be found from 

On the other hand, in considering the response to the reference input R ( s ) ,  we may 
assume that the disturbance is zero.Then the response CR(s)  to the reference input R ( s )  
can be obtained from 

The response to the simultaneous application of the reference input and disturbance 
can be obtained by adding the two individual responses. In other words, the response 
C ( s )  due to the simultaneous application of the reference input R ( s )  and disturbance 
D ( s )  is given by 

Consider now the case where lG,(s)H(s)l + 1 and JG,(s)G2(s)H(s)l + 1. In this 
case, the closed-loop transfer function CD(S) /D(S)  becomes almost zero, and the effect . 

of the disturbance is suppressed.This is an advantage of the closed-loop system. 
On the other hand, the closed-loop transfer function CR(s ) /R( s )  approaches 1 /H(s )  

as the gain of GI  ( s )  G2(s)  H ( s )  increases. This means that if I GI  ( s )  G2(s)  H  ( s )  1 9 1 then 
the closed-loop transfer function CR(s ) /R( s )  becomes independent of G l ( s )  and G2(s)  
and becomes inversely proportional to H ( s )  so that the variations of G l ( s )  and G2(s)  
do not affect the closed-loop transfer function CR(s)/R(s).This is another advantage of 
the closed-loop system. It can easily be seen that any closed-loop system with unity feed- 
back, H ( s )  = 1, tends to equalize the input and output. 
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Procedures for Drawing a Block Diagram. To draw a block diagram for a sys- 
tem, first write the equations that describe the dynamic behavior of each component. 
Then take the Laplace transforms of these equations, assuming zero initial conditions, 
and represent each Laplace-transformed equation individually'in block form. Finally, as- 
semble the elements into a complete block diagram. 

As an example, consider the RC circuit shown in Figure 3-13(a). The equations for 
this circuit are 

The Laplace transforms of Equations (34)  and (3-5), with zero initial condition, become 

Equation (3-6) represents a summing operation, and the corresponding diagram is 
shown in Figure 3-13(b). Equation (3-7) represents the block as shown in Figure 3-13(c). 
Assembling these two elements, we obtain the overall block diagram for the system as 
shown in Figure 3-13(d). 

Block Diagram Reduction. It is important to note that blocks can be connected 
in series only if the output of one block is not affected by the next following block. If 
there are any loading effects between the components, it is necessary to combine these 
components into a single block. 

Any number of cascaded blocks representing nonloading components can be 
replaced by a single block, the transfer function of which is simply the product of the 
individual transfer functions. 

A complicated block diagram involving many feedback loops can be simplified by 
a step-by-step rearrangement. Simplification of the block diagram by rearrangements 

Figure 3-13 - 
(a) RC circuit; (a) 

(b) block diagram 
representing 
Equation (3-6); 
(c) block diagram 
representing 
Equation (3-7); 
(d) block diagram of 
the RC circuit. 
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considerably reduces the labor needed for subsequent mathematical analysis. It should 
be noted, however, that as the block diagram is simplified the transfer functions in new 
blocks become more complex because new poles and new zeros are generated. 

In simplifying a block diagram, remember the following. 

1. The product of the transfer functions in the feedforward direction must remain 
the same. 

2. The product of the transfer functions around the loop must remain the same. 

EXAMPLE 3-2 Consider the system shown in Figure 3-14(a). Simplify this diagram. 
By moving the summing point of the negative feedback loop containing H2 outside the posi- 

tive feedback loop containing H I ,  we obtain Figure 3-10(b). Eliminating the positive feedback loop, 

R 

Figure 3-14 
(a) Multiple-loop 
system; 
(b)-(e) successive 
reductions of the 
block diagram shown 
in (a). 

(el 
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we have Figure 3-14(c).The elimination of the loop containing H2/G, gives Figure 3-14(d). Finally, 
eliminating the feedback loop results in Figure 3-14(e). 

Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the 
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to 

1 - (product of the transfer functions around each loop) 

(The positive feedback loop yields a negative term in the denominator.) 

3-4 MODELING IN STATE SPACE 

In this section we shall present introductory material on state-space analysis of control 
systems. 

Modern Control Theory. The modern trend in engineering systems is toward 
greater complexity, due mainly to the requirements of complex tasks and good accu- 
racy. Complex systems may have multiple inputs and multiple outputs and may be time 
varying. Because of the necessity of meeting increasingly stringent requirements on 
the performance of control systems, the increase in system complexity, and easy access 
to large scale computers, modern control theory, which is a new approach to the analy- 
sis and design of complex control systems, has been developed since around 1960. This 
new approach is based on the concept of state.The concept of state by itself is not new 
since it has been in existence for a long time in the field of classical dynamics and other 
fields. 

Modern Control Theory Versus Conventional Control Theory. Modern con- 
trol theory is contrasted with conventional control theory in that the former is applica- 
ble to multiple-input-multiple-output systems, which may be linear or nonlinear, time 
invariant or time varying, while the latter is applicable only to linear time-invariant sin- 
gle-input-single-output systems. Also, modern control theory is essentially a time-do- 
main approach, while conventional control theory is a complex frequency-domain 
approach. Before we proceed further, we must define state, state variables, state vector, 
and state space. 

State. The state of a dynamic system is the smallest set of variables (called state 
variables) such that the knowledge of these variables at t = to,  together with the knowl- 
edge of the input for t r t o ,  completely determines the behavior of the system for any 
time t r to. 

Note that the concept of state is by no means limited to physical systems. It is appli- 
cable to biological systems, economic systems, social systems, and others. 

State Variables. The state variables of a dynamic system are the variables mak- 
ing up the smallest set of variables that determine the state of the dynamic system. If at 
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least n variables x,, x2, . . . , X, are needed to completely describe the behavior of a dy- 
namic system (so that once the input is given for t z to and the initial state at t = to is 
specified, the future state of the system is completely determined), then such n variables 
are a set of state variables. 

Note that state variables need not be physically measurable or observable quantities. 
Variables that do not represent physical quantities and those that are neither measura- 
ble nor observable can be chosen as state variables. Such freedom in choosing state vari- 
ables is an advantage of the state-space methods. Practically, however, it is convenient 
to choose easily measurable quantities for the state variables, if this is possible at all, be- 
cause optimal control laws will require the feedback of all state variables with suitable 
weighting. 

State Vector. If n state variables are needed to completely describe the behavior 
of a given system, then these n state variables can be considered the n components of a 
vector x. Such a vector is called a state vector. A state vector is thus a vector that deter- 
mines uniquely the system state x(t) for any time t r to, once the state at t = to is given 
and the input u(t) for t E- to is specified. 

- 
State Space. The n-dimensional space whose coordinate axes consist of the xl 

axis, x2 axis, . . . , x, axis, where xl , x2,. . . , x, are state variables; is called a state space. Any 
state can be represented by a point in the state space. 

State-Space Equations. In state-space analysis we are concerned with three types 
of variables that are involved in the modeling of dynamic systems: input variables, out- 
put variables, and state variables. As we shall see in Section 3-5, the state-space repre- 
sentation for a given system is not unique, except that the number of state variables is 
the same for any of the different state-space representations of the same system. 

The dynamic system must involve elements that memorize the values of the input for 
t r t l .  Since integrators in a continuous-time control system serve as memory devices, 
the outputs of such integrators can be considered as the variables that define the inter- 
nal state of the dynamic system. Thus the outputs of integrators serve as state variables. 
The number of state variables to completely define the dynamics of the system is equal 
to the number of integrators involved in the system. 

Assume that a multiple-input-multiple-output system involves n integrators. Assume 
also that there are r inputs ul(t), uz(t), . . . , u,(t) and m outputs yl(t), y2(t), .. . , ym(t). 
Define n outputs of the integrators as state variables: xl(t), xz(t), . . . , x,(t) Then the 
system may be described by 

xn(t) = fn (x1 ,x2 , . . . , xn ;~1 ,~2  , - . . , ~ r ; t )  
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The outputs y, ( t ) ,  y2 ( t ) ,  . . . , yn,(t) of the system may be given by 

yrn(t) = gvl(xl, X 2 ,  ... , xn; 4 ,  U 2 ,  ... , u,; t )  

If we define 

then Equations (3-8) and (3-9) become 

where Equation (3-10) is the state equation and Equation (3-11) is the output equation. 
If vector functions f and/or g involve time t explicitly, then the system is called a time- 
varying system. 

If Equations (3-10) and (3-11) are linearized about the operating state, then we 
have the following linearized state equation and output equation: 

where A ( t )  is called the state matrix, B ( t )  the input matrix, C ( t )  the output matrix, and 
D ( t )  the direct transmission matrix. (Details of linearization of nonlinear systems about 
the operating state are discussed in Section 3-10.) A block diagram representation of 
Equations (3-12) and (3-13) is shown in Figure 3-15. 
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Figure 3-15 
? Block diagram of the 

linear, continuous- 
time control system 
represented in state 
space. 

EXAMPLE 3-3 

&77 

Figure 3-14 
Mechanical system. 

If vector functions f and g do not involve time t explicitly then the system is called a 
time-invariant system. In this case, Equations (3-12) and (3-13) can be simplified to 

Equation (3-14) is the state equation of the linear, time-invariant system. 
Equation (3-15) is the output equation for the same system. In this book we shall be 

concerned mostly with systems described by Equations (3-14) and (3-15). 
In what follows we shall present an example for deriving a state equation and output 

equation. 

Consider the mechanical system shown in Figure 3-16. We assume that the system is linear. The 
external force u ( t )  is the input to the system, and the displacement y ( t )  of the mass is the output. 
The displacement y ( t )  is measured from the equilibrium position in the absence of the external 
force.This system is a single-input-single-output system. 

From the diagram, the system equation is 

my + b j  + k y  = u  (3-16) 
This system is of second order.This means that the system involves two integrators. Let us define 
state variables x,( t)  and xz ( t )  as 

.l(t) = ~ ( t )  

x,(t) = ~ ( t )  

Then we obtain 

x ,  = x, 

The output equation is 

In a vector-matrix form, Equations (3-17) and (3-18) can be written as 
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I The output equation, Equation (3-19), can be written as 

Equation (3-20) is a state equation and Equation (3-21) is an output equation for the system. 
Equations (3-20) and (3-21) are in the standard form: 

where 

Figure 3-17 is a block diagram for the system. Notice that the outputs of the integrators are state 
variables. 

Correlation Between Transfer Functions and State-Space Equations. In what 
follows we shall show how to derive the transfer function of a single-input-single-out- 
put system from the state-space equations. 

Let us consider the system whose transfer function is given by 

-- '('I - G ( s )  
U(sI 

This system may be represented in state space by the following equations: 

where x is the state vector, u is the input, and y is the output.The Laplace transforms of 
Equations (3-23) and (3-24) are given by 

-pk&y~l 
- 

+ m 
Figure 3-17 
B G C ~  diagram of the 
mechanical system 
shown in Figure 3-16. 
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Since the transfer function was previously defined as the ratio of the Laplace transform 
of the output to the Laplace transform of the input when the initial conditions were 
zero, we set x(0) in Equation (3-25) to be zero. Then we have 

sX(s) - AX(s) = BU(s) 

or 

(sI - A)X(s) = BU(s) 

By premultiplying (sI - A)-' to both sides of this last equation, we obtain 

~ ( s )  = (s1 - A)-~Bu(s) (3-27) 

By substituting Equation (3-27) into Equation (3-26), we get 

Y(s) = [C(SI - A)-'B + D]U(S) (3-28) 

Upon comparing Equation (3-28) with Equation (3-22), we see that 

This is the transfer-function expression of the system in terms of A, B, C, and D. 
Note that the right-hand side of Equation (3-29) involves (s1 - A)-'. Hence G(s) 

can be written as 

where Q(s) is a polynomial in s. Therefore, Is1 - A1 is equal to the characteristic poly- 
nomial of G(s). In other words, the eigenvalues of A are identical to the poles of G(s). 

EXAMPLE 3-4 Consider again the mechanical system shown in Figure 3-16. State-space equations for the system 
are given by Equations (3-20) and (3-21). We shall obtain the transfer function for the system from 
the state-space equations. 

By substituting A, B, C, and D into Equation (3-29), we obtain 

G(s)  = C(s1 - A)-'B + D 

Since 
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we have 

which is the transfer function of the system. The same transfer function can be obtained from 
Equation (3-16). 

Transfer Matrix. Next, consider a multiple-input-multiple-output system. Assume 
that there are r inputs ul, u,, . . . , u,, and m outputs yl, y,, . . . , y,. Define 

The transfer matrix G(s) relates the output Y(s) to the input U(s), or 

Y(s) = G(s)Ufs) 

where G(s) is given by 

G(S) = C(SI - A)-'B + D 
[The derivation for this equation is the same as that for Equation (3-29).] Since the 
input vector u is r dimensional and the output vector y is m dimensional, the transfer ma- 
trix G(s) is an m X r matrix. 

3-5 STATE-SPACE REPRESENTATION OF DYNAMIC SYSTEMS 

A dynamic system consisting of a finite number of lumped elements may be described 
by ordinary differential equations in which time is the independent variable. By use of 
vector-matrix notation, an nth-order differential equation may be expressed by a first- 
order vector-matrix differential equation. If n elements of the vector are a set of state 
variables, then the vector-matrix differential equation is a state equation. In this section 
we shall present methods for obtaining state-space representations of continuous-time 
systems. 

State-Space Representation of nth-Order Systems of Linear Differential Equa- 
tions in which the Fgrcing Function Does Not Involve Derivative Terms. Con- 
sider the following nth-order system: 

( n )  (n - I )  

y + a,y + ... + a,_,y + a,y = u 
(n-1) 

I 

Noting that the knowledge of y(O), y(O), . . . , y (0), together with the input u(t) for 
t 3 0, determines completely the future behavior of the system, we may take 
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(n -1 )  
y(t), y(t), . . . , y ( t )  as a set of n state variables. (Mathematically, such a choice of state 
variables is quite convenient. Practically, however, because higher-order derivative terms 
are inaccurate, due to the noise effects inherent in any practical situations, such a choice 
of the state variables may not be desirable.) 

Let us define : 

Then Equation (3-30) can be written as 

X1 = Xz 

x2 = x, 

or 

where 

The output can be given by 

L x n l  
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where 

[Note that D in Equation (3-24) is zero.] The first-order differential equation, Equa- 
tion (3-31), is the state equation, and the algebraic equation, Equation (3-32), is the 
output equation. 

Note that the state-space representation for the transfer function system 

is given also by Equation (3-31) and (3-32). 

State-Space Representation of nth Order Systems of Linear Differential Equa- 
tions in which the Forcing Function Involves Derivative Terms. Consider the dif- 
ferential equation system that involves derivatives of the forcing function, such as 

( n )  (n- 1) (n )  (n-1) 
y + a, y + ... + a,_,y + any = b, LL + b, u + ... + bn-lu + bnu (3-33) 

The main problem in defining the state variables for this case lies in the derivative 
terms.The state variables must be such that they will eliminate the derivatives of u in the 
state equation. 

One way to obtain a state equation and output equation is to define the following n 
variables as a set of n state variables: 

where Po, P I ,  P2, .  . . , P,, are determined from 

Po = bo 

PI = bl - a1Po 

Pz = bz - QlPl  - a2Po 

P3 = b3 - a1Az - a2Pl - ~ 3 P 0  

Pn = bn - alPn-l - ... - ~ ~ - I P L  - anPo 
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With this choice of state variables the existence and uniqueness of the solution of the 
state equation is guaranteed. (Note that this is not the only choice of a set of state vari- 
ables.) With the present choice of state variables, we obtain 

[To derive Equation (3-36), see Problem A-3-61 In terms of vector-matrix equations, 
Equation (3-36) and the output equation can be written as 

x = Ax + Bu 

y = Cx + Du 
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where 

In this state-space representation, matrices A and C are exactly the same as those for 
the system of Equation (3-30).The derivatives on the right-hand side of Equation (3-33) 
affect only the elements of the B matrix. 

Note that the state-space representation for the transfer function 

is given also by Equations (3-37) and (3-38). 
There are many ways to obtain state-space representations of systems. Some of them 

are presented in this chapter. Methods for obtaining canonical representations of systems 
in state space (such as controllable canonical form, observable canonical form, diagonal 
canonical form, and Jordan canonical form) are presented in Chapter 11. 

MATLAB can be used to obtain state-space representations of systems from trans- 
fer function representations, and vice versa. This subject is presented in Section 3-6. 

EXAMPLE 3-5 Consider the spring-mass-dashpot system mounted on a massless cart as shown in Figure 3-18.A 
dashpot is a device that provides viscous friction, or damping. It consists of a piston and oil-filled 
cylinder. Any relative motion between the piston roJ and the cylinder is resisted by the oil because 
the oil must flow around the piston (or through orifices provided in the piston) from one side of 
the piston to the other. The dashpot essentially absorbs energy. This absorbed energy is dissipat- 
ed as heat, and the dashpot does not store any kinetic or potential energy. The dashpot is also 
called a damper. 

Let us obtain mathematical models of this system by assuming that the cart is standing still for 
t < 0 and the spring-mass-dashpot system on the cart is also standing still for t < 0. In this sys- 
tem, u ( t )  is the displacement of the cart and is the input to the system. At t = 0, the cart is moved 
at a constant speed, or u = constant. The displacement y ( t )  of the mass is the output. (The dis- 
placement is relative to the ground.) In this system, m denotes the mass, b denotes the viscous fric- 
tion coefficient, and k denotes the spring constant. We assume that the friction force of the dashpot 
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Figure 3-18 
Spring-niass- 
dashpot system 
mountecl on a cart. 

Massless cart 
\ 

is proportional to j - u and that the spring is a linear spring; that is, the spring force is propor- 
tional to y - u. 

For translational systems, Newton's second law states that 

where m is a mass, a is the acceleration of the mass, and X F  is the sum of the forces acting on the 
mass in the direction of the acceleration a. Applying Newton's second law to the present system 
and noting that the cart is massless, we obtain 

This equation represents a mathematical model of the system considered. Taking the Laplace 
transform of this last equation, assuming zero initial condition, gives 

(ms2 + bs + k ) Y ( s )  = (bs + k ) U ( s )  

Taking the ratio of Y ( s )  to U ( s ) ,  we find the transfer function of the system to be 

Y ( s )  bs + k  Transfer function = G ( s )  = - = 
U ( s )  ins2 + bs + k 

Such a transfer function representation of a mathematical model is used very frequently in con- 
trol engineering. 

Next we shall obtain a state-space model of this system. We shall first compare the differen- 
tial equation for this system 
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with the standard form 

y + aly + a 2 y  = bou + blu + b2u 

and identify a,, a,, b,, b, , and b, as follows: 

Referring to Equation (3-35), we have 

Then, referring to Equation (3-34), define 

X I  = y  - pou = y  

From Equation (3-36) we have 

and the output equation becomes 

Y = XI 

and 

Equations (3-39) and (3-40) give a state-space representation of the system. (Note that this is 
not the only state-space representation.There are infinitely many state-space representations for 
the system.) 
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3-6 TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB 

MATLAB is quite useful to transform the system model from transfer function to state 
space, and vice versa. We shall begin our discussion with transformation from transfer 
function to state space. 

Let us write the closed-loop transfer function as 

Y (s) numerator polynomial in s num -- - -- - 
U(s) denominator polynomial in s den 

: - 
Once we have this transfer-function expression, the MATLAB command 

[A, B, C, Dl = tf2ss(num1den) 

will give a state-space representation. It is important to note that the state-space repre- 
sentation for any system is not unique. There are many (infinitely many) state-space 
representations for the same system. The MATLAB command gives one possible such 
state-space representation. 

Transformation From Transfer Function to State Space. Consider the trans- 
fer function system 

There are many (infinitely many) possible state-space representations for this system. 
One possible state-space representation is 

Another possible state-space representation (among infinitely many alternatives) is 
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MATLAB transforms the transfer function given by Equation (3-41) into the state- 
space representation given by Equations (3-42) and (3-43). For the example system 
considered here, MATLAB Program 3-2 will produce matrices A, B, C, and D. 

1 MATLAB Program 3-2 1 
num = [O 0 1 01; 
den = [I  1 4  56 1601; 
[A,B,C,D] = tf2ss(numfden) 

Transformation From State Space to Transfer Function. To obtain the trans- 
fer function from state-space equations, use the following command: 

iu must be specified for systems with more than one input. For example, if the system 
has three inputs ( u l ,  ~12, u3) ,  then iu must be either 1,2,  or 3, where 1 implies u1. 2 
implies u2, and 3 implies u3. 

If the system has only one input, then either 

may be used. For the case where the system has multiple inputs and multiple outputs, 
see Problem A-3-13. 
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EXAMPLE 3-6 Obtain the transfer function of the system defined by the following state-space equations: 

MATLAB Program 3-3 will produce the transfer function for the given system.The transfer func- 
tion obtained is given by 

MATLAB Program 3-3 

A = [0 1 0; 0 0 1 ; -5 -25 -51; 
B = [O; 25; -1 201; 
C = [ I  0 01; 
D = 101; 
[num,den] = ss2tf(A1B,C,D) 

num = 

0 0.0000 25.0000 5.0000 

den 

1 .OOOO 5.0000 25.0000 5.0000 

Oh ***** The same result can be obtained by entering the following command: **"** 

[num,den] = ss2tf(A,B,C,D,I 1 

num = 

0 0.0000 25.0000 5.0000 

den = 

1 .OOOO 5.0000 25.0000 5.0000 

3-7 MECHANICAL SYSTEMS 

In this section we shall discuss mathematical modeling of mechanical systems. The fun- 
damental law governing mechanical systems is Newton's second law. It can be applied 
to any mechanical system. In this section we shall derive mathematical models of three 
mechanical systems. (Mathematical models of additional mechanical systems will be 
derived and analyzed throughout the remaining chapters.) 
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EXAMPLE 3-7 Obtain the transfer functions X, ( s ) /U(s )  and X2(s ) /U(s )  of the mechanical system shown in 
Figure 3-19. 

The equations of motion for the system shown in Figure 3-19 are 

Figure 3-19 
Mechanical system. 

m1xl = -klxl - k2(xl - x2) - b(xl - x2) + u 

m2X2 = -k3x2 - k2(x2 - x l )  - b(x2 - x l )  

Simplifying, we obtain 

m l x l  + bxl + ( k ,  + k2)x,  = bx, + k2x2 + u 

m 2 i 2  + bx2 + ( k z  + k3)x2 = bx,  + k2x ,  

Taking the Laplace transforms of these two equations, assuming zero initial conditions, we obtain 

Solving Equation (3-45), for X2(s)  and substituting it into Equation (3-44) and simplifying, we 
get 

[(m,s2 + bs + k ,  + k2)(m2s2 + bs + k,  + k,) - (bs + k 2 ) 2 ] ~ l ( s )  

from which we obtain 

From Equations (3-45) and (3-46) we have 

Equations (3-46) and (3-47) are the transfer functions X, ( s ) /U(s )  and X2(s ) /U(s ) ,  respectively. 

EXAMPLE 3-8 An inverted pendulum mounted on a motor-driven cart is shown in Figure 3-20(a).This is a model 
of the attitude control of a space booster on takeoff. (The objective of the attitude control prob- 
lem is to keep the space booster in a vertical position.) The inverted pendulum is unstable in that 

I it may fall over any time in any direction unless a suitable control force is applied. Here we consider 
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Figure 3-20 
(a) Inverted 
pendulum system; 
(b) free-body 
diagram. 

only a two-dimensional problem in which the pendulum moves only in the plane of the page.The 
control force u is applied to the cart.Assume that the center of gravity of the pendulum rod is at 
its geometric center. Obtain a mathematical model for the system. 

Define the angle of the rod from the vertical line as 0. Define also the (x, y) coordinates of 
the center of gravity of the pendulum rod as (x,, Yc).Then 

x, = x + lsin0 

Section 3-7 / Mechanical Systems 



To derive the equations of motion for the system, consider the free-body diagram shown in 
Figure 3-2O(b). The rotational motion of the pendulum rod about its center of gravity can be 
described by 

where I is the moment of inertia of the rod about its center of gravity. 
The horizontal motion of center of gravity of pendulum rod is given by 

d2 
m-(x + lsine) = H 

dt2 

The vertical motion of center of gravity of pendulum rod is 

The horizontal motion of cart is described by 

Since we must keep the inverted pendulum vertical, we can assume that % ( t )  and 0(t) are 
small quantities such that sin% = 0, cos e = 1, and %e2 = 0. Then, Equations (3-48) through (3-50) 
can be linearized. The linearized equations are 

10 = vze - HI (3-52) 

m(x + le) = H (3-53) 

O = V - r n g  (3-54) 

From Equations (3-51) and (3-53), we obtain 

From Equations (3-52), (3-53), and (3-54), we have 

10 = mgle - HI 

= mgle - l (mx + m10) 

Equations (3-55) and (3-56) describe the motion of the inverted-pendulum-on-the-cart system. 
They constitute a mathematical model of the system. 

EXAMPLE 3-9 Consider the inverted pendulum system shown in Figure 3-21. Since in this system the mass is con- 
centrated at the top of the rod, the center of gravity is the center of the pendulum ball. For this 
case, the moment of inertia of the pendulum about its center of gravity is small, and we assume 
I = 0 in Equation (3-56).Then the mathematical model for this system becomes as follows: 

( M  + m ) i  + ml9 = u (3-57) 

Equations (3-57) and (3-58) can be modified to 

~ 1 0  = (M + m)ge - u 
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+ x  

u' M 
Figure 34!1 
Inverted-pendulum 
system. 

Equation (3-59) was obtained by eliminating x from Equations (3-57) and (3-58). Equation 
(3-60) was obtained by eliminating 9 from Equations (3-57) and (3-58). From Equation (3-59) 
we obtain the plant transfer function to be 

@ ( s )  -- - 1 

- U ( s )  Mls2 - ( M  t- m)g 

- - 1 

Ml  ( s  + JT) ( s  - JT) 
The inverted pendulum plant has one pole on the negative real axis [s = - ( m / ~ % i ) G ]  
and another on the positive real axis [ s  = (~%mii/~zi)~]. Hence, the plant is open-loop 
unstable. 

Define state variables x,, x,, x3, and x4 by 
Xl = 0 

X, = e 
X j  = X 

Note that angle 0 indicates the rotation of the pendulum rod about point P,  and x is the location 
of the cart. If we consider 0 and x as the outputs of the system, then 

(Notice that both 0 and x are easily measurable quantities).Then, from the definition of the state 
variables and Equations (3-59) and (3-60), we obtain 

M + m  x, = ---- 1 
MI 

gx, - - LL 
M1 
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I In terms of vector-matrix equations, we have 

Equations (3-61) and (3-62) give a state-space representation of the inverted pendulum system. 
(Note that state-space representation of the system is not unique.There are infinitely many such 
representations for this system. 

3-8 ELECTRICAL AND ELECTRONIC SYSTEMS 

Basic laws governing electrical circuits are Kirchhoff's current law and voltage law. 
Kirchhoff's current law (node law) states that the algebraic sum of all currents entering 
and leaving a node is zero. (This law can also be stated as follows: The sum of currents 
entering a node is equal to the sum of currents leaving the same node.) Kirchhoff's volt- 
age law (loop law) states that at any given instant the algebraic sum of the voltages 
around any loop in an electrical circuit is zero. (This law can also be stated as follows: 
The sum of the voltage drops is equal to the sum of the voltage rises around a loop.) A 
mathematical model of an electrical circuit can be obtained by applying one or both of 
Kirchhoff's laws to it. 

This section first deals with simple electrical circuits and then treats mathematical 
modeling of operational amplifier systems. 

LRC Circuit. Consider the electrical circuit shown in Figure 3-22.The circuit con- 
sists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad). 
Applying Kirchhoff's voltage law to the system, we obtain the following equations: 

Figure 3-22 
Electrical circuit. 
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Figure 3-23 
Electrical system. 

Equations (3-63) and (3-64) give a mathematical model of the circuit. 
A transfer function model of the circuit can also be obtained as follows: Taking the 

Laplace transforms of Equations (3-63) and (3-64), assuming zero initial conditions, 
we obtain 

If ei is assumed to be the input and e, the output, then the transfer function of this system 
is found to be 

E*(s) - - 1 
(3-65) 

E,(s)  LCS' + RCs + 1 

State-Space Representation. A state-space model of the system shown in 
Figure 3-22 may be obtained as follows: First, note that the differential equation for the 
system can be obtained from Equation (3-65) as 

Then by defining state variables by 
x1 = e, 
x2 = 2, 

and the input and output variables by 
u = el 
y = eo = x, 

we obtain 
r 

and 

These two equations give a mathematical model of the system in state space. 

Transfer Functions of Cascaded Elements. Many feedback systems have com- 
ponents that load each other. Consider the system shown in Figure 3-23. Assume that 
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ei is the input and e, is the output.The capacitances C, and C, are not charged initially. 
It will be shown that the second stage of the circuit (R2C2 portion) produces a loading 
effect on the first stage (R1 C1 portion). The equations for this system are 

and 

Taking the Laplace transforms of Equations (3-66) through (3-68), respectively, using 
zero initial conditions, we obtain 

Eliminating Il(s) from Equations (3-69) and (3-70) and writing Ei(s) in terms of Iz(s), 
we find the transfer function between E,(s) and Ei(s) to be 

The term R1 C2s in the denominator of the transfer function represents the interaction 
of two simple RC circuits. Since ( R , C ~  + R2C2 + R,C2)' > 4R1C1 R2C2, the two roots 
of the denominator of Equation (3-72) are real. 

The present analysis shows that, if two RC circuits are connected in cascade so 
that the output from the first circuit is the input to the second, the overall transfer 
function is not the product of ~ / ( R , C ~ S  + 1) and I/(R~C,S + 1). The reason for this 
is that, when we derive the transfer function for an isolated circuit, we implicitly as- 
sume that the output is unloaded. In other words, the load impedance is assumed to 
be infinite, which means that no power is being withdrawn at the output. When the sec- 
ond circuit is connected to the output of the first, however, a certain amount of power 
is withdrawn, and thus the assumption of no loading is violated. Therefore, if the trans- 
fer function of this system is obtained under the assumption of no loading, then it is 
not valid. The degree of the loading effect determines the amount of modification of 
the transfer function. 
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Figure 3-24 
Electrical circuits. 

Complex Impedances. In deriving transfer functions for electrical circuits, 
we frequently find it convenient to write the Laplace-transformed equations 
directly, without writing the differential equations. Consider the system shown in 
Figure 3-24(a). In this system, Z, and Z2 represent complex impedances. The 
complex impedance Z(s)  of a two-terminal circuit is the ratio of E(s ) ,  the Laplace 
transform of the voltage across the terminals, to I ( s ) ,  the Laplace transform of 
the current through the element, under the assumption that the initial conditions 
are zero, so that Z(s)  = E(s) / I (s ) .  If the two-terminal elements is a resistance R, 
capacitance C, or inductance L, then the complex impedance is given by R, 1/Cs, 
or Ls, respectively. If complex impedances are connected in series, the total 
impedance is the sum of the individual complex impedances. 

Remember that the impedance approach is valid only if the initial conditions 
involved are all zeros. Since the transfer function requires zero initial conditions, the 
impedance approach can be applied to obtain the transfer function of the electrical cir- 
cuit. This approach greatly simplifies the derivation of transfer functions of electrical 
circuits. 

Consider the circuit shown in Figure 3-24(b). Assume that the voltages ei and e, are 
the input and output of the circuit, respectively. Then the transfer function of this 
circuit is 

For the system shown in Figure 3-22, 

Hence the transfer function E,(s)/E,(s) can be found as follows: 

- .  , -- - - - 
1 LCs2 + RCs + 1 Ls + R + - 

Cs 

which is, of course, identical to Equation (3-65). 
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EXAMPLE 3-10 Consider again the system shown in Figure 3-23. Obtain the transfer function E,(s)/E,(s) by use 
of the complex impedance approach. (Capacitors Cl and C2 are not charged initially.) 

The circuit shown in Figure 3-23 can be redrawn as that shown in Figure 3-25(a), which can 
be further modified to Figure 3-25(b). 

In the system shown in Figure 3-25(b) the current I  is divided into two currents I, and I,. 
Noting that 

Z,  I, = (Z ,  + z4)12, I, + Z2 = I 

we obtain 

Noting that 

we obtain 

Eo(s) -- - z2 z4 

Ei(s) Zl(Z2 + Z3 + z,) + Z2(.Z3 + z4) 

Substituting Z1 = R,, Z ,  = l / ( c l s ) ,  Z ,  = R2, and Z ,  = 1/ (c2s )  into this last equation, we get 

I which is the same as that given by Equation (3-72). 

Figure 3-25 
(a) The circuit of 

1 Figure 3-23 shown in 
terms of impedances; 0 1 1 0 

(b) equivalent circuit 
diagram. (a) 

- - 
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(a) (b) 

Figure 3-26 
(a) System consisting of two nonloading cascaded elements; (b) an equivalent system. 

Transfer Functions of Nonloading Cascaded Elements. The transfer function 
of a system consisting of two nonloading cascaded elements can be obtained by elimi- 
nating the intermediate input and output. For example, consider the system shown in 
Figure 3-26(a). The transfer functions of the elements are 

If the input impedance of the second element is infinite, the output of the first element 
is not affected by connecting it to the second element.Then the transfer function of the 
whole system becomes 

The transfer function of the whole system is thus the product of the transfer functions 
of the individual elements. This is shown in Figure 3-26(b). 

As an example, consider the system shown in Figure 3-27. The insertion of an isolating 
amplifier between the circuits to obtain nonloading characteristics is frequently used in 
combining circuits. Since amplifiers have very high input impedances, an isolation 
amplifier inserted between the two circuits justifies the nonloading assumption. 

The two simple RC circuits, isolated by an amplifier as shown in Figure 3-27, have 
negligible loading effects, and the transfer function of the entire circuit equals the prod- 
uct of the individual transfer functions. Thus, in this case, 

Electronic Controllers. In what follows we shall discuss electronic controllers 
using operational amplifiers. W e  begin by deriving the transfer functions of simple 
operational-amplifier circuits. Then we derive the transfer functions of some of the 
operational-amplifier controllers. Finally, we give operational-amplifier controllers and 
their transfer functions in the form of a table. 

Figure 3-27 
Electrical system. 
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Figure 3-28 
Operational 
amplifier. 

Operational Amplifiers. Operational amplifiers, often called op amps, are 
frequently used to amplify signals in sensor circuits. Op amps are also frequently used 
in filters used for compensation purposes. Figure 3-28 shows an op amp. It is a common 
practice to choose the ground as 0 volt and measure the input voltages el and e2 relative 
to the ground. The input e, to the minus terminal of the amplifier is inverted, and the 
input e, to the plus terminal is not inverted. The total input to the amplifier thus becomes 
e2 - el. Hence, for the circuit shown in Figure 3-28, we have 

where the inputs el and e2 may be dc or ac signals and K is the differential gain (volt- 
age gain). The magnitude of K is approximately lo5 - lo6 for dc signals and ac signals 
with frequencies less than approximately 10 Hz. (The differential gain K decreases with 
the signal frequency and becomes about unity for frequencies of 1 MHz - 50 MHz.) 
Note that the op amp amplifies the difference in voltages e, and e,. Such an amplifier is 
commonly called a differential amplifier. Since the gain of the op amp is very high, it is 
necessary to have a negative feedback from the output to the input to make the ampli- 
fier stable. (The feedback is made from the output to the inverted input so that the feed- 
back is a negative feedback.) 

In the ideal op amp, no current flows into the input terminals, and the output volt- 
age is not affected by the load connected to the output terminal. In other words, the 
input impedance is infinity and the output impedance is zero. In an actual op amp, a 
very small (almost negligible) current flows into an input terminal and the output can- 
not be loaded too much. In our analysis here, we make the assumption that the op amps 
are ideal. 

Inverting Amplifier. Consider the operational amplifier circuit shown in Figure 3-29. 
Let us obtain the output voltage e,. 

Figure 3-29 
Inverting amplifier. 
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The equation for this circuit can be obtained as follows: Define 

Since only a negligible current flows into the amplifier, the current il must be equal to 
current i2 . Thus 

Since K(0 - e') = eo and K 9 1, e' must be almost zero, or e' = 0. Hence we have 

Thus the circuit shown is an inverting amplifier. If R1 = R2, then the op-amp circuit 
shown acts as a sign inverter. 

Noninverting Amplifier. Figure 3-30(a) shows a noninverting amplifier. A circuit 
equivalent to this one is shown in Figure 3-30(b). For the circuit of Figure 3-30(b), we 
have 

where K is the differential gain of the amplifier. From this last equation, we get 

R 1 

= (R ,  + R, K 

Since K 9 1, if R ~ / ( R ~  + R ~ )  9 1 / K ,  then 

This equation gives the output voltage e,. Since e, and e, have the same signs, the op-amp 
circuit shown in Figure 3-30(a) is noninverting. 

Figure 3-30 
(a) Noninverting 
operational 
amplifier; 
(b) equivalent 
circuit. (a) (b) 
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EXAMPLE 3-1 1 Figure 3-31 shows an electrical circuit involving an operational amplifier. Obtain the output e,. 
Let us define 

Figure 3-31 
First-order lag circuit 
using operational 
amplifier. 

. ei - ee' d ( e 1 - e 0 )  . e' - e, 
11 = - i2 = C 

dt ' 
l 3  = - 

R1 ' R2 

Noting that the current flowing into the amplifier is negligible, we have 

Hence 

ei - e' d(el - e,) e' - e, -- - C +- 
RI dt R2 

Since e' = 0, we have 

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have 

which can be written as 

The op-amp circuit shown in figure 3-31 is a first-order lag circuit. (Several other circuits involving 
op amps are shown inTable 3-1 together with their transfer functions.) 
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Figure 3-32 
Operational 
amplifier circuit. 

Impedance Approach to Obtaining Transfer Functions. Consider the op-amp 
circuit shown in Figure 3-32. Similar to the case of electrical circuits we discussed ear- 
lier, the impedance approach can be applied to op-amp circuits to obtain their transfer 
functions. For the circuit shown in Figure 3-32, we have 

Since E1(s)  = 0, we have 

EXAMPLE 3-1 2 Referring to the op-amp circuit shown in Figure 3-31, obtain the transfer function E,(s)/Ei(s) by 
use of the impedance approach. 

The complex impedances Z l ( s )  and Z,(s) for this circuit are 

The transfer function E,(s)/E,(s) is, therefore, obtained as 

1 which is, of course, the same as that obtained in Example 3-11. 
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_I 

Lead or lag network Sign inverter 

Figure 3-33 
(a) Operational-amplifier circuit; (b) operational-amplifier circuit used as a lead or lag compensator. 

Lead or Lag Networks Using Operational Amplifiers. Figure 3-33(a) shows an 
electronic circuit using an operational amplifier. The transfer function for this circuit 
can be obtained as follows: Define the input impedance and feedback impedance as Z1 
and Z2 , respectively. Then 

Hence, referring to Equation (3-73), we have 

Notice that the transfer function in Equation (3-74) contains a minus sign.Thus, this circuit 
is sign inverting. If such a sign inversion is not convenient in the actual application, a sign 
inverter may be connected to either the input or the output of the circuit of Figure 3-33(a). 
An example is shown in Figure 3-33(b). The sign inverter has the transfer function of 

-R, -- - 
E(s) R3 

The sign inverter has the gain of -R4/R,. Hence the network shown in Figure 3-33(b) 
has the following transfer function: 

1 
s + -  

E,(s) R2R4R1Cls+ l  R4C1 RICl -- - -- - 
Ei(s) Rl R3 R2C2s + 1 R3C2 1 

s + -- 
R2C2 

1 
s + -  

- - Ts  + 1 T 
K,a aTs + 1 

= Kc- 
1 

s f -  
aT 
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Figure 3-34 
Electronic PID 
controller. 

where 

Notice that 

This network has a dc gain of Kca = R~ R ~ / ( R ~  R ~ ) .  
Note that this network is a lead network if RICl > R2C2, or a < 1. It is a lag network 

if RICl < R2C2. 

PID Controller Using Operational Amplifiers. Figure 3-34 shows an electronic 
proportional-plus-integral-plus-derivative controller (a PID controller) using opera- 
tional amplifiers. The transfer function E ( s ) / E i ( s )  is given by 

where 

Thus 

Noting that 
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we have 

Notice that the second operational-amplifier circuit acts as a sign inverter as well as a 
gain adjuster. 

When a PID controller is expressed as 

K, is called the proportional gain, T, is called the integral time, and T, is called the 
derivative time. From Equation (3-76) we obtain the proportional gain K,, integral time 
T,, and derivative time T, to be 

When a PID controller is expressed as 

K, is called the proportional gain, K;is called the integral gain, and Kd is called the 
derivative gain. For this controller 

KP = ~ 4 ( ~ 1 ~ 1  + ~ 2 C 2 )  
R3 R l  C2 

R 4  K, = - 
R3R~C2 

Table 3-1 shows a list of operational-amplifier circuits that may be used as controllers 
or compensators. 
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3-9 SIGNAL FLOW GRAPHS 

The block diagram is useful for graphically representing control system dynamics and 
is used extensively in the analysis and design of control systems. An alternate approach 
for graphically representing control system dynamics is the signal flow graph approach, 
due to S. J. Mason. It is noted that the signal flow graph approach and the block dia- 
gram approach yield the same information and one is in no sense superior to the other. 

Signal Flow Graphs. A signal flow graph is a diagram that represents a set of 
simultaneous linear algebraic equations. When applying the signal flow graph method 
to analyses of control systems, we must first transform linear differential equations into 
algebraic equations in s. 

A signal flow graph consists of a network in which nodes are connected by direct- 
ed branches. Each node represents a system variable, and each branch connected be- 
tween two nodes acts as a signal multiplier. Note that the signal flows in only one 
direction. The direction of signal flow is indicated by an arrow placed on the branch, 
and the multiplication factor is indicated along the branch. The signal flow graph de- 
picts the flow of signals from one point of a system to another and gives the relation- 
ships among the signals. 

As mentioned earlier, a signal flow.graph contains essentially the same information 
as a block diagram. If a signal flow graph is used to represent a control system, then a 
gain formula, called Mason's gain formula, may be used to obtain the relationships 
among system variables without carrying out reduction of the graph. 

Definitions. Before we discuss signal flow graphs, we must define certain terms. 

Node. A node is a point representing a variable or signal. 
Transnzittance. The transmittance is a real gain or complex gain between two nodes. 

Such gains can be expressed in terms of the transfer function between two nodes. 
Branch. A branch is a directed line segment joining two nodes.The gain of a branch 

is a transmittance. 
Input node or source. An input node or source is a node that has only outgoing 

branches. This corresponds to an independent variable. 
O ~ ~ t p u t  node or sink. An output node or sink is a node that has only incoming 

branches. This corresponds to a dependent variable. 
Mixed node. A mixed node is a node that has both incoming and outgoing branches. 
Path. A path is a traversal of connected branches in the direction of the branch 

arrows. If no node is crossed more than once, the path is open. If the path ends at the 
same node from which it began and does not cross any other node more than once, it is 
closed. If a path crosses some node more than once but ends at a different node from 
which it began, it is neither open nor closed. 

Loop. A loop is a closed path. 
Loop gain. The loop gain is the product of the branch transmittances of a loop. 
Nonto~~ching loops. Loops are nontouching if they do not possess any common 

nodes. 
Forward path. A forward path is a path from an input node (source) to an output 

node (sink) that does not cross any nodes more than once. 
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Input node 
Mired node Pdy4 (Source) 

Figure 3-35 
Signal flow graph. 

Input node 
(Source) 

Output node 
(Sink) 

Forward path gain. A forward path gain is the product of the branch transmittances 
of a forward path. 

Figure 3-35 shows nodes and branches, together with transmittances. 

Properties of Signal Flow Graphs. A few important properties of signal flow 
graphs are as follows: 

1. A branch indicates the functional dependence of one signal on another. A signal 
passes through only in the direction specified by the arrow of the branch. 

2. A node adds the signals of all incoming branches and transmits this sum to all out- 
going branches. 

3. A mixed node, which has both incoming and outgoing branches, may be treated as 
an output node (sink) by adding an outgoing branch of unity transmittance. (see 
Figure 3-35. Notice that a branch with unity transmittance is directed from x3 to 
another node, also denoted by x,.) Note, however, that we cannot change a mixed 
node to a source by this method. 

4. For a given system, a signal flow graph is not unique. Many different signal flow 
graphs can be drawn for a given system by writing the system equations differently. 

Signal Flow Graph Algebra. A signal flow graph of a linear system can be drawn 
using the foregoing definitions. In doing so, we usually bring the input nodes (sources) to 
the left and the output nodes (sinks) to the right. The independent and dependent vari- 
ables of the equations become the input nodes (sources) and output nodes (sinks), re- 
spectively.The branch transmittances can be obtained from the coefficients of the equations. 

To determine the input-output relationship, we may use Mason's formula, which will 
be given later, or we may reduce the signal flow graph to a graph containing only input 
and output nodes. To accomplish this, we use the following rules: 

1. The value of a node with one incoming branch, as shown in Figure 3-36(a), is 
x2 = ax1. 

2. The total transmittance of cascaded branches is equal to the product of all the 
branch transmittances. Cascaded branches can thus be combined into a single 
branch by multiplying the transmittances, as shown in Figure 3-36(b). 

3. Parallel branches may be combined by adding the transmittances, as shown in 
Figure 3-36(c). 

4. A mixed node may be eliminated, as shown in Figure 3-36(d). 
5. A loop may be eliminated, as shown in Figure 3-36(e). Note that 

. x3 = bx2, x2 = ax1 + ex3 
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Figure 3-36 
Signal flow graphs 
and simplifications. 

Hence 

Equation (3-77) corresponds to a diagram having a self-loop of transmittance bc. Elim- 
ination of the self-loop yields Equation (3-78), which clearly shows that the overall 
transmittance is ab / ( l  - bc). 

Signal Flow Graph Representation of Linear Systems. Signal flow graphs are 
widely applied to linear-system analysis. Here the graph can be drawn from the system 
equations or, with practice, can be drawn by inspection of the physical system. Routine 
reduction by use of the foregoing rules gives the relation between an input and output 
variable. 
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Figure 3-3'7 
Signal flow graphs 
representing 
(a) Equation (3-79), 
(b) Equation (3-80), 
and 
(c) Equation (3-81); 
(d) complete signal 
flow graph for the 
system described by 
Equations 
(3-79)-(3-81). 

Consider a system defined by the following set of equations: 

x1 = a,,xl f a12x2 + a13x3 + btul (3-79) 

x2 = a2,xl + a 2 ~ x 2  + aZ3x3 + b2u2 (3-80) 

where u, and u2 are input variables and x, , x2, and x3 are output variab1es.A signal flow 
graph for this system, a graphical representation of these three simultaneous equations, 
indicating the interdependence of the variables, can be obtained as follows: First locate 
the nodes xl , x2, and x3 as shown in Figure 3-37(a). Note that a,, is the transmittance be- 
tween x, and x,. Equation (3-79) states that x, is equal to the sum of the four signals 
al lxl ,  a12x2, aI3x3, and blu,. The signal flow graph representing Equation (3-79) is 
shown in Figure 3-37(a). Equation (3-80) states that x2 is equal to the sum of a2,x,, 
az2x2, az3x3, and b2u2. The corresponding signal flow graph is shown in Figure 3-37(b). 
The signal flow graph representing Equation (3-81) is shown in Figure 3-37(c). 

The signal flow graph representing Equations (3-79), (3-SO), and (3-81) is then ob- 
tained by combining Figures 3-37(a), (b), and (c). Finally, the complete signal flow graph 
for the given simultaneous equations is shown in Figure 3-37(d). 

In dealing with a signal flow graph, the input nodes (sources) may be considered 
one at a time. The output signal is then equal to the sum of the individual contributions 
of each input. 

The overall gain from an input to an output may be obtained directly from the sig- 
nal flow graph by inspection, by use of Mason's formula, or by a reduction of the graph 
to a simpler form. 
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Signal Flow Graphs of Control Systems. Some signal flow graphs of simple 
control systems are shown in Figure 3-38. For such simple graphs, the closed-loop trans- 
fer function C ( s ) / R ( s )  [or c ( s ) / N ( s ) ]  can be obtained easily by inspection. For more 
complicated signal flow graphs, Mason's gain formula is quite useful. 

Figure 3-38 
Block diagrams and 
corresponding signal 
flow graphs. 
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Mason's Gain Formula for Signal Flow Graphs. In many practical cases, we 
wish to determine the relationship between an input variable and an output variable of 
the signal flow graph. The transmittance between an input node and an output node is 
the overall gain, or overall transmittance, between these two nodes. 

Mason's gain formula, which is applicable to the overall gain, is given by 

where 

P, = path gain or transmittance of kth forward path 
A = determinant of graph 

= 1 - (sum of all individual loop gains) + (sum of gain products of all 
possible combinations of two nontouching loops) - (sum of gain 
products of all possible combinations of three nontouching 
loops) + . . . 

C L ,  = sum of all individual loop gains 
u 

2 L,L, = sum of gain products of all possible combinations of two nontouching 
b,c loops 

C LdL,Lf = sum of gain products of all possible combinations of three 
d ,  e, f nontouching loops 

A, = cofactor of the kth forward path determinant of the graph with the 
loops touching the kth forward path removed, that is, the cofactor A, 
is obtained from A by removing the loops that touch path Pk 

(Note that the summations are taken over all possible paths from input to output.) 
In the following, we shall illustrate the use of Mason's gain formula by means of two 

examples. 

EXAMPLE 3-1 3 Consider the system shown in Figure 3-39. A signal flow graph for this system is shown in Figure 
3-40. Let us obtain the closed-loop transfer function C ( s ) / R ( s )  by use of Mason's gain formula. 

In this system there is only one forward path between the input R(s )  and the output C(s ) .  The 
forward path gain is 

Figure 3-39 
Multiple-]loop 
system. 
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Figure 3-40 
Signal flow graph 
for the system in 
Figure 3-39. 

From Figure 3-40, we see that there are three individual loops. The gains of these loops are 

L,  = G,G2Hl 

L2 = -G2G3H2 

L3 = -G1G2G3 

Note that since all three loops have a common branch, there are no nontouching loops. Hence, the 
determinant A is given by 

A = 1 - (L ,  + L, + L,) 

= 1 - GlG2H1 + G2G3H2 + G1G2G3 

The cofactor A l  of the determinant along the forward path connecting the input node and out- 
put node is obtained from A by removing the loops that touch this path. Since path Pl touches all 
three loops, we obtain 

Therefore, the overall gain between the input R(s )  and the output C(s ) ,  or the closed-loop trans- 
fer function, is given by 

which is the same as the closed-loop transfer function obtained by block diagram reduction. 
Mason's gain formula thus gives the overall gain C ( s ) / R ( s )  without a reduction of the graph. 

EXAMPLE 3-14 Consider the system shown in Figure 3-41. Obtain the closed-loop transfer function C(s ) /R(s )  by 
use of Mason's gain formula. 

In this system, there are three forward paths between the input R(s)  and the output C(s) .  
The forward path gains are 

PI = GI G2G3G4G5 
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Figure 3-41 
Signal flow graph for 
a system. 

There are four individual loops,The gains of these loops are 

Ll = -G4HI 

L2 = -G2 G7 H2 

L3 = -G6G4GSH2 

L4 = -G2G3G4G5H2 
Loop L1 does not touch loop L,. Hence, the determinant A  is given by 

A = 1 - ( L ,  + L2 + L3 + L ~ )  + LILz (3-82) 

The cofactor A1, is obtained from A by removing the loops that touch path PI. Therefore, by 
removing L, , L,, L3, L4, and L,  L2 from Equation (3-82), we obtain 

A ,  = 1 

Similarly, the cofactor A2 is 

A2 = 1 

The cofactor A3 is obtained by removing L,, L,, L,, and L, L2 from Equation (3-82), giving 

The closed-loop transfer function C ( s ) / R ( s )  is then 

Comments. The usual application of signal flow graphs is in system diagramming. 
The set of equations describing a linear system is represented by a signal flow graph by es- 
tablishing nodes that represent the system variables and by interconnecting the nodes 
with weighted, directed, transmittances, which represent the relationships among the vari- 
ables. Mason's gain formula may be used to establish the relationship between an input 
and an output. (Alternatively, the variables in the system may be eliminated one by one 
with reduction techniques.) Mason's gain formula is especially useful in reducing large 
and complex system diagrams in one step, without requiring step-by-step reductions. 
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Finally, it is noted that in applying the Mason's gain formula to a given system, one 
must be careful not to make mistakes in calculating the cofactors of the forward paths, 
Ak,  since any errors. if they exist, may not easily be detected. 

3-10 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS 

Nonlinea; Systems. A system is nonlinear if the principle of superposition does 
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated 
by treating one input at a time and adding the results. 

Although many physical relationships are often represented by linear equations, 
in most cases actual relationships are not quite linear. In fact, a careful study of phys- 
ical systems reveals that even so-called "linear systems" are really linear only in lim- 
ited operating ranges. In practice, many electromechanical systems, hydraulic systems, 
pneumatic systems, and so on, involve nonlinear relationships among the variables. 
For example, the output of a component may saturate for large input signals. There may 
be a dead space that affects small signals. (The dead space of a component is a small 
range of input variations to which the component is insensitive.) Square-law nonlin- 
earity may occur in some components. For instance, dampers used in physical systems 
may be linear for low-velocity operations but may become nonlinear at high veloci- 
ties, and the damping force may become proportional to the square of the operating 
velocity. 

Linearization of Nonlinear Systems. In control engineering a normal operation 
of the system may be around an equilibrium point, and the signals may be considered 
small signals around the equilibrium. (It should be pointed out that there are many ex- 
ceptions to such a case.) However, if the system operates around an equilibrium point 
and if the signals involved are small signals, then it is possible to approximate the non- 
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys- 
tem considered within a limited operating range. Such a linearized model (linear, 
time-invariant model) is very important in control engineering. 

The linearization procedure to be presented in the following is based on the expan- 
sion of nonlinear function into aTaylor series about the operating point and the retention 
of only the linear term. Because we neglect higher-order terms of Taylor series expan- 
sion, these neglected terms must be small enough; that is, the variables deviate only 
slightly from the operating condition. 

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear 
mathematical model for a nonlinear system, we assume that the variables deviate only 
slightly from some operating condition. Consider a system whose input is x ( t )  and out- 
put is y ( t ) .  The relationship between y ( t )  and x ( t )  is given by 

If the normal operating condition corresponds to i ,  j ,  then Equation (3-83) may be 
expanded into a Taylor series about this point as follows: 
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where the derivatives df/dx, d2f /dx2, . . . are evaluated at x = 2. If the variation x - 2 
is small, we may neglect the higher-order terms in x - X. Then Equation (3-84) may be 
written as 

where 

Equation (3-85) may be rewritten as 

which indicates that y - j7 is proportional to x - Z. Equation (3-86) gives a linear math- 
ematical model for the nonlinear system given by Equation (3-83) near the operating 
point x - 2, y - j7. 

Next, consider a nonlinear system whose output y is a function of two inputs xl  and 
x2, SO that 

To obtain a linear approximation to this nonlinear system, we may expand Equation (3-87) 
into a Taylor series about the normal operating point XI, x 2 .  Then Equation (3-87) 
becomes 

where the partial derivatives are evaluated at x ,  = F,, x2 = 2,. Near the normal oper- 
ating point, the higher-order terms may be neglected.The linear mathematical model of 
this nonlinear system in the neighborhood of the normal operating condition is then 
given by 
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The linearization technique presented here is valid in the vicinity of the operating 
condition. If the operating conditions vary widely, however, such linearized equations are 
not adequate, and nonlinear equations must be dealt with. It is important to remember 
that a particular mathematical model used in analysis and design may accurately rep- 
resent the dynamics of an actual system for certain operating conditions, but may not be 
accurate for other operating conditions. 

EXAMPLE 3-1 5 Linearize the nonlinear equation 

in the region 5 5 x 5 7,10 5 y 5 12. Find the error if the linearized equation is used to calcu- 
late the value of z when x = 5, y = 10. 

Since the region considered is given by 5 5 x 5 7,10 y 5 12, choose 2 = 6, j = 11. Then 
? = F j  = 66. Let us obtain a linearized equation for the nonlinear equation near a point I = 6, 
3 = 11. 

Expanding the nonlinear equation into a Taylor series about point x = 2,  y = 3 and neglecting 
the higher-order terms, we have 

where 

Hence the linearized equation is 

z - 6 6 =  l l ( x  - 6) + 6(y - 11) 

or 

z = l l x  + 6y - 66 

When x = 5, y = 10, the value of z given by the linearized equation is 

z = l l x  + 6y - 66 = 55 + 60 - 66 = 49 

The exact value of z is z = xy = 50. The error is thus 50 - 49 = 1. In terms of percentage, the 
error is 2%. 
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EXAMPLE PROBLEMS AND SOLUTIONS 

A-3-1. Simplify the block diagram shown in Figure 3-42. 

Solution. First, move the branch point of the path involving HI outside the loop involving H2, as 
shown in Figure 3-43(a). Then eliminating two loops results in Figure 3-43(b). Combining two 
blocks into one gives Figure 3-43(c). 

A-3-2. Simplify the block diagram shown in Figure 3-44. Obtain the transfer function relating C(s) and 
R(s ) .  

Figure 3-4.2 
Block diagram of a 
sysrem. 

Figure 3-413 
Simplified block 
diagrams for the 
system shown in 
Figure 3-42. 

Figure 3-44 
Block diagram of a 
system. 
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Figure 3-45 
Reduction of the 
block diagram shown 
in Figure 3-44. 

Solution. The block diagram of Figure 3-44 can be modified to that shown in Figure 3-45(a). 
Eliminating the minor feedforward path, we obtain Figure 3-45(b), which can be simplified to 
that shown in Figure 3-45(c). The transfer function C ( s ) / R ( s )  is thus given by 

The same result can also be obtained by proceeding as follows: Since signal X ( s )  is the sum 
of two signals G1 R(s )  and R(s ) ,  we have 

X ( s )  = G I R ( s )  + R(s )  

The output signal C ( s )  is the sum of G,X(s )  and R(s ) .  Hence 

C ( s )  = G 2 X ( s )  + R(s )  = G,[G,R(s) + ~ ( s ) ]  + R(s )  

And so we have the same result as before: 

A-3-3. Simplify the block diagram shown in Figure 3-46. Then, obtain the closed-loop transfer function 
C(s ) lR(s ) .  

Figure 3-46 
Block diagram of a 
system. 
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Figure 3-47' 
Successive 
reductions of the 
block diagram shown 
in Figure 3-46. 

Solution. First move the branch point between G3 and G4 to the right-hand side of the loop con- 
taining G3, G4, and Hz. Then move the summing point between GI and G2 to the left-hand side 
of the first summing point. See Figure 3-47(a). By simplifying each loop, the block diagram can 
be modified as shown in Figure 3-47(b). Further simplification results in Figure 3-47(c), from 
which the closed-loop transfer function C(s) /R(s )  is obtained as 

A-3-4. Obtain transfer functions C ( s ) / R ( s )  and C(s) /D(s )  of the system shown in Figure 3-48. 

Figure 3-48 
Control system with 
reference input and 
disturbance input. 

Solution. From Figure 3-48 we have 

U ( s )  = G f R ( s )  + G,E(s) 

C ( s )  = G , [ D ( ~ )  + ~ 1 W s ) l  
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By substituting Equation (3-88) into Equation (3-89), we get 

By substituting Equation (3-90) into Equation (3-91), we obtain 

Solving this last equation for C(s), we get 

Hence 

Note that Equation (3-92) gives the response C(s) when both reference input R(s) and distur- 
bance input D(s) are present. 

To find transfer function C(s)/R(s), we let D(s) = 0 in Equation (3-92). Then we obtain 

Similarly, to obtain transfer function C(s)/D(s), we let R(s) = 0 in Equation (3-92). Then 
C(s)/D(s) can be given by 

A-3-5. Figure 3-49 shows a system with two inputs and two outputs. Derive C,(s)/R,(s), Cl(s)/R2(s), 
C2(s)/R,(s), and C,(s)/R,(s). (In deriving outputs for R,(s), assume that R2(s) is zero, and vice 
versa.) 

Figure 3-49 
System with two 
inputs and two 
outputs. 
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Solution. From the figure, we obtain 

c2 = G4(R2 - G2C1) 

By substituting Equation (3-94) into Equation (3-93), we obtain 

Cl = GI[Rl - G3G4(R2 - G2Cl)] 

By substituting Equation (3-93) into Equation (3-94), we get 

c2 = G4[R2 - G2C1(R1 - G ~ c Z ) ]  

Solving Equation (3-95) for C,, we obtain 

Solving Equation (3-96) for C2 gives 

Equations (3-97) and (3-98) can be combined in the form of the transfer matrix as follows: 

Then the transfer functions C,(s)/R,(s), Cl(s)/R,(s), C2(s)/Rl(s) and C2(s)/R2(s) can be obtained 
as follows: 

Note that Equations (3-97) and (3-98) give responses CI and C2, respectively, when both inputs 
R, and R, are present. 

Notice that when R2(s) = 0, the original block diagram can be simplified to those shown in 
Figures 3-50(a) and (b). Similarly, when R,(s) = 0, the original block diagram can be simplified 
to those shown in Figures 3-50(c) and (d). From these simplified block diagrams we can also ob- 
tain C,(s)/Rl(s), C2(s)/R1(s), C,(s)/R2(s), and C2(s)/R2(s), as shown to the right of each corre- 
sponding block diagram. 
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Figure 3-50 
Simplified block 
diagrams and 
corresponding 
closed-loop transfer 
functions. 

A-3-6. Show that for the differential equation system 

y + a,y + a 2 y  + a3y = bou + b,u + b2u + b3u (3-99) 

state and output equations can be given, respectively, by 

and 

where state variables are defined by 

XI  = Y - Pou 

Xz = j, - p,li - p,u = x:, - p,u 

Xg = y - p0ii - plu - pzu = i2 - pzu 
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and 

Po = bo 

P I  = bl - fl1P" 

P 2  = 62 - f l lPl  - a2Po 

03 7 b3 - - 02Pl  - a3P0  

Solution. From the definition of state variables x, and x,, we have 

x1 = x,  + p,u 

kz = x, + p2u 

To derive the equation for x,, we first note from Equation (3-99) that 
. . . y = -a,y - a,y - a3y + b o u  + b,ii + b2u + b3u 

Since 

x 3 = y -  Poii - Plu  - P2u 

we have 

x3 = y - POL - Plii - P2il 

= (-a,y - a z j  - a3y)  + b,u + b,ii + b2u + b3u - P O u  - Plii  - P2u 
- - -al(ji - poii - p , i  - p2u) - al/3,ii - a lp lu  - alp2u 

-a2(y -  PO^ - P I L L )  - azPou - a2P1u - a,(y -  PO^) - a3Pou 

+ b o u  + blii + b20 + b 3 ~  - POii'- Plii - P 2 0  
- - -alx3 - a2x2 - a3x, + (bo - Po)u + (bl - PI - a,Po)ii 

+ (b2 - B 2  -  PI - a2Po)u + (b3 - a1P2 - a2P1 - a 3 ~ ~ ) u  

- - -alx3 - a2x2 - n3x, + (b3 - a,P2 - a2P1 - a3Po)u 

Hence, we get 

Combining Equations (3-102), (3-103), and (3-104) into a vector-matrix equation, we obtain 
Equation (3-100). Also,from the definition of state variable x,, we get the output equation given 
by Equation (3-101). 

A-3-7. Obtain a state-space equation and output equation for the system defined by 

Solution. From the given transfer function, the differential equation for the system is 

Comparing this equation with the standard equation given by Equation (3-33), rewritten 
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we find 

a, = 4, a, = 5, a, = 2 

b o = 2 ,  b l = l ,  b 2 = 1 ,  b 3 = 2  

Referring to Equation (3-35), we have 

Referring to Equation (3-34), we define 

Then referring to Equation (3-36), 

x, = x, - 7u 

x2 = x3 + 19u 

k3 = -U3X1 - U2X2 - UlX3 f p3u 

= -2x1 - 5x2 - 4x3 - 43u 

Hence, the state-space representation of the system is 

This is one possible state-space representation of the system. There are many (infinitely many) 
others. If we use MATLAB, it produces the following state-space representation: 

See MATLAB Program 3-4. (Note that all state-space representations for the same system are 
equivalent.) 
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MATLAB Program 3-4 I 
num = [2 1 1 21; 
den = [ I  4 5 21; 
[A,B,C,D] = tf2ss(num, den) 

Figure 3-51 
Control syct J em. 

A-3-8. Obtain a state-space model of the system shown in Figure 3-51. 

Solution. The system involves one integrator and two delayed integrators. The output of each 
integrator or delayed integrator can be a state variable. Let us define the output of the plant as 
X I ,  the output of the controller as x,, and the output of the sensor as x,. Then we obtain 

t u - Controller Plant I 
u 

Sensor 
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which can be rewritten as 

sX, (s )  = -5X,(s) + 10X2(s)  

sX2(s)  = -X3(s)  + U ( S )  

sX3(s) = X, ( s )  - X3(3) 

Y ( s )  =  XI(^) 
By taking the inverse Laplace transforms of the preceding four equations, we obtain 

x, = -5x, + lox,  

x, = -xg + U 
x3 = x, - x, 

Y = X l  

Thus, a state-space model of the system in the standard form is given by 

y = [ l  0 01 x, [::I 
It is important to note that this is not the only state-space representation of the system. Many 
other state-space representations are possible. However, the number of state variables is the same 
in any state-space representation of the same system. In the present system, the number of state 
variables is three, regardless of what variables are chosen as state variables. 

A-3-9. Obtain a state-space model for the system shown in Figure 3-52(a). 

Solution. First, notice that (as + b)/s2 involves a derivative term. Such a derivative term may be 
avoided if we modify (as + b)/s2 as 

Using this modification, the block diagram of Figure 3-52(a) can be modified to that shown in 
Figure 3-52(b). 

Define the outputs of the integrators as state variables, as shown in Figure 3-52(b).Then from 
Figure 3-52(b) we obtain 

which may be modified to 

sX1(s) = X2(s) + a [ ~ ( s )  - ~ , ( s ) l  

sX2(s)  = -bX,(s) + bU(s)  

Y ( s )  = X,(s )  
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Figure 3-52! 
(a) Control system; 
(b) modified block 
diagram. 

Taking the inverse Laplace transforms of the preceding three equations, we obtain 

x1 = -axl + x2 + au 

k2 = -bxl + bu 

Rewriting the state and output equations in the standard vector-matrix form, we obtain 

A-3-10. Obtain a state-space representation of the system shown in Figure 3-53(a). 

Solution. In this problem, first expand ( s  + z ) / ( s  + p )  into partial fractions. 

Next,convert ~ / [ s ( s  + a ) ]  into the product of K / s  and l / ( s  + a).Then redraw the block diagram, 
as shown in Figure 3-53(b). Defining a set of state variables, as shown in Figure 3-53(b), we ob- 
tain the following equations: 
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igure 3-53 
.i) Control system; 
h) block diagram 
efining state 
ariables for the 
\'stem. 

Rewriting gives 

Notice that the output of the integrator and the outputs of the first-order delayed integrators 
[ l / ( s  + a )  and ( z  - p ) / ( s  + p ) ]  are chosen as state variables. It is important to remember that 
the output of the block ( s  + z ) / ( s  + p )  in Figure 3-53(a) cannot be a state variable, because this 
block involves a derivative term, s  + z. 

A-3-11. Obtain the transfer function of the system defined by [;:I = [-" 0 0 -2 '1 [:'I X g  + [!Iu 
Y = ;1 0 01[;] 

Solution. Referring to Equation (3-29), the transfer function G(s) is given by 

In this problem, matrices A, B, C, and D are 

0 -2 
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A-3-12. Obtain a state-space representation of the system shown in Figure 3-54. 

Solution. The system equations are 

~ I Y ,  + by1 + k(y1 - Y2) = 0 

m2~2 + k(y2 - Y,) = u 

The output variables for this system are y, and y2. Define state variables as 

X l  = Yl 

x2 = Pl  

x3 = Y2 

x4 = ~2 

Then we obtain the following equations: 

Hence, the state equation is 

Figure 3-54 
Mechanical system. 
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and the output equation is 

A-3-13. Consider a system with multiple inputs and multiple outputs. When the system has more than one 
output, the command 

produces transfer functions for all outputs to each input. (The numerator coefficients are returned 
to matrix NUM with as many rows as there are outputs.) 

Consider the system defined by 

This system involves two inputs and two outputs. Four transfer functions are involved: Yl (s ) /Ul (s ) ,  
&(s) /U,(s) ,  Y , ( s ) /U2(s ) ,  and & ( s ) / U 2 ( s )  (When considering input u l ,  we assume that input u2 
is zero and vice versa.) 

Solution. MATLAB Program 3-5 produces four transfer functions. 

MATLAB Program 3-5 I 

NUM = 
0 1  4 
0  0 -25 

den = I 

1 NUM = I 

den = I 
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This is the MATLAB representation of the following four transfer functions: 

A-3-14. Obtain the equivalent spring constants for the systems shown in Figures 3-%(a) and (b), 
respectively. 

Solution. For the springs in parallel [Figure 3-55(a)] the equivalent spring constant k,, is obtained 
from 

k,, = k ,  + k2 

For the springs in series [Figure-55(b)], the force in each spring is the same.Thus 

Elimination of y from these two equations results in 

The equivalent spring constant k,, for this case is then found as 

Figure 3-5!5 
(a) System consisting 
of two springs in 
parallel; 
(b) system (consisting 
of two springs in 
series. (a) 
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A-3-15. Obtain the equivalent viscous-friction coefficient be, for each of the systems shown in 
Figure 3-%(a) and (b). 

Solution. 

(a) The force f due to the dampers is 

f = b l ( j ,  - f )  + b2(y - f )  = ( b l  + b2)(jr - f )  

In terms of the equivalent viscous friction coefficient be,, force f is given by 

Hence 

(b) The force f due to the dampers is 

f = b,(i  - f )  = b2 ( y  - z )  

where z is the displacement of a point between damper b, and damper b2. (Note that the 
same force is transmitted through the shaft.) From Equation (3-105), we have 

(b, + b2)i = b2y + blx 

In terms of the equivalent viscous friction coefficient be,, force f is given by 

f = b,,(jl - f )  

By substituting Equation (3-106) into Equation (3-105), we have 

Thus, 

Hence, 

Figure 3-56 
(a) Two dampers 
connected in parallel; 
(b) two dampers 
connected in series. 
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A-3-16. Figure 3-57(a) shows a schematic diagram of an automobile suspension system. As the car moves 
along the road, the vertical displacements at the tires act as the motion excitation to the auto- 
mobile suspension system.The motion of this system consists of a translational motion of the cen- 
ter of mass and a rotational motion about the center of mass. Mathematical modeling of the 
complete system is quite complicated. 

A very simplified version of the suspension system is shown in Figure 3-57(b).Assuming that 
the motion x, at point P is the input to the system and the vertical motion x, of the body is the 
output, obtain the transfer function X, ( s ) /X , ( s ) .  (Consider the motion of the body only in the ver- 
tical direction.) Displacement x, is measured from the equilibrium position in the absence of 
input x,. 

~ o l u i o n .  The equation of motion for the system shown in Figure 3-57(b) is 

mx, + bx, + kx, = bxi + kxi 

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain 

(ms2 + bs + k ) x 0 ( s )  = (bs + k ) X i ( s )  

Hence the transfer function X , ( s ) / X i ( s )  is given by 

Center of mass 
\ 

\e Auto body 

Figure 3-57 
(a) Automobile 4 

suspension system; 
(b) simplified 
suspension system. (b) 
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A-3-17. Obtain the trarlsfer function Y ( s ) / U ( s )  of tne system shown in Figure 3-58. The input u is a 
displacement input. (Like the system of Problem A-3-16, this is also a simplified version of an 
automobile or motorcycle suspension system.) 

Solution. Assume that displacements x and y are measured from respective steady-state posi- 
tions in the absence of the input u. Applying the Newton's second law to this system, we obtain 

m l x  = k2(y - x )  + b(y  - P )  + k l (u  - x )  

m2y = -k2(y - x )  - b(y  - x )  

Hence, we have 

m l x  + bx + ( k ,  + k2)x = b y  + k2y + klu  

Taking Laplace transforms of these two equations, assuming zero initial conditions, we obtain 

[mls2 + bs + (kl  + k 2 ) ] x ( s )  = (bs + k 2 ) y ( s )  + k,U(s) 

[m2s2 + bs + k 2 ] y ( s )  = (bs + k 2 ) x ( s )  

Eliminating X ( s )  from the last two equations, we have 

m2s2 + bs + k2 
(m,s2 + bs + k1 + k2) Y ( s )  = (bs + k 2 ) y ( s )  + k,U(s) 

bs + k2 

which yields 

Figure 3-58 
Suspension system. 

A-3-18. Obtain the transfer function of the mechanical system shown in Figure 3-59(a). Also obtain the 
transfer function of the electrical system shown in Figure 3-59(b). Show that the transfer functions 
of the two systems are of identical form and thus they are analogous systems. 

Solution. In Figure 3-59(a) we assume that displacements xi, x,, and y are measured from their 
respective steady-state positions. Then the equations of motion for the mechanical system shown 
in Figure 3-59(a) are 
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Figure 3-59 
(a) Mechanical 
system; 
(b) analogous 
electrical system. 

bl( i ,  - k,) + kl(x, - x,) = b2(i0 - j )  

b2(i0 - Y) = k2y 

By taking the Laplace transforms of these two equations, assuming zero initial conditions, we 
have 

b,[sX,(s) - sX0(s)l  + k l [x , ( s )  - ~ o ( s ) l  = b 2 [ ~ ~ 0 ( ~ )  - S Y ( S ) I  
b2[sA',(s) - S Y ( S ) ]  = k2Y(s) 

If we eliminate Y ( s )  from the last two equations, then we obtain 

Hence the transfer function XO(s ) /X i ( s )  can be obtained as 

For the electrical system shown in Figure 3-59(b), the transfer function Eo(s) /Ei(s)  is found to 
be 
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A comparison of the transfer functions shows that the systems shown in Figures 3-59(a) and (b) 
are analogous. 

A-3-19. Obtain the transfer functions Eu(s)/Ei(s) of the bridged T networks shown in Figures 3-60(a) 
and (b). 

Solution. The bridged T networks shown can both be represented by the network of 
Figure 3-61(a), where we used complex impedances.This network may be modified to that, shown 
in Figure 3-61 (b). 

In Figure 3-61(b), note that 

2 ,  1 2 z , = ( Z 3 + ~ 4 ) ~ 3  

Figure 3-60 
Bridged T networks. 

Figure 3-61 
(a) Bridged T 
network in terms of 
complex impedances; 
(b) equivalent 
network. 
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Hence 

Then the voltages Ei(s) and Eo(s) can be obtained as 

Hence, the transfer function Ed(s)/Ei(s) of the network shown in Figure 3-6l(a) is obtained as 

For the bridged T network shown in Figure 3-60(a), substitute 

1 1 
Z l = R ,  2 -  2 - Z 3 = R ,  Z 4 = -  

Cl s c2s 

into Equation (3-107).Then, we obtain the transfer function Eo(s)/Ei(s) to be 

Similarly, for the bridged T networkmshown in Figure 3-60(b), we substitute 

into Equation (3-107). Then the transfer function E,(s)/E,(s) can be obtained as follows: 
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Figure 3-62 
Operational- 
amplifier circuit. 

A-3-20. Obtain the transfer function Eo(s) /E, (s )  of the op-amp circuit shown in Figure 3-62. 

Solution. The voltage at point A is 

The Laplace-trasformed version of this last equation is 

The voltage at point B is 

Since [EB(s )  - E ~ ( s ) ] K  = Eo(s) and K %- 1, we must have EA(s )  = EB(s) .  Thus 

Hence 

1 
s - -  

E,(s) R2Cs - 1 - = - - R2C --- 
E,(s)  R2Cs + 1 1 

s f -  
R2C 

A-3-21. Obtain the transfer function Eo(s) /E, (s )  of the op-amp system shown in Figure 3-63 in terms of 
complex impedances Z, ,  Z2 ,  Z3 ,  and 2,. Using the equation derived, obtain the transfer function 
Eo(s) /El (s )  of the op-amp system shown in Figure 3-62. 

Solution. From Figure 3-63, we find 
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Figure 3-63 
Operational- 
amplifier circuit. 

or 

Since 

by substituting Equation (3-109) into Equation (3-108), we obtain 

from which we get the transfer function Eu(s)/Ei(s) to be 

To find the transfer function Eo(s)/Ei(s) of the circuit shown in Figure 3-62, we substitute 

into Equation (3-110). The result is 

which is, as a matter of course, the same as that obtained in Problem A-3-20. 
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A-3-22. Obtain the transfer function E,(s)/E,(s) of the operational-amplifier circuit shown in Figure 3-64. 

Solution. We will first obtain currents i l ,  i2, i,, i,, and i,.Then we will use node equations at nodes 
A and B. 

At node A, we have i, = i, + i3 + i,, or 

At node B, we get i, = i,, or 

By rewriting Equation (3-Ill), we have 

From Equation (3-112), we get 

By substituting Equation (3-114) into Equation (3-113), we obtain 

1 1  de, ei e, 
C1 -R2C2- + - + - + - ( - R ~ c ~ ) - = -  + -  

I ) dl Rl R3 ( dk;) (R,  R2 R3 

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain 

from which we get the transfer function E,(s)/Ei(s) as follows: 

Figure 3-64 
Operational- 
amplifier circuit. 
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A-3-23. Consider the servo system shown in Figure 3-65(a).The motor shown is a servomotor, a dc motor 
designed specifically to be used in a control system. The operation of this system is as follows: A 
pair of potentiometers acts as an error-measuring device. They convert the input and output po- 
sitions into proportional electric signals.The command input signal determines the angular posi- 
tion r of the wiper arm of the input potentiometer. The angular position r is the reference input 
to the system, and the electric potential of the arm is proportional to the angular position of the 
arm. The output shaft position determines the angular position c of the wiper arm of the output 
potentiometer. The difference between the input angular position r and the output angular pasi- 
tion c is the error signal e, or 

The potential difference e, - e, = e, is the error voltage, where e, is proportional to r and e, is pro- 
portional to c; that is, e, = Kor and e, = Koc, where KO is a proportionality constant. The error volt- 
age that appears at the potentiometer terminals is amplified by the amplifier whose gain constant 
is K,  .The output voltage of this amplifier is applied to the armature circuit of the dc motor. A fixed 
voltage is applied to the field winding. If an error exists, the motor develops a torque to rotate the 
output load in such a way as to reduce the error to zero. For constant field current, the torque de- 
veloped by the motor is 

where K2 is the motor torque constant and i, is the armature current. 

Reference input Input potentiometer 
/ 

Input device 

Error measuring device Amplifier Motor Gear 
train 

(a) 

Load 
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KlK2 @s) 1 )  "ilr 
s(L,s + R,) (J,s + b,) + K2K3s - s(Js + B) 

(b) (c)  

Figwe 3-65 
(a) Schematic diagram of servo system; (b) block diagram for the system; (c) simplified block 
diagram. 



When the armature is rotating, a voltage proportional to the product of the flux and angular 
velocity is induced in the armature. For a constant flux, the induced voltage eb is directly propor- 
tional to the angular velocity dO/dt, or 

where eb is the back emf, K3 is the back emf constant of the motor, and 0 is the angular displace- 
ment of the motor shaft. 

Obtain the transfer function between the motor shaft angular displacement 0 and the error 
voltage e,. Obtain also a block diagram for this system and a simplified block diagram when La 
is negligible. 

Solution. The speed of an armature-controlled dc servomotor is controlled by the armature volt- 
age e,. (The armature voltage e, = K,e, is the output of the amplifier.) The differential equation 
for the armature circuit is 

The equation for torque equilibrium is 

where Jo is the inertia of the combination of the motor, load, and gear train referred to the motor 
shaft and b, is the viscous-friction coefficient of the combination of the motor, load, and gear train 
referred to the motor shaft. 

By eliminating ia from Equations (3-115) and (3-116), we obtain 

We assume that the gear ratio of the gear train is such that the output shaft rotates n times for each 
revolution of the motor shaft. Thus, 

The relationship among E;(S), R ( s ) ,  and C(s) is 

The block diagram of this system can be constructed from Equations (3-117), (3-118), and (3-119), 
as shown in Figure 3-65(b).The transfer function in the feedforward path of this system is 

C(s) @(s) E,(s) G(s) = --- - - KoK1 K2n 

@(s) E(s) s[(L,s + R,)(J,s + b,) + K,K,] 
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When L, is small, it can be neglected, and the transfer function G ( s )  in the feedforward path 
becomes 

The term [b, + (K~K,/R,)]s indicates that the back emf of the motor effectively increases the 
viscous friction of the system. The inertia Jo and viscous friction coefficient bo + (K,K,/R,) are 
referred to the motor shaft. When J, and b, + (K,K,/R,) are multiplied by l /n2,  the inertia and 
viscous-friction coefficient are expressed in terms of the output shaft. Introducing new parameters 
defined by 

J = Jo/n2 = moment of inertia referred to the output shaft 

B = [b, + ( K , K ~ / R , ) ] / ~ ~  y viscous-friction coefficient referred to the output shaft 

K = K,K,K,/nR, 

the transfer function G ( s )  given by Equation (3-120) can be simplified, yielding 

where 

The block diagram of the system shown in Figure 3-65(b) can thus be simplified as shown in 
Figure 3-65(c). 

A-3-24. Consider the system shown in Figure 3-66. Obtain the closed-loop transfer function C(s) /R(s) .  

Solution. In this system there is only one forward path that connects the input R ( s )  and the Out- 
put C(s ) .  Thus, 
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Figure 3-66 
Signal flow graph of 
a control system. 

There are three individual loops. Thus, 

1 1  L 
I - 

Cts Rl 

Loop L1 does not touch loop Lz . (Loop L1 touches loop L3, and loop L2 touches loop Lg .) Hence 
the determinant A is given by 

Since all three loops touch the forward path PI, we remove L l ,  L2, L,, and L1 L2 from A and eval- 
uate the cofactor AI as follows: 

Thus we obtain the closed-loop transfer function to be 
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A-3-25. Obtain the transfer function Y ( s ) / X ( s )  of the system shown in Figure 3-67. 

Solution. The signal flow graph shown in Figure 3-67 can be successively simplified as shown in 
Figures 3-68 (a), (b), and (c). From Figure 3-68(c), X3 can be written as 

This last equation can be simplified as 

from which we obtain 

Figwe 3-67 
Signal flow graph of 
a system. 

Figure 3-68 
Succesive 
simplificati~ons of the 
signal flow graph of 
Figure 3-6'7. 
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A-3-26. Figure 3-69 is the block diagram of an engine-speed control system. The speed is measured by a 
set of flyweights. Draw a signal flow graph for this system. 

Solution. Referring to Figure 3-36(e), a signal flow graph for 

may be drawn as shown in Figure 3-70(a). Similarly, a signal flow graph for 

may be drawn as shown in Figure 3-70(b). 
Drawing a signal flow graph for each of the system components and combining them together, 

a signal flow graph for the complete system may be obtained as shown in Figure 3-70(c). 

Reference 
speed 

Load 
disturbance 

Actual 
speed 

Figure 3-69 
Block diagram of an 
engine-speed control 
system. 

. - ' Figure 3-70 
(a) Signal flow graph for 
Y(s)/X(s) = l / (s  + 140); 
(b) signal flow graph for 
Z(s)/X(s) = l/(s2 + 140s + 
(c) signal flow graph for the 
system shown in Fig. 3-69. 

t Flyweights Hydraulic Engine I 
servo 
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A-3-27. Linearize the nonlinear equation 

z = x2 + 4xy + 6yZ 

in the region defined by 8 r x 5 10,2 5 y 5 4. 

Solution. Define 

f ( x ,  y )  = z = k + 4xy + 6y2 

Then 

where f = 9, 8 = 3. 
Since the higher-order terms in the expanded equation are small, neglecting these higher- 

order terms, we obtain 

where 

Z = i 2 + 4 f j + 6 j 2 = 9 2 + 4 X 9 ~ 3 + 6 X 9 = 2 4 3  

Thus 

z - 243 = 30(x - 9 )  + 72(y - 3 )  

Hence a linear approximation of the given nonlinear equation near the operating point is 

z - 30x - 72y + 243 = 0 

Example Problems and Solutions 



PROBLEMS 

B-3-1. Simplify the block diagram shown in Figure 3-71 B-3-2. Simplify the block diagram shown in Figure 3-72 
and obtain the closed-loop transfer function C(s)/R(s). and obtain the transfer function C(s)/R(s). 

B-3-3. Simplify the block diagram shown in Figure 3-73 
and obtain the closed-loop transfer function C(s)/R(s). 

Figure 3-71 
Block diagram of a system. 

Figure 3-72 
B G C ~  diagram of a system. u 

I I 

Figure 3-73 
Block diagram of a system. 
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B-3-4. Consider industrial automatic controllers whose ing error signal. Sketch u ( t )  versus t curves for each of the 
control actions are proportional, integral, proportional-plus- .five types of controllers when the actuating errar signal is 
integral, proportional-plus-derivative, and proportional-plus- (,) e ( t )  = unit-step function 
integral-plus-derivative. The transfer functions of these 
controllers can be given, respectively, by (b) e ( t )  = unit-ramp function 

In sketching curves, assume that the numerical values of K p ,  
Ki, ?;., and T,, are given as 

K, = proportional gain = 4 

Ki = integral gain = 2 

?;. = integral time = 2 sec 

T, = derivative time = 0.8 sec 

'B-3-5. Figure 3-74 shows a closed-loop system with a ref- 
erence input and disturbance input. Obtain the expression 
for the output C ( s )  when both the reference input and dis- 
turbance input are present. 

8-3-6. Consider the system shown in Figure 3-75. Derive 
where U ( s )  is the Laplace transform of u ( t ) ,  the controller the expression for the steady-state error when both the ref- 
output, and E ( s )  the Laplace transform of e ( t ) ,  the actuat- erence input R ( s )  and disturbance input D(s )  are present. 

1 "'" 
B-3-7. Obtain the transfer functions C ( s ) / R ( s )  and 
C ( s ) / D ( s )  of the system shown in Figure 3-76. 

Controller Plant 

Figure 3-74 
Closed-loop system. 

E(s) 4 Gi(4 +&)--I G2(3) 1 C(s) 

Figure 3-75 
Control system. 

Figure 3-76 
Control system. 

Problems 



B-3-8. Obtain a state-space representation of the system B-3-14. Obtain mathematical models of the mechanical 
shown in Figure 3-77. systems shown in Figure 3-79(a) and (b). 

Figure 3-77 - 
Control system. 

B-3-9. Consider the system described by 

y + 3 y + 2 y = u  

Derive a state-space representation of the system. 

B-3-10. Consiaer the system described by 

r--+ (Output) 

No friction 

(a) 

i---f X (Output) 

No friction 

Y = [l O I L x l ]  x2 (b) 

Figure 3-79 
Obtain the transfer function of the system. Mechanical systems. 
B-3-11. Consider a system defined by the following state- 
mace eauations: B-3-15. Obtain a state-space representation of the me- 

Obtain the transfer function G(s )  of the system. 

B-3-12. Obtain the transfer matrix of the system defined by 

B-3-13. Obtain the equivalent viscous-friction coefficient 
be, of the system shown in Figure 3-78. 

chanical system shown in Figure 3-80, where u, and 2.4, are 
the inputs and y ,  and y2 are the outputs. 

Figure 3-80 
Mechanical system. 

B-3-16. Consider the spring-loaded pendulum system 
shown in Figure 3-81. Assume that the spring force acting on 
the pendulum is zero when the pendulum is vertical, or 

Y 0 = 0. Assume also that the friction involved is negligible 
Figure 3-78 and the angle of oscillation 0 is small. Obtain a mathemati- 
Damper system. cal model of the system. 
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" g  
Figure 3-81 
Spring-loaded pendulum system. 

B-3-17. Referring to Examples 3-8 and 3-9, consider the 
inverted p'endulum system shown in Figure 3-82. Assume 
that the mass of the inverted pendulum is rn and is evenly 
distributed along the length of the rod. (The center of grav- 
ity of the pendulum is located at the center of the rod.) As- 
suming that 8 is small, derive mathematical models for the 
system in the forms of differential equations, transfer func- 
tions, and state-space equations. 

Figure 3-82 
Inverted pendulum system. 

B-3-18. Obtain the transfer functions X , ( s ) / U ( s )  and 
X,(s)/U(s)  of the mechanical system shown in Figure 3-83. 

B-3-19. Obtain the transfer function E,(s)/E,(s)  of the 
electrical circuit shown in Figure 3-84. 

Figure 3-84 
Electrical circuit. 

B-3-20. Consider the electrical circuit shown in Figure 3-85. 
Obtain the transfer function E,(s)/E,(s) by use of the block 
diagram approach. 

Figure 3-85 
Electrical circuit. 

B-3-21. Derive the transfer function of the electrical cir- 
cuit shown in Figure 3-86. Draw a schematic diagram of an 
analogous mechanical system. 

Figure 3-83 
Mechanical system. 

Problems 

Figure 3-86 
Electrical circuit. 



B-3-22. Obtain the transfer function Eu(s) /Ei (s )  of the 
op-amp circuit shown in Figure 3-87. 

B-3-24. Using the impedance approach, obtain the trans- 
fer function E,(s)/E,(s)  of the op-amp circuit shown in 
Figure 3-89. 

+ 
Figure 3-87 
Operational-amplifier circuit. 

B-3-23. Obtain the transfer function Eo(s) /Ei (s )  of the 
op-amp circuit shown in Figure 3-88. 

+ 
Figure 3-88 
Operational-amplifier circuit. 

Figure 3-89 
Operational-amplifier circuit. 

B-3-25. Consider the system shown in Figure 3-90. An 
armature-controlled dc servomotor drives a load consisting 
of the moment of inertia JL. The torque developed by the 
motor is T.The moment of inertia of the motor rotor is J,. 
The angular displacements of the motor rotor and the load 
element are 8, and 8, respectively. The gear ratio is 
n = $ /Om.  Obtain the transfer function O(s ) /E i ( s ) .  

Figure 3-90 
Armature-controlled dc servomotor system. 
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B-3-26. Obtain the transfer function Y(s ) /X (s )  of the sys- B-3-28. Linearize the nonlinear equation 
tem shown, in Figure 3-91. 

2 = x2 + 8xy  + 3y2 

in the region defined by 2 5 x 5 4,10 5 y 5 12. 

B-3-29. Find a linearized equation for 

= 0 . 2 ~ ~  

about a point x = 2. 

- a2 

Figure 3-91 
Signal flow graph of a system. 

B-3-27. Olbtain the transfer function Y ( s ) / X ( s )  of the sys- 
tem shown in Figure 3-92. 

Figure 3-92 
Signal flow graph of a system. 

Problems 



Mathematical Modelina 
of Fluid system; 

and Thermal Systems* 

4-1 INTRODUCTION 

This chapter treats mathematical modeling of fluid systems and thermal systems.As the 
most versatile medium for transmitting signals and power, fluids-liquids and gases- 
have wide usage in industry. Liquids and gases can be distinguished basically by their rel- 
ative incompressibilities and the fact that a liquid may have a free surface, whereas a gas 
expands to fill its vessel. In the engineering field the term pneumatic describes fluid 
systems that use air or gases and hydraulic applies to those using oil. 

We first discuss liquid-level systems that are frequently used in process control. Here 
we introduce the concepts of resistance and capacitance to describe the dynamics of 
such systems. Then we treat pneumatic systems. Such systems are extensively used in 
the automation of production machinery and in the field of automatic controllers. For 
instance, pneumatic circuits that convert the energy of compressed air into mechanical 
energy enjoy wide usage. Also, various types of pneumatic controllers are widely used 
in industry. Next, we present hydraulic servo systems.These are widely used in machine 
tool systems, aircraft control systems, etc. We discuss basic aspects of hydraulic servo 
systems and hydraulic controllers. B ~ t h  pneumatic systems and hydraulic systems can 
be modeled easily by using the concepts of resistance and capacitance. Finally, we treat 
simple thermal systems. Such systems involve heat transfer from one substance to an- 
other. Mathematical models of such systems can be obtained by using thermal resistance 
and thermal capacitance. 

"This chapter assumes an introductory background of fluid dynamics, thermodynamics, and heat transfer as 
normally required for mechanical engineering curriculum. If the students using this text d o  not have such 
background, this chapter may be skipped without losing continuity of the analysis and design of control systems 
presented in this book. 



Outline of the Chapter. Section 4-1 has just presented introductory material for 
the chapter. Section 4-2 discusses liquid-level systems. Section 4-3 treats pneumatic 
systems-in particular, the basic principles of pneumatic controllers. Section 4-4 first 
discusses hydraulic servo systems and then presents hydraulic controllers. Finally, 
Section 4-5 analyzes thermal systems and obtains mathematical models of such systems. 

4-2 LIQUID-LEVEL SYSTEMS 

In analyzing systems involving fluid flow, we find it necessary to divide flow regimes 
into laminar flow and turbulent flow, according to the magnitude of the Reynolds num- 
ber. If the Reynolds number is greater than about 3000 to 4000, then the flow is turbu- 
lent. The flow is laminar if the Reynolds number is less than about 2000. In the laminar 
case, fluid flow occurs in streamlines with no turbulence. Systems involving laminar flow 
may be represented by linear differential equations. 

Industrial processes often involve flow of liquids through connecting pipes and tanks. 
The flow in such processes is often turbulent and not laminar. Systems involving turbu- 
lent flow often have to be represented by nonlinear differential equations. If the region 
of operation is limited, however, such nonlinear differential equations can be linearized. 
We shall discuss such linearized mathematical models of liquid-level systems in this sec- 
tion. Note that the introduction of concepts of resistance and capacitance for such liquid- 
level systems enables us to describe their dynamic characteristics in simple forms. 

Resistance and Capacitance of Liquid-Level Systems. Consider the flow 
through a short pipe connecting two tanks. The resistance R for liquid flow in such a 
pipe or restriction is defined as the change in the level difference (the difference of the 
liquid levels of the two tanks) necessary to cause a unit change in flow rate; that is, 

change in level difference, m 
R = 

change in flow rate, m3/sec 

Since the relationship between the flow rate and level difference differs for the laminar 
flow and turbulent flow, we shall consider both cases in the following. 

Consider the liquid-level system shown in Figure 4-l(a). In this system the liquid 
spouts through the load valve in the side of the tank. If the flow through this restriction 
is laminar, the relationship between the steady-state flow rate and steady-state head at 
the level of the restriction is given by 

Q = K H  

where Q = steady-state liquid flow rate, m3/sec 
K  = coefficient, m2/sec 
H = steady-state head, m 

For laminar flow, the resistance RI is obtained as 

The laminar-flow resistance is constant and is analogous to the electrical resistance. 
If the flow through the restriction is turbulent, the steady-state flow rate is given by 

Q = K ~  (4-1) 
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Control valve 

Figure 4-1 
(a) Liquid-level 
system; (b) head 
versus flow rate 
curve. 

Load valve 

I I 
Capacitance Resistance 

C R 

where Q = steady-state liquid flow rate, m3/sec 
K = coefficient, m2.5/se~ 
H = steady-state head, m 

The resistance R, for turbulent flow is obtained from 

Since from Equation (4-1) we obtain 

we have 

Thus, 

The value of the turbulent-flow resistance R, depends on the flow rate and the head.The 
value of R,, however, may be considered constant if the changes in head and flow rate 
are small. 

By use of the turbulent-flow resistance, the relationship between Q and H can be 
given by 

Such linearization is valid, provided that changes in the head and flow rate from their 
respective steady-state values are small. 

In many practical cases, the value of the coefficient K in Equation (4-I), which depends 
on the flow coefficient and the area of restriction, is not known. Then the resistance may 
be determined by plotting the head versus flow rate curve based on experimental data 
and measuring the slope of the curve at the operating condition.An example of such a plot 
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is shown in Figure 4-l(b). In the figure, point P is the steady-state operating point.The tan- 
gent line to the curve at point P intersects the ordinate at point (0, -H). Thus, the slope 
of this tangent line is 2HlQ. Since the resistance R, at the operating point P is given by 
2H/Q, the resistance R, is the slope of the curve at the operating point. 

Consider the operating condition in the neighborhood of point P. Define a small 
deviation of the head from the steady-state value as h and the corresponding small 
change of the flow rate as q. Then the slope of the curve at point P can be given by 

h 2H 
Slope of curve at point P = - = -=- = R, 

q Q 
The linear approximation is based on the fact that the actual curve does not differ much 
from its tangent line if the operating condition does not vary too much. 

The capacitance C of a tank is defined to be the change in quantity of stored liquid 
necessary to cause a unit change in the potential (head). (The potential is the quantity 
that indicates the energy level of the system.) 

change in liquid stored, m3 
C = 

change in head, m 

It should be noted that the capacity (m3) and the capacitance (m2) are different. The 
capacitance of the tank is equal to its cross-sectional area. If this is constant, the capac- 
itance is constant for any head. 

Liquid-Level Systems. Consider the system shown in Figure 4-l(a). The vari- 
ables are defined as follows: 

= steady-state flow rate (before any change has occurred), m3/sec 
q, = small deviation of inflow rate from its steady-state value, m3/sec 
q, = small deviation of outflow rate from its steady-state value, m3/sec 
i;T = steady-state head (before any change has occurred), m 
h = small deviation of head from its steady-state value, m 

As stated previously, a system can be considered linear if the flow is laminar. Even if 
the flow is turbulent, the system can be linearized if changes in the variables are kept 
small. Based on the assumption that the system is either linear or linearized, the differential 
equation of this system can be obtained as follows: Since the inflow minus outflow during 
the small time interval dt is equal to the additional amount stored in the tank, we see that 

C d h  = (q, - q") dt  

From the definition of resistance, the relationship between q, and h is given by 

The differential equation for this system for a constant value of R becomes 

Note that RC is the time constant of the system.Taking the Laplace transforms of both 
sides of Equation (4-2), assuming the zero initial condition, we obtain 

(RCs + l ) H ( s )  = RQ,(s) 
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where 
H ( s )  = %[h] and Qi(s)  = 9[qi] 

If qi is considered the input and h the output, the transfer function of the system is 

H ( s )  -- - R 
Qi ( s )  RCs + 1 

If, however, go is taken as the output, the input being the same, then the transfer 
function is 

Qo(s) -- - 1 
Qi(s)  RCs -t- 1 

where we have used the relationship 
1 

Qo(s) = , H ( s )  

Liquid-Level Systems with Interaction. Consider the system shown in Figure 
4-2. In this system, the two tanks interact. Thus the transfer function of the system is not 
the product of two first-order transfer functions. 

In the following, we shall assume only small variations of the variables from the 
steady-state values. Using the symbols as defined in Figure 4-2 , we can obtain the 
following equations for this system: 

hl - h2 -- 
R 1 

- 41 

If q is considered the input and q2 the output, the transfer function of the system is 

A -.... . Tank 2 

Figure 4-2 : Steady-state flow rate 
Liquid-level system el : Steady-state liquid level of tank 1 

with interaction. H2 : Steady-state liquid level of tank 2 
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Figure 4-21 
(a) Elements of the 
block diagram of the 
system shown in 
Figure 4-2; (b) block 
diagram of the 
system; (c)-(e) 
successive reductions 
of the block diagram. 

It is instructive to obtain Equation (4-7), the transfer function of the interacted 
system, by block diagram reduction. From Equations (4-3) through (4-6), we obtain the 
elements of the block diagram, as shown in Figure 4-3(a). By connecting signals prop- 
erly, we can construct a block diagram, as shown in Figure 4-3(b). This block diagram 
can be simplified, as shown in Figure 4-3(c). Further simplifications result in 
Figures 4-3(d) and (e). Figure 4-3(e) is equivalent to Equation (4-7). 
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Notice the similarity and difference between the transfer function given by 
Equation (4-7) and that given by Equation(3-72). The term R,Cls that appears in the 
denominator of Equation (4-7) exemplifies the interaction between the two tanks. 
Similarly, the term R, C2s in the denominator of Equation (3-72) represents the inter- 
action between the two RC circuits shown in Figure 3-23. 

4-3 PNEUMATIC SYSTEMS 

In industrial applications pneumatic systems and hydraulic systems are frequently 
compared. Therefore, before we discuss pneumatic systems in detail, we shall give a brief 
comparison of these two kinds of systems. 

Comparison Between Pneumatic Systems and Hydraulic Systems. The fluid 
generally found in pneumatic systems is air; in hydraulic systems it is oil. And it is pri- 
marily the different properties of the fluids involved that characterize the differences 
between the two systems. These differences can be listed as follows: 

1. Air and gases are compressible, whereas oil is incompressible, (except at high pres- 
sure). 

2. Air lacks lubricating property and always contains water vapor. Oil functions as a 
hydraulic fluid as well as a lubricator. 

3. The normal operating pressure of pneumatic systems is very much lower than that 
of hydraulic systems. 

4. Output powers of pneumatic systems are considerably less than those of hydraulic 
systems. 

5. Accuracy of pneumatic actuators is poor at low velocities, whereas accuracy of 
hydraulic actuators may be made satisfactory at all velocities. 

6. In pneumatic systems, external leakage is permissible to a certain extent, but in- 
ternal leakage must be avoided because the effective pressure difference is rather 
small. In hydraulic systems internal leakage is permissible to a certain extent, but 
external leakage must be avoided. 

7. No return pipes are required in pneumatic systems when air is used, whereas they 
are always needed in hydraulic systems. 

8. Normal operating temperature for pneumatic systems is 5" to 60°C (41" to 140°F). 
The pneumatic system, however, can be operated in the 0" to 200°C (32" to 392°F) 
range. Pneumatic systems are insensitive to temperature changes, in contrast to 
hydraulic systems, in which fluid friction due to viscosity depends greatly on tem- 
perature. Normal operating temperature for hydraulic systems is 20" to 70°C (68" 
to 158°F). 

9. Pneumatic systems are fire- and explosion-proof, whereas hydraulic systems are 
not, unless nonflammable liquid is used. 

In what follows we begin with a mathematical modeling of pneumatic systems.The11 
we shall present pneumatic proportional controllers. 

We shall first give detailed discussions of the principle by which proportional 
controllers operate.Then we shall treat methods for obtaining derivative and integral 
control actions. Throughout the discussions, we shall place emphasis on the 
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Figure 4-4 
(a) Schema tic 
diagram of a 
pressure system; 
(b) pressure 
difference versus 
flow rate curve. 

fundamental principles, rather than on the details of the operation of the actual 
mechanisms. 

Pneumatic Systems. The past decades have seen a great development in low- 
pressure pneumatic controllers for industrial control systems, and today they are used 
extensively in industrial processes. Reasons for their broad appeal include an explosion- 
proof character, simplicity, and ease of maintenance. 

Resistance and Capacitance of Pressure Systems. Many industrial processes 
and pneumatic controllers involve the flow of a gas or air through connected pipelines 
and pressure vessels. 

Consider the pressure system shown in Figure 4-4(a). The gas flow through the 
restriction is a function of the gas pressure difference pi - p,. Such a pressure system 
may be characterized in terms of a resistance and a capacitance. 

The gas flow resistance R may be defined as follows: 

change in gas pressure difference, lbf/ft2 
R = 

change in gas flow rate, lb/sec 

where d ( A P )  is a small change in the gas pressure difference and dq  is a small change 
in the gas flow rate. Computation of the value of the gas flow resistance R may be quite 
time consuming. Experimentally, however, it can be easily determined from a plot of 
the pressure difference versus flow rate by calculating the slope of the curve at a given 
operating condition, as shown in Figure 4-4(b). 

The capacitance of the pressure vessel may be defined by 

change in gas stored, Ib 
C = 

change in gas pressure, lb,/ft2 

Resistance 1 

Section 4-3 / Pneumatic Systems 



where C = capacitance, lb-ft2/lbf 
m = mass of gas in vessel, lb 
p = gas pressure, lbf/ft2 
V = volume of vessel, ft3 
p = density, lb/ft3 

The capacitance of the pressure system depends on the type of expansion process 
involved. The capacitance can be calculated by use of the ideal gas law. If the gas ex- 
pansion process is polytropic and the change of state of the gas is between isothermal 
and adiabatic, then 

j V ) "  = 
= constant = K m 

where n = polytropic exponent. 
For ideal gases, 

where p = absolute pressure, lb,/ft2 
5 = volume occupied by 1 mole of a gas, ft3/lb-mole 
R = universal gas constant, ft-lbf/lb-mole OR 
T = absolute temperature, OR 
v = specific volume of gas, ft3/lb 

M = molecular weight of gas per mole, lb/lb-mole 

Thus 

where R,,, = gas constant, ft-lb,/lb OR. 

The polytropic exponent n is unity for isothermal expansion. For adiabatic expansion, 
n is equal to the ratio of specific heats c,,/c,, where c, is the specific heat at constant pres- 
sure and c, is the specific heat at constant volume. In many practical cases, the value of 
n is approximately constant, and thus the capacitance may be considered constant. 

The value of d p / d p  is obtained from Equations (4-10) and (4-11). From 
Equation (4-10) we have 

Substituting Equation (4-11) into this last equation, we get 
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The capacitance C is then obtained as 

The capacitance of a given vessel is constant if the temperature stays constant. (In many 
practical cases, the polytropic exponent n is approximately 1.0 - 1.2 for gases in unin- 
sulated metal vessels.) 

Pressure Systems. Consider the system shown in Figure 4-4(a). If we assume 
only small deviations in the variables from their respective steady-state values, then this 
system may be considered linear. 

Let us define 

= gas pressure in the vessel at steady state (before changes in pressure have 
occurred), lb,/ft2 

pi = small change in inflow gas pressure, lb,/ft2 
p, = small change in gas pressure in the vessel, lbf/ft2 
V = volume of the vessel, ft3 
rn = mass of gas in vessel, lb 

q = gas flow rate, lb/sec 
p = density of gas, lb/ft3 

For small values of pi and p,, the resistance R given by Equation (4-8) becomes constant 
and may be written as 

The capacitance C is given by Equation (4-9), or 

Since the pressure change dp, times the capacitance C is equal to the gas added to the 
vessel during dt seconds, we obtain 

which can be written as 

If pi and p, are considered the input and output, respectively, then the transfer function 
of the svstem is 

-- - 
1 

P,(s) RCs + 1 

where RC has the dimension of time and is the time constant of the system. 

Section 4-3 / Pneumatic Systems 161 



Pneumatic Nozzle-Flapper Amplifiers. A schematic diagram of a pneumatic 
nozzle-flapper amplifier is shown in Figure 4-5(a). The power source for this amplifier 
is a supply of air at constant pressure.The nozzle-flapper amplifier converts small changes 
in the position of the flapper into large changes in the back pressure in the nozzle.Thus 
a large power output can be controlled by the very little power that is needed to posi- 
tion the flapper. 

In Figure 4-5(a), pressurized air is fed through the orifice, and the air is ejected from 
the nozzle toward the flapper. Generally, the supply pressure P, for such a controller 
is 20 psig (1.4 kgf/cm2 gage). The diameter of the orifice is on the order of 0.01 in. 
(0.25 mm) and that of the nozzle is on the order of 0.016 in. (0.4 mm).To ensure prop- 
er functioning of the amplifier, the nozzle diameter must be larger than the orifice 
diameter. 

In operating this system, the flapper is positioned against the nozzle opening. The 
nozzle back pressure Pb is controlled by the nozzle-flapper distance X. As the flapper 
approaches the nozzle, the opposition to the flow of air through the nozzle increases, with 
the result that the nozzle back pressure P, increases. If the nozzle is completely closed 
by the flapper, the nozzle back pressure Pb becomes equal to the supply pressure P,. If 
the flapper is moved away from the nozzle, so that the nozzle-flapper distance is wide 
(on the order of 0.01 in.), then there is practically no restriction to flow, and the nozzle 
back pressure Pb takes on a minimum value that depends on the nozzle-flapper device. 
(The lowest possible pressure will be the ambient pressure Pa.) 

Note that, because the air jet puts a force against the flapper, it is necessary to make 
the nozzle diameter as small as possible. 

A typical curve relating the nozzle back pressure Pb to the nozzle-flapper distance 
X is shown in Figure 4-5(b).The steep and almost linear part of the curve is utilized in 
the actual operation of the nozzle-flapper amplifier. Because the range of flapper dis- 
placements is restricted to a small value, the change in output pressure is also small, 
unless the curve is very steep. 

The nozzle-flapper amplifier converts displacement into a pressure signal. Since 
industrial process control systems require large output power to operate large pneu- 
matic actuating valves, the power amplification of the nozzle-flapper amplifier is usually 
insufficient. Consequently, a pneumatic relay is often needed as a power amplifier in 
connection with the nozzle-flapper amplifier. 

Input 
tf 

? 

Figure 4-5 
(a) Schematic 
diagram of a 
pneumatic nozzle- 
flapper amplifier; 
(b) characteristic 
curve relating nozzle 
back pressure and 
nozzle-flapper 
distance. 

Orifice 

Air spplyfi Flapper 

Nozzle 

To control / 
valve 

(a) 
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Nozzle 
back pressure Pb + Nozzle 

back pressure Pb 

To atmosphere +- a -+ To pneumatic 
PC valve To atmosphere c 

Air supply --t To pneumatic +- 

ps valve f t Air supply 
PC ps 

Figure 4-6 
(a) Schematic diagram of a bleed-type relay; (b) schematic diagram of a nonbleed-type relay. 

Pneumatic Relays. In practice, in a pneumatic controller, a nozzle-flapper 
amplifier acts as the first-stage amplifier and a pneumatic relay as the second-stage am- 
plifier. The pneumatic relay is capable of handling a large quantity of airflow. 

A schematic diagram of a pneumatic relay is shown in Figure 4-6(a). As the nozzle 
back pressure PtJ increases, the diaphragm valve moves downward. The opening to 
the atmosphere decreases and the opening to the pneumatic valve increases, thereby 
increasing the control pressure P,. When the diaphragm valve closes the opening to 
the atmosphere, the control pressure P, becomes equal to the supply pressure P,. 
When the nozzle back pressure Pb decreases and the diaphragm valve moves upward 
and shuts off the air supply, the control pressure P, drops to the ambient pressure P,. 
The control pressure PC can thus be made to vary from 0 psig to full supply pressure, 
usually 20 psig. 

The total movement of the diaphragm valve is very small. In all positions of the 
valve, except at the position to shut off the air supply, air continues to bleed into the at- 
mosphere, even after the equilibrium condition is attained between the nozzle back 
pressure and the control pressure. Thus the relay shown in Figure 4-6(a) is called a 
bleed-type relay. 

There is another type of relay, the nonbleed type. In this one the air bleed stops when 
the equilibrium condition is obtained and, therefore, there is no loss of pressurized air 
at steady-state operation. Note, however, that the nonbleed-type relay must have an at- 
mospheric relief to release the control pressure P, from the pneumatic actuating valve. 
A schematic diagram of a nonbleed-type relay is shown in Figure 4--6(b). 

In either type of relay, the air supply is controlled by a valve, which is in turn 
controlled by the nozzle back pressure. Thus, the nozzle back pressure is converted into 
the control pressure with power amplification. 

Since the control pressure P, changes almost instantaneously with changes in the 
nozzle back pressure Pb, the time constant of the pneumatic relay is negligible com- 
pared with the other larger time constants of the pneumatic controller and the plant. 

It is noted that some pneumatic relays are reverse acting. For example, the relay 
shown in Figure 4-7 is a reverse-acting relay. Here, as the nozzle back pressure Ph 
increases, the ball valve is forced toward the lower seat, thereby decreasing the control 
pressure PC. Thus, this relay is a reverse-acting relay. 
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Figure 4-7 
Reverse-acting relay. 

To atmosphere c 

To pneumatic c 
valve 

PC a f 

Air supply 
ps 

Pneumatic Proportional Controllers (Force-Distance Type), Two types of 
pneumatic controllers, one called the force-distance type and the other the force-balance 
type, are used extensively in industry. Regardless of how differently industrial pneu- 
matic controllers may appear, careful study will show the close similarity in the functions 
of the pneumatic circuit. Here we shall consider the force-distance type of pneumatic 
controllers. 

Figure 4-8(a) shows a schematic diagram of such a proportional controller. The 
nozzle-flapper amplifier constitutes the first-stage amplifier, and the nozzle back pres- 
sure is controlled by the nozzle-flapper distance. The relay-type amplifier constitutes 
the second-stage amplifier. The nozzle back pressure determines the position of the di- 
aphragm valve for the second-stage amplifier, which is capable of handling a large 
quantity of airflow. 

In most pneumatic controllers, some type of pneumatic feedback is employed. Feed- 
back of the pneumatic output reduces the amount of actual movement of the flapper. 
Instead of mounting the flapper on a fixed point, as shown in Figure 4-8(b), it is often 
pivoted on the feedback bellows, as shown in Figure 4-8(c).The amount of feedback can 
be regulated by introducing a variable linkage between the feedback bellows and the 
flapper connecting point. The flapper then becomes a floating link. It can be moved by 
both the error signal and the feedback signal. 

The operation of the controller shown in Figure 4-8(a) is as follows. The input sig- 
nal to the two-stage pneumatic amplifier is the actuating error signal. Increasing the 
actuating error signal moves the flapper to the left. This move will, in turn, increase the 
nozzle back pressure, and the diaphragm valve moves downward. This results in an in- 
crease of the control pressure. This increase will cause bellows F to expand and move 
the flapper to the right, thus opening the nozzle. Because of this feedback, the nozzle- 
flapper displacement is very small, but the change in the control pressure can be large. 

It should be noted that proper operation of the controller requires that the feed- 
back bellows move the flapper less than that movement caused by the error signal alone. 
(If these two movements were equal, no control action would result.) 

Equations for this controller can be derived as follows. When the actuating error is 
zero, or e = 0, an equilibrium state exists with the nozzle-flapper distance equal to z, 
the displacement of bellows equal to Y, the displacement of the diaphragm equal to 2, 
the nozzle back pressure equal to p,, and the control pressure equal to PC. When an 
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actuating error exists, the nozzle-flapper distance, the displacement of the bellows, the 
displacement of the diaphragm, the nozzle back pressure, and the control pressure 
deviate from their respective equilibrium values. Let these deviations be x, y, z ,  pb, and 
p,, respectively. (The positive direction for each displacement variable is indicated by an 
arrowhead in the diagram.) 
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Figure 4-8 
(a) Schematic diagram of a force-distance type of pneumatic proportional controller; 
(b) flapper mounted on a fixed point; (c) flapper mounted on a feedback bellows; 
(d) displaceiment x as a result of addition of two small displacements; 
(e) block diagram for the controller; (f) simplified block diagram for the controller. 
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Assuming that the relationship between the variation in the nozzle back pressure and 
the variation in the nozzle-flapper distance is linear, we have 

Pb = K1x 

where K, is a positive constant. For the diaphragm valve, 

where K2 is a positive constant. The position of the diaphragm valve determines the 
control pressure. If the diaphragm valve is such that the relationship between p, and z 
is linear, then 

where K, is a positive constant. From Equations (4-13), (4-14), and (4-15), we obtain 

where K = K ,  K,/K2 is a positive constant. For the flapper, since there are two small 
movements (e and y) in opposite directions, we can consider such movements separately 
and add up the results of two movements into one displacement x. See Figure 4-8(d). 
Thus, for the flapper movement, we have 

The bellows acts like a spring, and the.following equation holds true: 

where A is the effective area of the bellows and ks is the equivalent spring constant, 
that is, the stiffness due to the action of the corrugated side of the bellows. 

Assuming that all variations in the variables are within a linear range, we can obtain 
a block diagram for this system from Equations (4-16), (4-17), and (4-18) as shown in 
Figure 4-8(e). From Figure 4-8(e), it can be clearly seen that the pneumatic controller 
shown in Figure 4-8(a) itself is a feedback system.The transfer function between p, and 
e is given by 

A simplified block diagram is shown in Figure 4-8(f). Since p, and e are proportional, 
the pneumatic controller shown in Figure 4-8(a) is a pneumatic proportional controller. 
As seen from Equation (4-19), the gain of the pneumatic proportional controller can be 
widely varied by adjusting the flapper connecting linkage. [The flapper connecting link- 
age is not shown in Figure 4-8(a).] In most commercial proportional controllers an ad- 
jus'ting knob or other mechanism is provided for varying the gain by adjusting this linkage. 

As noted earlier, the actuating error signal moved the flapper in one direction, and 
the feedback bellows moved the flapper in the opposite direction, but to a smaller degree. 
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Figure 4-9 
(a) Pneumatic controller without a feedback mechanism; (b) curves P, versus X and PC versus X. 

The effect of the feedback bellows is thus to reduce the sensitivity of the controller. The 
principle of feedback is commonly used to obtain wide proportional-band controllers. 

Pneumatic controllers that do not have feedback mechanisms [which means that 
one end of the flapper is fixed, as shown in Figure 4-9(a)] have high sensitivity and are 
calledpneurnntic two-position controllers or pneumatic on-off controllers. In such a con- 
troller, only a small motion between the nozzle and the flapper is required to give a 
complete change from the maximum to the minimum control pressure. The curves re- 
lating Pb to X and PC to X are shown in Figure 4-9(b). Notice that a small change in X 
can cause a large change in P,, which causes the diaphragm valve to be completely open 
or completely closed. 

Pneumatic Proportional Controllers (Force-Balance Type). Figure 4-10 shows 
a schematic diagram of a force-balance pneumatic proportional controller. Force-balance 
controllers are in extensive use in industry. Such controllers are called stack controllers. 
The basic principle of operation does not differ from that of the force-distance con- 
troller. The main advantage of the force-balance controller is that it eliminates many 
mechanical linkages and pivot joints, thereby reducing the effects of friction. 

In what follows, we shall consider the principle of the force-balance controller. In the 
controller shown in Figure 4-10, the reference input pressure P, and the output pressure 
Po are fed to large diaphragm chambers. Note that a force-balance pneumatic controller 
operates only on pressure signals. Therefore, it is necessary to convert the reference 
input and system output to corresponding pressure signals. 

Figure 4-10 
Schematic diagram 
of a force-balance 
type of pneumatic 
proportional 
controller. 
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As in the case of the force-distance controller, this controller employs a flapper, 
nozzle, and orifices. In Figure 4-10, the drilled opening in the bottom'chamber is the 
nozzle. The diaphragm just above the nozzle acts as a flapper. 

The operation of the force-balance controller shown in Figure 4-10 may be sum- 
marized as follows: 20-psig air from an air supply flows through an orifice, causing a 
reduced pressure in the bottom chamber. Air in this chamber escapes to the atmosphere 
through the nozzle. The flow through the nozzle depends on the gap and the pressure 
drop across it. An increase in the reference input pressure P,, while the output pres- 
sure Po remains the same, causes the valve stem to move down, decreasing the gap 
between the nozzle and the flapper diaphragm. This causes the control pressure P, to 
increase. Let 

p, = P, - Po (4-20) 

If p ,  = 0, there is an equilibrium state with the nozzle-flapper distance equal to X and 
the control pressure equal to PC. At this equilibrium state, PI = P,k (where k < 1) and 

where a is a constant. 
Let us assume that p, # 0 and define small variations in the nozzle-flapper distance 

and control pressure as x and p,, respectively. Then we obtain the following equation: 

From Equations (4-21) and (4-22), we obtain 

At this point, we must examine the quantity x. In the design of pneumatic controllers, 
the nozzle-flapper distance is made quite small. In view of the fact that x/a is very much 
smaller than y,(l  - k)Al or p,(A2 - A,), that is, for p, f 0 

we may neglect the term x in our analysis. Equation (4-23) can then be rewritten to 
reflect this assumption as follows: 

P,(l - k)Al = - 4) 
and the transfer function between p, and p, becomes 

where p, is defined by Equation (4-20). The controller shown in Figure 4-10 is a 
proportional controller.The value of gain K ,  increases as k approaches unity. Note that 
the value of k depends on the diameters of the orifices in the inlet and outlet pipes of 
the feedback chamber. (The value of k approaches unity as the resistance to flow in the 
orifice of the inlet pipe is made smaller.) 
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Figure 4-11 
Schematic diagram 
of a pneumatic 
actuating valve. 

Pneumatic Actuating Valves. One characteristic of pneumatic controls is that 
they almost exclusively employ pneumatic actuating valves. A pneumatic actuating valve 
can provide a large power output. (Since a pneumatic actuator requires a large power 
input to produce a large power output, it is necessary that a sufficient quantity of pres- 
surized air be available.) In practical pneumatic actuating valves, the valve characteris- 
tics may not be linear; that is, the flow may not be directly proportional to the valve 
stem position, and also there may be other nonlinear effects, such as hysteresis. 

Consider the schematic diagram of a pneumatic actuating valve shown in Figure 4-11. 
Assume that the area of the diaphragm is A. Assume also that when the actuating error 
is zero the control pressure is equal to P ,  and the valve displacement is equal to X. 

In the following analysis, we shall consider small variations in the variables and lin- 
earize the pneumatic actuating valve. Let us define the small variation in the control 
pressure and the corresponding valve displacement to be p, and x, respectively. Since 
a small change in the pneumatic pressure force applied to the diaphragm repositions 
the load, consisting of the spring, viscous friction, and mass, the force balance equation 
becomes 

Ap,  = mx + bx + kx 

where m = mass of the valve and valve stem 
b = viscous-friction coefficient 
k = spring constant 

If the force due to the mass and viscous friction are negligibly small, then this last equa- 
tion can be simplified to 

Ap, = kx 

The transfer function between x and p, thus becomes 
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Figure 4-12 
Control system. 

where X(s) = Y [ x ]  and P,(s) = 2[p,]. If q,, the change in flow through the pneumatic 
actuating valve, is proportional to x, the change in the valve-stem displacement, then 

where Qi(s) = 2[qi] and K, is a constant. The transfer function between qi and p, 
becomes 

where K,  is a constant. 
The standard control pressure for this kind of a pneumatic actuating valve is between 

3 and 15 psig. The valve-stem displacement is limited by the allowable stroke of the 
diaphragm and is only a few inches. If a longer stroke is needed, a piston-spring 
combination may be employed. 

In pneumatic actuating valves, the static-friction force must be limited to a low value 
so that excessive hysteresis does not result. Because of the compressibility of air, the 
control action may not be positive; that is, an error may exist in the valve-stem position. 
The use of a valve positioner results in improvements in the performance of a pneu- 
matic actuating valve. 

Basic Principle for Obtaining Derivative Control Action. We shall now present 
methods for obtaining derivative control action. We shall again place the emphasis on 
the principle and not on the details of the actual mechanisms. 

The basic principle for generating a desired control action is to insert the inverse of 
the desired transfer function in the feedback path. For the system shown in Figure 4-12, 
the closed-loop transfer function is 

If IG(s) H (s)l 9 1, then C(s)/R(s) can be modified to 

Thus, if proportional-plus-derivative control action is desired, we insert an element 
having the transfer function 1/(Ts + 1) in the feedback path. 
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Figure 4-13 
(a) Pneumatic proportional controller; (b) block diagram of the controller. 

Consider the pneumatic controller shown in Figure 4-13(a). Considering small changes 
in the variables, we can draw a block diagram of this controller as shown in Figure 4-13(b). 
From the block diagram we see that the controller is of proportional type. 

We shall now show that the addition of a restriction in the negative feedback path 
will modify the proportional controller to a proportional-plus-derivative controller, or 
a PD controller. 

Consider the pneumatic controller shown in Figure 4-14(a). Assuming again small 
changes in the actuating error, nozzle-flapper distance, and control pressure, we can sum- 
marize the operation of this controller as follows: Let us first assume a small step change 
in e. Then the change in the control pressure p, will be instantaneous. The restriction R 

Figure 4-14 
(a) Pneumatic 
proportional-plus- 
derivative controller; 
(b) step change in e 
and the corre- 
sponding changes in 
x and p, plotted 
versus t; (c) block 
diagram of the 
controller. (c) 
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will momentarily prevent the feedback bellows from sensing the pressure change p,. 
Thus the feedback bellows will not respond momentarily, and the pneumatic actuating 
valve will feel the full effect of the movement of the flapper. As time goes on, the feed- 
back bellows will expand. The change in the nozzle-flapper distance x and the change in 
the control pressure p, can be plotted against time t ,  as shown in Figure 4-14(b).At steady 
state, the feedback bellows acts like an ordinary feedback mechanism.The curve p, ver- 
sus t clearly shows that this controller is of the proportional plus-derivative type. 

A block diagram corresponding to this pneumatic controller is shown in 
Figure 4-14(c). In the block diagram, K is a constant, A is the area of the bellows, and 
k, is the equivalent spring constant of the bellows. The transfer function between p, and 
e can be obtained from the block diagram as follows: 

Pc(s) - 
b K  

- a + b  
Ka A 1 E ( s )  I .+  -- 

a + b k, RCs + 1 

In such a controller the loop gain I K ~ A / [ ( ~  + b)k,(RCs + 1)]I is made much greater 
than unity. Thus the transfer function P,(s)/E(s) can be simplified to give 

where 

Thus, delayed negative feedback, or the transfer function l/(RCs f 1) in the feedback 
path, modifies the proportional controller to a proportional-plus-derivative controller. 

Note that if the feedback valve is fully opened the control action becomes propor- 
tional. If the feedback valve is fully closed, the control action becomes narrow-band 
proportional (on-off). 

Obtaining Pneumatic Proportional-Plus-Integral Control Action. Consider 
the proportional controller shown in Figure 4-13(a). Considering small changes in the 
variables, we can show that the addition of delayed positive feedback will modify this 
proportional controller to a proportiona1:plus-integral controller, or a PI controller. 

Consider the pneumatic controller shown in Figure 4-15(a). The operation of this 
controller is as follows: The bellows denoted by I is connected to the control pressure 
source without any restriction.The bellows denoted by I1 is connected to the control pres- 
sure source through a restriction. Let us assume a small step change in the actuating 
error. This will cause the back pressure in the nozzle to change instantaneously. Thus a 
change in the control pressure p, also occurs instantaneously. Due to the restriction of 
the valve in the path to bellows 11, there will be a pressure drop across the valve. As 
time goes on, air will flow across the valve in such a way that the change in pressure in 
bellows I1 attains the value p,. Thus bellows I1 will expand or contract as time elapses 
in such a way as to move the flapper an additional amount in the direction of the orig- 
inal displacement e. This will cause the back pressure p, in the nozzle to change contin- 
uously, as shown in Figure 4-15(b). 
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Figure 4-15 
(a) Pneumatic (c) 

proportional-plus- 
integral controller; 
(b) step change in e 
and the corre- 
sponding changes in 
x and p, plotted 
versus t; (c) block 
diagram of the 
controller; 
(d) simplified block 
diagram. (dl 

Note that the integral control action in the controller takes the form of slowly 
canceling the feedback that the proportional control originally provided. 

A block diagram of this controller under the assumption of small variations in the 
variables is shdwn in Figure 4-15(c). A simplification of this block diagram yields 
Figure 4-15(d). The transTer functionof this cbntro~ler is 

E ( s )  
a i - b k ,  RCs + 1 
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Figure 4-16 
(a) Pneumatic 
proportional-plus- 
integral-plus- 
derivative controller; 
(b) block diagram of 
the controller. 

where K is a constant, A is the area of the bellows, and k, is the equivalent spring constant 
of the combined bellows. If ~ K ~ A R C S / [ ( U  + b)k,(RCs + 1)]I + 1, which is usually the 
case, the transfer function can be simplified to 

where 

Obtaining Pneumatic Proportional-Plus-Integral-Plus-Derivative Control 
Action. A combination of the pneumatic controllers shown in Figures 4-14(a) and 
4-15(a) yields a proportional-plus-integral-plus-derivative controller, or a PID con- 
troller. Figure 4-16(a) shows a schematic diagram of such a controller. Figure 4-16(b) 
shows a block diagram of this controller under the assumption of small variations in the 
variables. 
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The transfer function of this controller is 

By defining 

T, = RiC, T,i = RdC 

and noting that under normal operation IKUA(T, - Td)s/[(a + b)k,(Tds + l)(T,s + I)][ 9 1 
and ir; 9 Td, we obtain 

PC($) . bk, (T'S + l ) ( ~ , s  + 1) 
- 

E(s) ' aA (q - Td)s 

. bk, T,T,S~ + T,s + 1 -- - 
aA T,s 

where 

Equation (4-24) indicates that the controller shown in Figure 4-16(a) is a proportional- 
plus-integral-plus-derivative controller or a PID controller. 

4-4 HYIDRAULIC SYSTEMS 

Except for low-pressure pneumatic controllers, compressed air has seldom been used for 
the continuous control of the motion of devices having significant mass under external 
load forces. For such a case, hydraulic controllers are generally preferred. 

Hydraulic Systems. The widespread use of hydraulic circuitry in machine tool 
applications, aircraft control systems, and similar operations occurs because of such fac- 
tors as positiveness, accuracy, flexibility, high horsepower-to-weight ratio, fast starting, 
stopping, and reversal with smoorhness and precision, and simplicity of operations. 

The operating pressure in hydraulic systems is somewhere between 145 and 
5000 lb,/in.' (between 1 and 35 MPa). In some special applications, the operating 
pressure may go up to 10,000 lb,/in.' (70 MPa). For the same power requirement, the 
weight and size of the hydraulic unit can be made smaller by increasing the supply 
pressure. With high-pressure hydraulic systems, very large force can be obtained. 
Rapid-acting, accurate positioning of heavy loads is possible with hydraulic systems. 
A combination of electronic and hydraulic systems is widely used because it com- 
bines the advantages of both electronic control and hydraulic power. 
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Advantages and Disadvantages of Hydraulic Systems.  There are certain 
advantages and disadvantages in using hydraulic systems rather than other systems. 
Some of the advantages are the following: 

1. Hydraulic fluid acts as a lubricant, in addition to carrying away heat generated in 
the system to a convenient heat exchanger. 

2. Comparatively small sized hydraulic actuators can develop large forces or torques. 
3. Hydraulic actuators have a higher speed of response with fast starts, stops, and 

speed reversals. 
4. Hydraulic actuators can be operated under continuous, intermittent, reversing, 

and stalled conditions without damage. 
5. Availability of both linear and rotary actuators gives flexibility in design. 
6. Because of low leakages in hydraulic actuators, speed drop when loads are applied 

is small. 

On the other hand, several disadvantages tend to limit their use. 

1. Hydraulic power is not readily available compared to electric power. 
2. Cost of a hydraulic system may be higher than a comparable electrical system 

performing a similar function. 
3. Fire and explosion hazards exist unless fire-resistant fluids are used. 
4. Because it is difficult to maintain a hydraulic system that is free from leaks, the 

system tends to be messy. 
5. Contaminated oil may cause failure in the proper functioning of a hydraulic 

system. 
6. As a result of the nonlinear and other complex characteristics involved, the design 

of sophisticated hydraulic systems is quite involved. 
7. Hydraulic circuits have generally poor damping characteristics. If a hydraulic circuit 

is not designed properly, some unstable phenomena may occur or disappear, de- 
pending on the operating condition. 

Comments. Particular attention is necessary to ensure that the hydraulic system 
is stable and satisfactory under all operating conditions. Since the viscosity of hydraulic 
fluid can greatly affect damping and friction effects of the hydraulic circuits, stability 
tests must be carried out at the highest possible operating temperature. 

Note that most hydraulic systems are nonlinear. Sometimes, however, it is possible 
to linearize nonlinear systems so as to reduce their complexity and permit solutions that 
are sufficiently accurate for most purposes. A useful linearization technique for dealing 
with nonlinear systems was presented in Section 3-10. 

Hydraulic Servo System. Figure 4-17(a) shows a hydraulic servomotor. It is 
essentially a pilot-valve-controlled hydraulic power amplifier and actuator. The pilot 
valve is a balanced valve, in the sense that the pressure forces acting on it are all balanced. 
A very large power output can be controlled by a pilot valve, which can be positioned 
with very little power. 

In practice, the ports shown in Figure 4-17(a) are often made wider than the corre- 
sponding valves. In such a case, there is always leakage through the valves. Such leak- 
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Figure 4-17 
(a) Hydraulic servo 
system; (b) enlarged 
diagram of the valve 
orifice area. 

age improves both the sensitivity and the linearity of the hydraulic servomotor. In the 
following analysis we shall make the assumption that the ports are made wider than 
the valves, that is, the valves are underlapped. [Note that sometimes a dither signal, a 
high-frequency signal of very small amplitude (with respect to the maximum 
displacement of the valve), is superimposed on the motion of the pilot valve. This also 
improves the sensitivity and linearity. In this case also there is leakage through the valve.] 

We shall apply the linearization technique presented in Section 3-10 to obtain a lin- 
earized mathematical model of the hydraulic servomotor. We assume that the valve is 
underlapped and symmetrical and admits hydraulic fluid under high pressure into a 
power cylinder that contains a large piston, so that a large hydraulic force is established 
to move a load. 

In Figure 4-17(b) we have an enlarged diagram of the valve orifice area. Let us 
define the valve orifice areas of ports 1,2,3,4 as A,, A2, A,, A,, respectively. Also, define 
the flow rates through ports 1,2,3,4 as q,, q,, q,, q,, respectively. Note that, since the 
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valve is symmetrical, A, = A, and A2 = A4. Assuming the displacement x to be small, 
we obtain 

where k is a constant. 
Furthermore, we shall assume that the return pressure p, in the return line is small 

and thus can be neglected. Then, referring to Figure 4-17(a), flow rates through valve 
orifices are 

where C, = cl k m  and C2 = c2 k w  , and y is the specific weight and is given by 
y = pg,  where p is mass density and g is the acceleration of gravity. The flow rate q to 
the left-hand side of the power piston is 

The flow rate from the right-hand side of the power piston to the drain is the same as 
this q and is given by 

In the present analysis we assume that the fluid is incompressible. Since the valve is 
symmetrical we have q, = q, and q2 = q,. By equating ql and q,, we obtain 

If we define the pressure difference across the power piston as A p  or 

then 
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For the symmetrical valve shown in Figure 4-17(a), the pressure in each side of the 
power piston is (1/2)p, when no load is applied, or Ap = 0. As the spool valve is dis- 
placed, the pressure in one line increases as the pressure in the other line decreases by 
the same amount. 

In terms of p, and Ap, we can rewrite the flow rate q given by Equation (4-25) as 

Noting that the supply pressure p, is constant. the flow rate q can be written as a func- 
tion of the valve displacement x and pressure difference Ap, or 

By applying the linearization technique presented in Section 3-10 to this case, the lin- 
earized equation about point x = 2, Ap = Ap, q = q is 

where 

4 = f (2, A4) 

Coefficients a and b here are called valve coefficients. Equation (4-26) is a linearized 
mathematical model of the spool valve near an operating point x = 2,  Ap = Ap, q = ij. 
The values of valve coefficients a and b vary with the operating point. Note that a f  /dAp 
is negative and so b is negative. 

Since the normal operating point is the point where 7 = 0, Ap = 0, ij = 0, near the 
normal operating point, Equation (4-26) becomes 

where 

Equation (4-27) is a linearized mathematical model of the spool valve near the origin 
(f = 0, Ap = 0, ij = 0.) Note that the region near the origin is most important in this 
kind of system, because the system operation usually occurs near this point. 
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Figure 4-18 
Characteristic curves 
of the linearized 
hydraulic 
servomotor. 

Figure 4-18 shows this linearized relationship among q, x, and AP. The straight lines 
shown are the characteristic curves of the linearized hydraulic servomotor. This family 
of curves consists of equidistant parallel straight lines, parametrized by x. 

In the present analysis, we assume that the load reactive forces are small so that the 
leakage flow rate and oil compressibility can be ignored. (For the case where the load 
reactive forces are large, see Problem A 4 1 3 . )  

Referring to Figure 4-17(a), we see that the rate of flow of oil q times dt is equal to 
the power piston displacement dy times the piston area A times the density of oil p. 
Thus, we obtain 

Apdy  = q d t  

Notice that for a given flow rate q the larger the piston area A is, the lower will be the 
velocity dy ld t .  Hence, if the piston area A is made smaller, the other variables re- 
maining constant, the velocity dyldt  will become higher.Also, an increased flow rate q 
will cause an increased velocity of the power piston and will make the response time 
shorter. 

Equation (4-27) can now be written as 

The force developed by the power piston is equal to the pressure difference AP times 
the piston area A or 

Force developed by the power piston = A AP 

For a given maximum force, if the pressure difference is sufficiently high, the piston 
area, or the volume of oil in the cylinder, can be made small. Consequently, to minimize 
the weight of the controller, we must make the supply pressure sufficiently high. 
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Assume that the power piston moves a load consisting of a mass and viscous friction. 
Then the force developed by the power piston is applied to the load mass and friction, 
and we obtain 

where m is the mass of the load and b is the viscous-friction coefficient. 
Assuming that the pilot valve displacement x is the input and the power piston 

displacement y is the output, we find that the transfer function for the hydraulic servo- 
motor is, from Equation (4-28), 

where 

K =  
1 

and T = 
mK2 

bK, A- AP bK2 + 

From Equation (4-29) we see that this transfer function is of the second order. If the ratio 
m ~ ~ / ( b ~ ~  + ~ ' p )  is negligibly small or the time constant T is negligible, the transfer 
function Y ( s ) / X ( s )  can be simplified to give 

It is noted that a more detailed analysis shows that if oil leakage, compressibility 
(including the effects of dissolved air), expansion of pipelines, and the likes are taken into 
consideration, the transfer function becomes 

where TI and T2 are time constants. As a matter of fact, these time constants depend on 
the volume of oil in the operating circuit. The smaller the volume, the smaller the time 
constants. 

Hydraulic Integral Controller. The hydraulic servomotor shown in Figure 4-19 is 
a pilot-valve-controlled hydraulic power amplifier and actuator. Similar to the hydraulic 
servo system shown in Figure 4-17, for negligibly small load mass the servomotor shown 
in Figure 4-19 acts as an integrator or an integral controller. Such a servomotor consti- 
tutes the basis of the hydraulic control circuit. 
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Figure 4-19 
Hydraulic 
servomotor. 
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In the hydraulic servomotor shown in Figure 4-19, the pilot valve (a four-way valve) 
has two lands on the spool. If the width of the land is smaller than the port in the valve 
sleeve, the valve is said to be underlapped. Overlapped valves have a land width greater 
than the port width. A zero-lapped valve has a land width that is identical to the port 
width. (If the pilot valve is a zero-lapped valve, analyses of hydraulic servomotors become 
simpler.) 

In the present analysis, we assume that hydraulic fluid is incompressible and that the 
inertia force of the power piston and load is negligible compared to the hydraulic force 
at the power piston. We also assume that the pilot valve is a zero-lapped valve, and the 
oil flow rate is proportional to the pilot valve displacement. 

Operation of this hydraulic servomotor is as follows. If input x moves the pilot valve 
to the right, port I1 is uncovered, and so high-pressure oil enters the right-hand side of 
the power piston. Since port I is connected, to the drain port, the oil in the left-hand 
side of the power piston is returned to the drain. The oil flowing into the power cylin- 
der is at high pressure; the oil flowing out from the power cylinder into the drain is at 
low pressure.The resulting difference in pressure on both sides of the power piston will 
cause it to move to the left. 

Note that the rate of flow of oil q(kg/sec) times dt (sec) is equal to the power piston 
displacement dy(m) times the piston area A(m2) times the density of oil p(kg/m3). 
Therefore, 

Because of the assumption that the oil flow rate q is proportional to the pilot valve 
displacement x, we have 

where K, is a poktive constant. From Equations (4-30) and (4-31) we obtain 

The Laplace transform of this last equation, assuming a zero initial condition, gives 

ApsY (s) = Kl X (s) 
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Y ( s )  Kl K -= -= -  
X ( s )  Aps s  

where K = K 1 / ( A p ) .  Thus the hydraulic servomotor shown in Figure 4-19 acts as an 
integral controller. 

Hydraulic Proportional Controller. It has been shown that the servomotor in 
Figure 4-19 acts as an integral controller. This servomotor can be modified to a pro- 
portional controller by means of a feedback link. Consider the hydraulic controller 
shown in Figure 4-20(a). The left-hand side of the pilot valve is joined to the left-hand 
side of the power piston by a link ABC.This link is a floating link rather than one mov- 
ing about a fixed pivot. 

The controller here operates in the following way. If input e moves the pilot valve to 
the right, port I1 will be uncovered and high-pressure oil will flow through port I1 into 
the right-hand side of the power piston and force this piston to the left. The power pis- 
ton, in moving to the left, will carry the feedback link ABC with it, thereby moving the 
pilot valve to the 1eft.This action continues until the pilot piston again covers ports I and 
11. A block diagram of the system can be drawn as in Figure 4-20(b). The transfer func- 
tion between Y ( s )  and E ( s )  is given by 

Noting that under the normal operating conditions we have I ~ a / [ s ( a  + b)]l Z=- 1, this 
last equation can be simplified to 

The transfer function between y and e becomes a constant.Thus, the hydraulic controller 
shown in Figure 4-20(a) acts as a proportional controller, the gain of which is K p .  This gain 

Oil 
under 

Figure 4-20 
(a) Servomotor that 
acts as a proportional 
controller; (b) block Y - 
diagram of the 

pressure 

f t t  

servomotor. (a) 
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can be adjusted by effectively changing the lever ratio b/a. (The adjusting mechanism is 
not shown in the diagram.) 

We have thus seen that the addition of a feedback link will cause the hydraulic 
servomotor to act as a proportional controller. 

~ a s h ~ o t s .  The dashpot (also called a damper) shown in Figure 4-21(a) acts as a 
differentiating element. Suppose that we introduce a step displacement to the piston 
position y. Then the displacement z becomes equal to y momentarily. Because of the 
spring force, however, the oil will flow through the resistance R and the cylinder will 
come back to the original position. The curves y versus t and z versus t are shown in 
Figure 4-21(b). 

Let us derive the transfer function between the displacement z and displacement y. 
Define the pressures existing on the right and left sides of the piston as ~ , ( l b  and 
p2(lbf/in.'), respectively. Suppose that the inertia force involved is negligible. Then the 
force acting on the piston must balance the spring force. Thus 

where A = piston area, in.2 
k = spring constant, Ibf/in. 

The flow rate q is given by 
PI - p2 

q = R  

where q = flow rate through the restriction, Ib/sec 
R = resistance to flow at the restriction, ~b~-sec/in.~-lb 

Since the flow through the restriction during dt seconds must equal the change in the 
mass of oil to the left of the piston during the same dt seconds, we obtain 

where p = density, ~b / in .~ .  (We assume that the fluid is incompressible or p = constant.) 
This last equation can be rewritten as 

d~ d z  q PI-Pz k~ - - - -  - - -- - 
dt dt Ap RAp R A * ~  

(a) ('J) (c) 

Figure 4-21 
(a) Dashpot; (b) step change in y and the corresponding change in z plotted versus t; (c) block 
diagram of the dashpot. 
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Taking the Laplace transforms of both sides of this last equation, assuming zero initial 
conditions, we obtain 

k 
sY (s) = sZ(s) + , Z(s) 

R A  P 
The transfer function of this system thus becomes 

Let us define RA2p/k = T. (Note that RAZp/k has the dimension of time.) Then 

Clearly, the dashpot is a differentiating element. Figure 4-21(c) shows a block diagram 
representation for this system. 

Obtaining Hydraulic Proportional-Plus-Integral Control Action. Figure 4-22(a) 
shows a schematic diagram of a hydraulic proportional-plus-integral control1er.A block 
diagram of this controller is shown in Figure 4-22(b). The transfer function Y (s)/E(s) 
is given by 

Oil 
under 

pressure 

of oil = p 
Resistance = R 

(a) (b) 

Figure 4-22 
(a) Schematic diagram of a hydraulic proportional-plus-integral controller; (b) block diagram of the controller. 
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In such a controller, under normal operation IKUT/[(U + b)(Ts + I)][ % 1, with the 
result that 

where 

Thus the controller shown in Figure 4-23(a) is a proportional-plus-integral controller 
(PI controller). 

Obtaining Hydraulic Proportional-Plus-Derivative Control Action. Figure 4-23(a) 
shows a schematic diagram of a hydraulic proportional-plus-derivative controller. The 
cylinders are fixed in space and the pistons can move. For this system, notice that 

k(y - Z) = A(P, - P,) 

Hence 

e 

X 
+ 

E(s) T z l  ;(s) 
__)- 

a + b 

z 
f 

Y 
f 

- - 
a + b  Ts + 1 

Densrty of oil = p 

(a) (b) 

Figure 4-23 
(a) Schematic diagram of a hydraulic proportional-plus-derivative controller; (b) block diagram of the controller. 
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where 

Figure 4-24 
Schematic diagram 
of a hydraulic 
proportional-plus- 
integral-plus- 
derivative controller. 

A block diagram for this system is shown in Figure 4-23(b). From the block diagram the 
transfer function Y ( s ) /E ( s )  can be obtained as 

Under normal operation we have l a ~ / [ ( a  + b)s(Ts + I)] 1 %- 1. Hence 

Yo = K p ( l  + T s )  
E(s )  

where 

Thus the controller shown in Figure 4-23(a) is a proportional-plus-derivative controller 
(PD controller). 

Obtaining Hydraulic Proportional-Plus-Integral-Plus-Derivative Control Action. 
Figure 4-24 shows a schematic diagram of a hydraulic proportional-plus-integral-plus- 
derivative controller. It is a combination of the proportional-plus-integral controller 
and proportional-plus derivative controller. 

If the two dashpots are identical, the transfer function Z(s ) /Y  ( s )  can be obtained as 
follows: 

(For the derivation of this transfer function, refer to Problem A-4-12.) 

Area = A  
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Figure 4-25 
Block diagram for 
the system shown in 
Figure 4-24. 

A block diagram for this system is shown in Figure 4-25. The transfer function 
Y ( s ) / E ( s )  can be obtained as 

K 

Y ( s )  b  -- S 
- 

E ( s )  a + b  a K 
I+-- Tl s  

a  + b  s  TlT2s2 + (TI + 2 ~ ~ ) s  + 1 

Under normal operation of the system we have 

Hence 

where 

Thus, the controller shown in Figure 4-24 is a proportional-plus-integral-plus-derivative 
controller (PID controller). 

4-5 THERMAL SYSTEMS 

Thermal systems are those that involve the transfer of heat from one substance to 
another. Thermal systems may be analyzed in terms of resistance and capacitance, 
although the thermal capacitance and thermal resistance may not be represented 
accurately as lumped parameters since they are usually distributed throughout the sub- 
stance. For precise analysis, distributed-parameter models must be used. Here, however, 
to simplify the analysis we shall assume that a thermal system can be represented by a 
lumped-parameter model, that substances that are characterized by resistance to heat 
flow have negligible heat capacitance, and that substances that are characterized by heat 
capacitance have negligible resistance to heat flow. 

There are three different ways heat can flow from one substance to another: con- 
duction, convection, and radiation. Here we consider only conduction and convection. 
(Radiation heat transfer is appreciable only if the temperature of the emitter is very 
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high compared to that of the receiver. Most thermal processes in process control systems 
do not involve radiation heat transfer.) 

For conduction or convection heat transfer, 

q = K A O  

where q = heat flow rate, kcallsec 
A0 = temperature difference, "C 
K  = coefficient, kcal/sec "C 

The coefficient K is given by 

K = -  kA for conduction 
A X 7  

= HA, for convection 

where k = thermal conductivity, kcal/m sec "C 
A = area normal to heat flow, m2 

AX = thickness of conductor, m 
H = convection coefficient, kcal/m2 sec "C 

Thermal Resistance and Thermal Capacitance. The thermal resistance R for 
heat transfer between two substances may be defined as follows: 

change in temperature difference, "C 
R = 

change in heat flow rate, kcallsee 

The thermal resistance for conduction or convection heat transfer is given by 

Since the thermal conductivity and convection coefficients are almost constant, the 
thermal resistance for either conduction or convection is constant. 

The thermal capacitance C is defined by 

change in heat stored, kcal 
C = 

change in temperature, "C 

where rn = mass of substance considered, kg 
c = specific heat of substance, kcal/kg "C 

Thermal System. Consider the system shown in Figure 4-26(a). It is assumed 
that the tank is insulated to eliminate heat loss to the surrounding air. It is also assumed 
that there is no heat storage in the insulation and that the liquid in the tank is perfectly 
mixed so that it is at a uniform temperature.Thus, a single temperature is used to describe 
the temperature of the liquid in the tank and of the outflowing liquid. 
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Fkb-l , 
Figure 4-26 Cold Ilquid 
(a) Thermal system: -+ 
(b) block diagram of 
the system. (a) (b) 

Let us define 

ai = steady-state temperature of inflowing liquid, "C 

Go = steady-state temperature of outflowing liquid, "C 

G = steady-state liquid flow rate, kg/sec 

M = mass of liquid in tank, kg 

c = specific heat of liquid, kcallkg "C 

R = thermal resistance, "C sec/kcal 

C = thermal capacitance, kcal/"C 

H = steady-state heat input rate, kcal/sec 

Assume that the temperature of the inflowing liquid is kept constant and that the heat 
input rate to the system (heat supplied by the heater) is suddenly changed from H to 
H + hh,, where h, represents a small change in the heat input rate.The heat outflow rate 
will then change gradually from H to H + h,. The temperature of the outflowing liq- 
uid will also be changed from G o  to G, + 0 For this case, h,, C, and R are obtained, 
respectively, as 

The heat balance equation for this system is 
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which may be rewritten as 

Note that the time constant of the system is equal to RC or M/G seconds. The transfer 
function relating 8  and hi is given by 

@(s)  -- - R 
Hi(s) RCs + 1. 

where O(s)  = %[8( t ) ]  and Hi(s) = 3 [ h i ( t ) ] .  
In practice, the temperature of the inflowing liquid may fluctuate and may act as a 

load disturbance. (If a constant outflow temperature is desired, an automatic controller 
may be installed to adjust the heat inflow rate to compensate for the fluctuations in the 
temperature of the inflowing liquid.) If the temperature of the inflowing liquid is sud- 
denly changed from Oi to Gi + Oi while the heat input rate H and the liquid flow rate 
G  are kept constant, then the heat outflow rate will be changed from H to H + h,, and 
the temperature of the outflowing liquid will be changed from Go to @, + 8. The heat 
balance equation for this case is 

C d8 = ( ~ c 8 i  - h,)dt 

which may be rewritten 

The transfer function relating 8  and Oi is given by 

where O(s)  = 3 [ e ( t ) ]  and Oi(s) = %[ei(t)] .  
If the present thermal system is subjected to changes in both the temperature of the 

inflowing liquid and the heat input rate, while the liquid flow rate is kept constant, the 
change 8  in the temperature of the outflowing liquid can be given by the following 
equation: 

A block diagram corresponding to this case is shown in Figure 4-26(b). Notice that the 
system involves two inputs. 
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EXAMPLE PROBLEMS AND SOLUTIONS 

A 4 1 .  In the liquid-level system of Figure 4-27 assume that the outflow rate Q m3/sec through the out- 
flow valve is related to the head H m by ' 

Assume also that when the inflow rate Q, is 0.015 m3/sec the head stays constant. For t < 0 the 
system is at steady state (Q, = 0.015 m"sec). ~t t = 0 the inflow valve is closed and so there is 
no inflow for t 2 0. Find the time necessary to empty the tank to half the original head. The 
capacitance C of the tank is 2 m2. 

Solution. When the head is stationary, the inflow rate equals the outflow rate. Thus head H, at 
t = 0 is obtained from 

or 

H,, = 2.25 m 

The equation for the system for t > 0 is 

-CdH = Qdt 

Hence 

Assume that, at t = t l ,  H = 1.125 m. Integrating both sides of this last equation, we obtain 

It follows that 

Figure 4-27 
Liquid-level system. 

Capacitance 
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Thus, the head becomes half the original value (2.25 m) in 175.7 sec. 

A 4 2 .  Consider the liquid-level system shown in Figure 4-28. At steady state, the inflow rate and out- 
flow rate are both and the flow rate between the tanks is zero. The heads of tanks 1 and 2 are 
both a. At t = 0, the inflow rate is changed from e to + q, where q is a small change in the 
inflow rate.The resulting changes in the heads (h ,  and h,) and flow rates (q ,  and q2) are assumed 
to be small.The capacitances of tanks 1 and 2 are C1 and C2, respectively'Ihe resistance of the valve 
between the tanks is R, and that of the outflow valve is R2. 

Derive mathematical models for the system when (a) q is the input and h2 the output, (b) q is 
the input and q, the output, and (c) q is the input and h, the output. 

Solution. (a) For tank 1, we have 

where 

Consequently, 

Figure 4-28 
Liquid-level system. 

For tank 2, we get 

C2 dh2 = (q  - ql - q2)dt 

where 

It follows that 

By eliminating h, from Equations (4-32) and (4-33), we have 

Tank 2 
/ 

Example Problems and Solutions 
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In terms of the transfer function, we have 

H2(s) -- 
R2(R1Cls + 1 )  

- 
Q ( s )  R1Cl R2C2s2 + (R1C1 + R2C2 + R2c1)s + 1 

This is the desired mathematical model in which q is considered the input and h2 is the output. 
(b) Substitution of h2 = R2q2 into Equation (4-34) gives 

This equation is a mathematical model of the system when q is considered the input and q2 is the 
output. In terms of the transfer function, we obtain 

(c) Elimination of h2 from Equations (4-32) and (4-33), yields 

which is a mathematical model of the system in which q is considered the input and h1 is the out- 
put. In terms of the transfer function, we get 

A-4-3. Consider the liquid-level system shown in Figure 4-29. In the system, el and D2 are steady-state 
inflow rates and R1 and R2 are steady-state heads.The quantities qil ,  qi2, h l ,  h2, q l ,  and qo are con- 
sidered small. Obtain a state-space representation for the system when hl and h2 are the outputs 
and q, and qi2 are the inputs. 

Figure 4-29 
, , Liquid-level system. 

Solution. The equations for the system are 

CI dhl = (qil - q1) dt 

- 
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Elimination of q1 from Equation (4-35) using Equation (4-36) results in 

dh, 1 
dt C1 qil - 

Eliminating q, and q, from Equation (4-37) by using Equations (4-36) and (4-38) gives 

Define state variables x1 and x2 by 

x1 = hl 

x2 = h2 

the input variables ul and u2 by 

and the output variables y1 and y2 by 

Then Equations (4-39) and (4-40) can be written as 

In the form of the standard vector-matrix representation, we have 

which is the state equation, and 

which is the output equation. 
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A 4 4 .  consid& the liquid-level system shown in Figure 4-30.At steady state the inflow rate is Qi = 0, 
the outflow rate is Q, = a, and head is H = R. If the flow is turbulent, then we have 

Q = K -  

Assume that at t = 0 the inflow rate is changed from Qi = to Qi = a + qi. This change causes 
the head to change from H = a to H = + h, which, in turn, causes the outflow rate to change 
from Q, = to Q, = + q,. For this system we have 

where C is the capacitance of the tank. ~ e ' t  us define 

Note that the steady-state operating condition is (R ,  Q )  and H = R + h, Qi = g -t qi. Since at 
steady-state operation dH/d t  = 0, we have f (B ,  Q )  = 0. 

Linearize Equation (4-41) near the operating point (n, Q). 

Solution. Using the linearization technique presented in Section 3-10, a linearized equation for 
Equation (4-41) can be obtained as follows: 

Figure 4-30 
Liquid-level system. 

where 
f ( H ,  0)  = 0 

where we used the resistance R defined by 

Also, 

Then Equation (4-42) can be written as 
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Since H - = h and Qi - a = q,, Equation (4-43) can be written as 

which is the linearized equation for the liquid-level system and is the same as Equation (4-2) that 
we obtained in Section 4-2. 

A-4-5. The value of the gas constant for any gas may be determined from accurate experimental obser- 
vations of simultaneous values of p, v, and T. 

Obtain the gas constant R,, for air. Note that at 32'F and 14.7 psia the specific volume of air 
is 12.39 ft3/lb.Then obtain the capacitance of a 20-ft3 pressure vessel that contains air at 160"EAs- 
sume that the expansion process is isothermal. 

Solution. 

pv 14.7 X 144 X 12.39 R .  = - =  = 53.3 ft-lb JlbOR 
T 460 + 32 

Referring to Equation (4-12), the capacitance of a 20-ft3 pressure vessel is 

Note that in terms of SI units, R,,, iigiven by 

A-4-6. In the pneumatic pressure system of Figure 4-31(a), assume that, for t < 0, the system is at steady 
state and that the pressure of the entire system is B. Also, assume that the two bellows are iden- 
tical. At t = 0, the input pressure is changed from P to P + p,. Then the pressures in bellows 1 
and 2 will change from p to P + pl and from P to P + p2, respectively. The capacity (volume) 
of each bellows is 5 X m3, and the operating pressure difference Ap (difference between pi 
and p1 or ,difference between p, and p,) is between -0.5 x lo5 N/m2 and 0.5 X lo5 ~ / m ' .  The 

Figure 4-31 
(a) Pneumatic 
pressure system; 
(b) pressure 
difference versus 
mass flow rate 
curves. 

Bellows 1 I Bellows 2 

(a) 
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corresponding mass flow rates (kg/sec) through the valves are shown in Figure 4-31(b). Assume 
that the bellows expand or contract linearly with the air pressures applied to them, that the equiv- 
alent spring constant of the bellows system is k = 1 X 10' N/m, and that each bellows has area 
A = 15 X 10-4m2. 

Defining the displacement of the midpoint of the rod that connects two bellows as x, find the 
transfer function X(s)/P,(s). Assume that the expansion process is isothermal and that the 
temperature of the entire system stays at 30°C. 

Solution. Referring to Section 4-3, transfkr function P,(s)/P,(s) can be obtained as 

Similarly, transfer function P2(s)/P,(s) is 

The force acting on bellows 1 in the x direction is A(P + pl),  and the force acting on bellows 2 
in the negative x direction is A(P + p2). The resultant force balances with kx, the equivalent 
spring force of the corrugated sides of the bellows. 

Referring to Equations (4-44) and (4-43, we see that 

By substituting this last equation into Equation (4-46) and rewriting, the transfer function 
X(s)/P,(s) is obtained as 

The numerical values of average resistances R, and R2 are 

The numerical value of capacitance C of each bellows is 
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where R,, = 287 N-m/kg K. (See Problem A 4 5 . )  Consequently, 

RIC = 0.167 x 101° X 5.75 X = 9.60 sec 

R2C = 0.333 x loL0 x 5.75 x lo-' = 19.2 sec 

By substituting the numerical values for A, k, RIC, and R2C into Equation (4-47), we obtain 

A-4-7. Draw a block diagram of the pneumatic controller shown in Figure 4-32.Then derive the trans- 
fer function of this controller. Assume that Rd + Ri. 

If the resistance Rd is removed (replaced by the line-sized tubing), what control action do we 
get? If the resistance Ri is removed (replaced by the line-sized tubing), what control action do we 
get? 

Solution. Let us assume that when e = 0 the nozzle-flapper distance is equal to and the con- 
trol pressure is equal to PC. In the present analysis, we shall assume small deviations from the 
respective reference values as follows: 

e = small error signal 

x = small change in the nozzle-flapper distance 

p, = small change in the control pressure 

p~ = small pressure change in bellows I due to small change in the control pressure 

p,, = small pressure change in bellows I1 due to small change in the control pressure 

y = small displacement at the lower end of the flapper 

In this controller,p, is transmitted to bellows I through the resistance Rd. Similarly,p, is trans- 
mitted to bellows I1 through the series of resistances Rd and R,. The relationship between p, and 
PC is 

Figure 4-32 
Schematic diagram 
of a pneumatic 
controller. 
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where T,1 = RdC = derivative time. Similarly, pll and p1 are related by the transfer function 

Figure 4-33 
(a) Block diagram of 
the pneumatic 
controller shown in 
Figure 4-32; 
(b) simplified block 
diagram. 

where Ti = RiC = integral time. The force-balance equation for the two bellows is 

(PI - PIJA = k,y 

where k, is the stiffness of the two connected bellows and A is the cross-sectional area of the 
bellows. The relationship among the variables e, x, and y is 

The relationship betweenp, and x is 

p, = K x  ( K  > 0 )  

From the equations just derived, a block diagram of the controller can be drawn, as shown in 
Figure 4-33(a). Simplification of this block diagram results in Figure 4-33(b). 

The transfer function between P,(s) and E ( s )  is 

For a practical controller, under normal operation l K a ~ T , s / [ ( a  + b)k,(T,s + l ) ( ~ , s  + I ) ] ]  is 
very much greater than unity and % Td. Therefore, the transfer function can be simplified as 
follows: 
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where 

Thus the controller shown in Figure 4-32 is a proportional-plus-integral-plus-derivative one. 
If the resistance Rd is removed, or Rd = 0, the action becomes that of a proportional-plus- 

integral controller. 
If the resistance R, is removed, or R, = 0, the action becomes that of a narrow-band propor- 

tional, or two-position, controller. (Note that the actions of two feedback bellows cancel each 
other, and there is no feedback.) 

A-4-8. Actual spool valves are either overlapped or underlapped because of manufacturing tolerances. 
Consider the overlapped and underlapped spool valves shown in Figures 4-34(a) and (b). Sketch 
curves relating the uncovered port area A versus displacement x. 

Solution. For the overlapped valve, a dead zone exists between - $ x, and 1 x0, or - 4 x0 < x < 4 x0. 
The uncovered port area A versus displacement x curve is shown in Figure 4-35(a). Such an over- 
lapped valve is unfit as a control valve. 

For the underlapped valve, the port area A versus displacement x curve is shown in 
Figure 4-35(b). The effective curve for the underlapped region has a higher slope, meaning a 
higher sensitivity. Valves used for controls are usually underlapped. 

Figure 4-34 
(a) Overlapped spool 
valve; 
(b) underlapped 
spool valve. 

Figure 4-35 
(a) Uncovered port 
area A versus 
displaceme~nt x curve 
for the overlapped 
valve; (b) uncovered 
port area A versus 
displacement x curve 
for the underlapped 
valve. 

High Low 
pressure pressure 

High Low 
pressure pressure 

(a) 
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Figure 4-36 
Hydraulic jet-pipe 
controller. 

4-9. Figure 4-36shows a hydraulic jet-pipe controller. Hydraulic fluid is ejected from the jet pipe. If 
the jet pipe is shifted to the right from the neutral position, the power piston moves to the left, 
and vice versa. The jet pipe valve is not used as much as the flapper valve because of large null 
flow, slower response, and rather unpredictable characteristics. Its main advantage lies in its 
insensitivity to dirty fluids. 

Suppose that the power piston is connected to a light load so that the inertia force of the load 
element is negligible compared to the hydraulic force developed by the power piston. What type 
of control action does this controller produce? 

Solution. Define the displacement of the jet nozzle from the neutral position as x and the 
displacement of the power piston as y. If the jet nozzle is moved to the right by a small displace- 
ment x ,  the oil flows to the right side of the power piston, and the oil in the left side of the power 
piston is returned to the drain.The oil flowing into the power cylinder is at high pressure; the oil 
flowing out from the power cylinder into the drain is at low pressure. The resulting pressure 
difference causes the power piston to move to the left. 

For a small jet nozzle displacement x, the flow rate q to the power cylinder is proportional to 
x; that is, 

For the power cylinder, 

where A is the power piston area and p is the density of oil. Hence 

oil dnder 
pressure 
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where K  = K , / ( A p )  = constant.The transfer function Y ( s ) / X ( s )  is thus 

The controller produces the integral control action. 

A 4 l O .  Figure 4-37 shows a hydraulic jet-pipe applied to a flow control system. The jet-pipe controller 
governs the position of the butterfly valve. Discuss the operation of this system. Plot a possible 
curve relating the displacement x of the nozzle to the total force F acting on the power piston. 

Solution. The operation of this system is as follows: The flow rate is measured by the orifice, 
and the pressure difference produced by this orifice is transmitted to the diaphragm of the 
pressure measuring device.The diaphragm is connected to the free swinging nozzle, or jet pipe, 
through a linkage. High-pressure oil ejects from the nozzle all the time. When the nozzle is at a 
neutral position, no oil flows through either of the pipes to move the power piston. If the noz- 
zle is displaced by the motion of the balance arm to one side, the high-pressure oil flows through 
the corresponding pipe, and the oil in the power cylinder flows back to the sump through the 
other pipe. 

Assume that the system is initially at rest. If the reference input is changed suddenly to a 
higher flow rate, then the nozzle is moved in such a direction as to move the power piston and open 
the butterfly valve.Then the flow rate will increase, the pressure difference across the orifice be- 
comes larger, and the nozzle will move back to the neutral position. The movement of the power 
piston stops when x ,  the displacement of the nozzle, comes back to and stays at the neutral posi- 
tion. (The jet pipe controller thus possesses an integrating property.) 

Butterfly valve 
I 

Figure 4-37 
Schematic diagram 
of a flow control 
system usiing a 
hydraulic jet-pipe 
controller. 

Jet pipe 

Reference input 

Filter 
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Figure 4-38 
Force versus 
diplacement curve. 

The relationship between the total force F acting on the power piston and the displacement 
x of the nozzle is shown in Figure 4-38. The total force is equal to the pressure difference A P  
across the piston times the area A of the power piston. For a small displacement x of the nozzle, 
the total force F and displacement x may be considered proportional. 

A 4 1 1 .  Explain the operation of the speed control system shown in Figure 4-39. 

Figure 4-39 
Speed control 
system. 

Solution. If the engine speed increases, the sleeve of the fly-ball governor moves upward. This 
movement acts as the input to the hydraulic controller. A positive error signal (upward motion of 
the sleeve) causes the power piston to move downward, reduces the fuel-valve opening, and 
decreases the engine speed. A block diagram for the system is shown in Figure 4-40. 

From the block diagram the transfer function Y ( s ) / E ( s )  can be obtained as 
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Figure 4-40 
Block diagram for 
the speed control 
system shown in 
Figure 4-39. 

If the following condition applies, 

the transfer function Y (s) /E  ( s )  becomes 

The speed controller has proportional-plus-integral control action. 

A 4 1 2 .  Derive the transfer function Z ( s ) / Y  (s) of the hydraulic system shown in Figure 4-41.Assume that 
the two dashpots in the system are identical ones. 

Solution. In deriving the equations for the system, we assume that force F is applied at the right 
end of the shaft causing displacement y. (All displacements y, w, and z are measured from re- 
spective equilibrium positions when no force is applied at the right end of the shaft.) When force 
F is applied, pressure PI becomes higher than pressure P;,  or PI > Pi. Similarly, P, > Pi. 

For the force balance, we have the following equation: 

k 2 ( y  - w) = A(P, - Pi)  + A(P, - P;) 

Since 

k l z  = A(P, - Pi)  (4-49) 

and 

we have 

k,z = ARq, 

Also, since 

q~ dt = A(dw - d z ) p  

we have 

1% R + Y 2  h 

C 
W - c F  

Figure 4-41 Y 

Hydraulic system. Area = A 
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Define A2Rp = B. (B is the viscous friction coefficient.) Then 

Also, for the right-hand side dashpot we have 

Hence 

or 

A(P, - P;) = Bw (4-51) 

Substituting Equations (4-49) and (4-51) into Equation (4-48) we have 

k2y - k2w = k,z  + BW 

Taking the Laplace transform of this last equation, assuming zero initial condition, we obtain 

Taking the Laplace transform of Equation (4-50), assuming zero initial condition, we obtain 

k,  + BS 
W ( s )  = --- 

Bs z ( s )  (4-53) 

By using Equation (4-53) to eliminate W ( s )  from Equation (4-52), we obtain 

from which we obtain the transfer function Z ( s ) / Y ( s )  to be 

Multiplying ~ / ( k ,  k,) to both the numerator and denominator of this last equation, we get 

Define B/kl = TI ,  B/k2 = T,. Then the transfer function Z ( s ) / Y ( s )  becomes as follows: 

Z ( s )  - -- Tl s 
y ( s )  T l T 2 s 2 + ( T 1 + 2 T 2 ) s +  1 
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A-4-13. Consider the hydraulic servo system shown in Figure 4-42.Assuming that the load reaction forces 
are not negligible, derive a mathematical model of the system. Assume also that the mass of the 
power piston is included in the load mass m. 

Solution. In deriving a mathematical model of the system when the load reactive forces are not 
negligible, such effects as the pressure drop across the orifice, the leakage of oil around the valve 
and around the piston, and the compressibility of the oil must be considered. 

The pressure drop across the orifice is a function of the supply pressure p, and the pressure 
difference A p  = p, - p,. Thus the flow rate q is a nonlinear function of valve displacement x 
and pressure difference A p  or 

4 = f (x, AP)  
Linearizing this nonlinear equation about the origin (x = 0, A p  = 0, q = 0), we obtain, refer- 
ring to Equation (4-27), 

q = K,x - K2Ap - (4-54) 

The flow rate q can be considered as consisting of three parts 
C 

4 = qo + q, + 9c (4-55) 

where qo = useful flow rate to the power cylinder causing power piston to move, kg/sec 

q~ = leakage flow rate, kg/sec 

qc = equivalent compressibility flow rate, kg/sec 

Let us obtain specific expressions for qo, q,, and qc.The flow qo dt to the left-hand side of the power 
piston causes the piston to move to the right by dy. So we have 

where A (m2) is the power piston area, p (kg/m3) the density of oil, and dy (m) the displacement 
of the power piston. Then 

The leakage component q, can be written 

q, = L AP 

where L is the leakage coefficient of the system. 

Figure 4-42 
Hydraulic servo 
system. 
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The equivalent compressibility flow rate qc can be expressed in terms of the effective bulk 
modulus K of oil (including the effects of entrapped air, expansion of pipes, etc.), where 

(Here dVis negative and so -dV is positive.) Rewriting this last equation gives 

Noting that qc = p(-dV)/dt ,  we find 

where V is the effective volume of oil under compression (that is, approximately half the total 
power cylinder volume). 

Using Equations (4-54) through (4-58), 

dy PV ~ A P  
A p -  + -- + ( L  + IS2)Ap  = Klx 

dt K dt 

The force developed by the power piston is A Ap, and this force is applied to the load elements. 
Thus 

Eliminating A p  from Equations (4-59) and (4-60) results in 

This is a mathematical model of the system relating the valve spool displacement x and the power 
piston displacement y when the load reactive forces are not negligible. 
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A-4-14. Considering small deviations from steady-state operation, draw a block diagram of the air heat- 
ing system shown in Figure 4-43. Assume that the heat loss to the surroundings and the heat 
capacitance of the metal parts of the heater are negligible. 

Solution. Let us define 
- 
Oi = steady-state temperature of inlet air, "C 

Go = steady-state temperature of outlet air, "C 

G = mass flow rate of air through the heating chamber, kg/sec 

M = mass of air contained in the heating chamber, kg 

c = specific heat of air, kcallkg "C 

R = thermal resistance, "C sec/kcal 

C = thermal capacitance of air contained in the heating chamber = Mc, kcalI0C 

R = steady-state heat input, kcallsec 

Let us assume that the heat input is suddenly changed from f? to R + h and the inlet air 
temperature is suddenly changed from Gi to Gi + Bi. Then the outlet air temperature will be 
changed from Go to Go + 8,. 

The equation describing the system behavior is 

Noting that 

we obtain 

Figure 4-413 
Air heating system. 
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Figure 4-44 
Block diagram of the 
air heating system 
shown in 
Figure 4-43. 

H(s) : > 0 @$) 

RCs + 1 

Taking the Laplace transforms of both sides of this last equation and substituting the initial 
condition that 6',(0) = 0, we obtain 

R 
OJs)  = - 1 

H ( s )  + - 
RCs + 1 RCs + 1 @i(s) 

The block diagram of the system corresponding to this equation is shown in Figure 4-44. 

A 4 1 5 .  Consider the thin, glass-wall, mercury thermometer system shown in Figure 4-45.Assume that the 
thermometer is at a uniform temperature 8 (ambient temperature) and that at t = 0 it is 
immersed in a bath of temperature 8 i. O , ,  where Obis the bath temperature (which may be con- 
stant or changing) measured from the ambient temperature a. Define the instantaneous ther- 
mometer temperature by a + 6' so that 6' is the change in the thermometer temperature satisfying 
the condition that O(0) = 0. Obtain a mathematical model for the system.Also obtain an electri- 
cal analog of the thermometer system. 

Solution. A mathematical model for the system can be derived by considering heat balance as fol- 
1ows:The heat entering the thermometer during dt sec is q dt, where q is the heat flow rate to the 
thermometer. This heat is stored in the thermal capacitance C of the thermometer, thereby rais- 
ing its temperature by do. Thus the heat-balance equation is 

Since thermal resistance R may be written as 

heat flow rate q may be given, in terms of thermal resistance R, as 

Thermometer 

Figure 4-45 
Thin, glass-wall, 
mercury thermo- 
meter system. 
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where @ + €Ib is the bath temperature and @ + 0 is the thermometer temperature. Hence, we 

Figure 4-46 
Electrical analog of 
the thermometer 
system shown in 
Figure 4-45. 

can rewrite Equation (4-61) as 
de eb - e c - = ----- 
dt R 

Equation (4-62) is a mathematical model of the thermometer system. 

Referring to Equation (4-62), an electrical analog for the thermometer system can be writ- 
ten as 

de, 
RC- t e,= ei 

dt 
An electrical circuit represented by this last equation is shown in Figure 4-46. 

PROBLEMS 

B-4-1. Consider the liquid-level system shown in where Q is the flow rate measured in m3/sec and H is in 
Figure 4-47. Assuming that A = 3 m, = 0.02 m3/sec, and meters. 
the cross-sectional area of the tank is equal to 5 m2, obtain Suppose that the head is 2 m at t = 0. What will be the 
the time constant of the system at the operating point head at t = 60 sec? 
(H, Q). Assume that the flow through the valve is turbulent. 

I 

Capacitance 
I 

C 
Resistance 

R 

Figure 4-47 
Liquid-level system. 

I 
B-4-2. Consider the conical water tank system shown in 
Figure 4-48;The flow through the valve is turbulent and is 
related to the head H by 

Figure 4-48 

i 
Q = 0.005z/z? Conical water tank system. 
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B-4-3. Consider the liquid-level system shown in 
Figure 4-49.At steady state the inflow rate is Q and the out- 
flow rate is also Q. Assume that at t = 0 the inflow rate is 
changed from Q to Q + q,, where q, is a small quantity. The 
disturbance input is qd, which is also a small quantity. Draw 
a block diagram of the system and simplify it to obtain H2(s) 
as a function of Qi(s) and Qd(s), where H2(s) = .2[h2(t)], 
Q,(s) = 3[qi(t)], and Qd(s) = 3[qd(t)].The, capacitances 
of tanks 1 and 2 are C, and C2, respectively. 

B-4-4. Consider the liquid-level control system shown in 
Figure 4-50. The controller is of the proportional type.The 
set point of the controller is fixed. 

Draw a block diagram of the system, assuming that 
changes in the variables are small. Obtain the transfer func- 
tion between the level of the second tank and the distur- 
bance input q,,. Obtain the steady-state error when the 
disturbance q, is a unit-step function. 

Tank 1 . Tank 2 

- 

Figure 4-49 
Liquid-level system. 

Figure 4-50 
Liquid-level conbol system. 

, 10 
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B-4-5. For the pneumatic system shown in Figure 4-51, B-4-6. Figure 4-52 shows a pneumatic controller.The pneu- 
assume that steady-state values of the air pressure and the matic relay has the characteristic that p, = K p b ,  where 
displacement of the bellows are i5 and x, respectively. K > 0. What kind of control action does this controller 
Assume also that the input pressure is changed from P to produce? Derive the transfer function P,(s)/E(s). 

+ p,, where pi is a small change in the input pressure.This 
- 

change will cause the displacement of the bellows to change B-4-7. Consider the pneumatic controller shown in 

a small amount x. Assuming that the capacitance of the bel- Figure 4-53.Assuming that the pneumatic relay has the char- 

lows is C and the resistance of the valve is R, obtain the acteristics that p, = Kpb (where K > 0), determine the con- 

transfer function relating x and p,. trol action of this controller.The input to the controller is e 
and the output is p,. 

Figure 4-51 
Pneumatic system. 

Actuating error signal 
e 

Flapper 

Orifice - 

Figure 4-52 
Pneumatic controller. 

Problems 





B-4-9. Consider the pneumatic controller shown in a device is frequently used in hydraulic servos as the first- 
Figure 4-55. What control action does this controller pro- ' stage valve in two-stage servovalves. This usage occurs 
duce? Assume that the pneumatic relay has the character- because considerable force may be needed to stroke larger 
istics that p, = Kph, where K > 0. spool valves that result from the steady-state flow force.To 

reduce or compensate this force, two-stage valve configura- 
B-4-10' :Figure 4-56 shows a It is placed tion is often employed; a flapper valve or jet pipe is used as 
between two If the is moved 'light- the first-stage valve to provide a necessary force to stroke 
ly to the right, the pressure unbalance occurs in the nozzles the second-stage spool valve, 
and the power piston moves to the left, and vice versa. Such 

Actuating error signal 

Fh + ~ b  . Nozzle, Ha 

Figure 4-55 
Pneumatic controller. 

Figure 4-56 
Flapper valve. 
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Figure 4-57 shows a schematic diagram of a hydraulic B-4-11. Figure 4-58 is a schematic diagram of an aircraft 
servomotor in which the error signal is amplified in two elevator control system. The input to the system is the de- 
stages using a jet pipe and a pilot valve. Draw a block flection angle 0 of the control lever, and the output is the el- 
diagram of the system of Figure 4-57 and then find the trans- evator angle $. Assume that angles 0 and + are relatively 
fer function between y and x, where x is the air pressure and small. Show that for each angle 0 of the control lever there 
y is the displacement of the power piston. is a corresponding (steady-state) elevator angle +. 

t t t  
011 under 
pressure 

Oil under 
pressure 

Figure 4-57 
Schematic diagram of a hydraulic servomotor. 

Oil under 
pressure 

Figure 4-58 
Aircraft elevator control system. 
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B-4-12. Consider the liquid-level control system shown in We assume that the velocity of the power piston (valve) 
Figure 4-59. The inlet valve is controlled by a hydraulic is proportional to pilot valve displacement x ,  or 
integral controller. Assume that the steady-state inflow rate 
is and steady-state outflow rate is also Q, the steady-state 

dy 
- =  K,x 

head is R. steady-state pilot valve displacement is X = 0, dt 

and steady-state valve position is Y. We assume that the set ' where K ,  is a positive constant. We also assume that the 
point a corresponds to the steady-state head fi. The set change in the inflow rate q, is negatively proportional to the 
point is fixed.Assume also that the disturbance inflow rate change in the valve opening y, or 
q,,, which is a small quantity, is applied to the water tank at 
t = O.This disturbance causes the head to change from ff to 9, = -K,y 

R + h. Tfds change results in a change in the outflow rate where KV is a positive constant. 
by q,.Through the hydraulic controller, the change in head Assuming the following rmmerical values for the system, 

causes a change in the inflow rate from to Q + q,. (The c = 2 R = 0.5 sec/m2, K, = 1 m2/sec 
integral controller tends to keep the head constant as much 
as possible in the presence of disturbances.) We assume that a = 0'25 m7 = 0.75 m3 K1 = 4 sec-' 

allchange!s are of small quantities. obtain the transfer function H ( s ) / Q d ( s ) .  

R 
(Resistance) 

Figure 4-59 
Liquid-level control system. 

Problems 



B 4 1 3 .  Consider the controller shown in Figure 4-60.The measuring device can be considered a two-capacitance 
input is the air pressure pi measured from some steady-state system. 
reference pressure P and the output is the displacement y of Determine the time constants of the combined thermo- 
the power piston. Obtain the transfer function Y(s)/q(s). couple-thermal well system. Assume that the weight of the 

the~mocouple is 8 g and the weight of the thermal well is 
B-4-14' A has a time 'Onstant of sec'A 40 g.Assume also that the specific heats of the thermocouple 
thermal well has a time constant of 30 sec. When the ther- and thermal well are the same. 
mocouple is inserted into the well, this temperature- 

f i  + Air pi (Input) 

Bellows iYllYY 

Figure 4-60 
Controller. 
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Transient and Steady-State 
Response Analyses 

It was stated in Chapter 3 that the first step in analyzing a control system was to derive 
a mathematical model of the system. Once such a model is obtained, various methods 
are available for the analysis of system performance. 

In practice, the input signal to a control system is not known ahead of time but is 
random in nature, and the instantaneous input cannot be expressed analytically. Only in 
some special cases is the input signal known in advance and expressible analytically or 
by curves, such as in the case of the automatic control of cutting tools. 

In analyzing and designing control systems, we must have a basis of comparison of 
performance of various control systems. This basis may be set up by specifying particu- 
lar test input signals and by comparing the responses of various systems to these input 
signals. 

Many design criteria are based on the response to such signals or on the response of 
systems to changes in initial conditions (without any test signals). The use of test signals 
can be justified because of a correlation existing between the response characteristics 
of a system to a typical test input signal and the capability of the system to cope with 
actual input signals. 

Typical Test Signals. The commonly used test input signals are those of step 
functions, ramp functions, acceleration functions, impulse functions, sinusoidal functions, 
and the like. With these test signals, mathematical and experimental analyses of control 
systems can be carried out easily since the signals are very simple functions of time. 



Which of these typical input signals to use for analyzing system characteristics may 
be determined by the form of the input that the system will be subjected to most 
frequently under normal operation:If the inputs to a control system are gradually 
changing functions of time, then a ramp function of time may be a good test signal. Sim- 
ilarly, if a system is subjected to sudden disturbances, a step function of time may be a 
good test signal; and for a system subjected to shock inputs, an impulse function may be 
best. Once a control system is designed on the basis of test signals, the performance of 
the system in response to actual inputs is generally satisfactory. The use of such test 
signals enables one to compare the performance of all systems 011 the same basis. 

Transient Response and Steady-State Response. The time response of a 
control system consists of two parts: the transient response and the steady-state response. 
By transient response, we mean that which goes from the initial state to the final state. 
By steady-state response, we mean the manner in which the system output behaves as 
t approaches infinity.Thus the system response c(t) may be written as 

c(t> = ctr(t) -t css(t) 

where the first term on the right-hand side of the equation is the transient response and 
the second term is the steady-state response. 

Absolute Stability, Relative Stability, and Steady-State Error. In designing a 
control system, we must be able to predict the dynamic behavior of the system from a 
knowledge of the components. The most important characteristic of the dynamic 
behavior of a control system is absolute stability, that is, whether the system is stable or 
unstable. A control system is in equilibrium if, in the absence of any disturbance or input, 
the output stays in the same state. A linear time-invariant control system is stable if the 
output eventually comes back to its equilibrium state when the system is subjected to 
an initial condition. A linear time-invariant control system is critically stable if oscilla- 
tions of the output continue forever. It is unstable if the output diverges without bound 
from its equilibrium state when the system is subjected to an initial condition. Actually, 
the output of a physical system may increase to a certain extent but may be limited by 
mechanical "stops," or the system may break down or become nonlinear after the out- 
put exceeds a certain magnitude so that the linear differential equations no longer apply. 

Important system behavior (other than absolute stability) to which we must give 
careful consideration includes relative stability and steady-state error. Since a physical 
control system involves energy storage, the output of the system, when subjected to an 
input, cannot follow the input immediately but exhibits a transient response before a 
steady state can be reached. The transient response of a practical control system often 
exhibits damped oscillations before reaching a steady state. If the output of a system at 
steady state does not exactly agree with the input, the system is said to have steady- 
state error.This error is indicative of the accuracy of the system. In analyzing a control 
system, we must examine transient-response behavior and steady-state behavior. 

Outline of the Chapter. This chapter is concerned with system responses to 
aperiodic signals (such as step, ramp, acceleration, and impulse functions of time). The 
outline of the chapter is as follows: Section 5-1 has presented introductory material for 
the chapter. Section 5-2 treats the response of first-order systems to aperiodic inputs. 
Section 5-3 deals with the transient response of the second-order systems. Detailed 
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analyses of the step response, ramp response, and impulse response of the second-order 
systems are presented. Section 5-4 discusses the transient response analysis of higher- 
order systems. Section 5-5 gives an introduction to the MATLAB approach to the solution 
of transient response problems. 'Section 5-6 gives an example of a transient-response 
problem solved with MATLAB. Section 5-7 presents Routh's stability criterion. Section 
5-8 discusses effects of integral and derivative control actions on system performance. 
Finally, Section 5-9 treats steady-state errors in unity-feedback control systems. 

5-2 FIE;!ST-ORDER SYSTEMS 

Consider the first-order system shown in Figure 5-l(a). Physically, this system may 
represent an RC circuit, thermal system, or the like. A simplified block diagram is shown 
in Figure 5-l(b). The input-output relationship is given by 

In the following, we shall analyze the system responses to such inputs as the unit-step, 
unit-ramp, and unit-impulse functions. The initial conditions are assumed to be zero. 

Note that all systems having the same transfer function will exhibit the same output 
in response to the same input. For any given physical system, the mathematical response 
can be given a physical interpretation. 

Unit-Step Response of First-Order Systems. Since the Laplace transform of 
the unit-step function is l/s, substituting R(s) = 11s into Equation (5-I), we obtain 

Expanding C(s) into partial fractions gives 

Figure 5-1 
(a) Block diagram of 
a first-order system; 
(b) simplified block 
diagram. 

Taking the inverse Laplace transform of Equation (5-2), we obtain 

c(t) = 1 - e-'lT, fort 0 (5-3) 

Equation (5-3) states that initially the output c(t) is zero and finally it becomes unity. 
One important characteristic of such an exponential response curve c(t) is that at t = T 
the value of c(t) is 0.632, or the response c(t) has reached 63.2% of its total change.This 
may be easily seen by substituting t = T in c(t). That is, 
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Figure 5-2 
Exponential 
response curve. 

Note that the smaller the time constant T ,  the faster the system response. Another 
important characteristic of the exponential response curve is that the slope of the tangent 
line at t = 0 is 1 /T ,  since 

The output would reach the final value at t = T if it maintained its initial speed of 
response. From Equation (54)  we see that the slope of the response curve c(t) decreases 
monotonically from 1/T at t = 0 to zero at t = m. 

The exponential response curve c(t) given by Equation (5-3) is s:_ xn in Figure 5-2. 
In one time constant, the exponential response curve has gone from 0 to 63.2% of the final 
value. In two time constants, the response reaches 86.5% of the final value. At t = 3T, 4T, 
and 5T, the response reaches 95%, 98.2%, and 99.3%, respectively, of the final value.Thus, 
for t r 4T, the response remains within 2% of the final value. As seen from Equation 
(5-3), the steady state is reached mathematically only after an infinite time. In practice, 
however, a reasonable estimate of the response time is the length of time the response 
curve needs to reach and stay within the 2% line of the final value, or four time constants. 

Unit-Ramp Response of First-Order Systems. Since the Laplace transform of 
the unit-ramp function is l/s2, we obtain the output of the system of Figure 5-l(a) as 

Expanding C(s) into partial fractions gives 

Taking the inverse Laplace transform of Equation (5-5), we obtain 

c(t) = t - T + ~e-'I?', fort 2 0 

The error signal e(t) is then 
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Figure 5-3 
Unit-ramp response 
of the system shown 
in Figure 5-l(a). 

Figure 5-41 
Unit-impulse 
response of the 
system shown in 
Figure 5-l(a). 

As t approaches infinity, e-'p approaches zero, and thus the error signal e( t )  approaches 
T or 

e ( m )  = T 

The unit-ramp input and the system output are shown in Figure 5-3. The error in 
following the unit-ramp input is equal to T for sufficiently large t. The smaller the time 
constant T, the smaller the steady-state error in following the ramp input. 

Unit-Impulse Response of First-Order Systems. For the unit-impulse input, 
R(s)  = 1 and the output of the system of Figure 5-l(a) can be obtained as 

The inverse Laplace transform of Equation (5-7) gives 

1 
c( t )  = - e-'IT, for t 0 

T 

The response curve given by Equation (5-8) is shown in Figure 5-4. 
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An Important Property of Linear Time-Invariant Systems. In the analysis 
above, it has been shown that for the unit-ramp input the output c ( t )  is 

c ( t )  = t - T + Te-'IT, for t r 0 [See Equation (5-6).] 

For the unit-step input, which is the derivative of unit-ramp input, the output c ( t )  is 

c ( t )  = 1 - e-tlT for t  r 0 [See Equation (5-3).] 

Finally, for the unit-impulse input, which is the derivative of unit-step input, the output 
c ( t )  is 

1 c ( t )  = - e-'/T 
T '  

for t  r 0 [See Equation (5-8).] 

Comparing the system responses to these three inputs clearly indicates that the response 
to the derivative of an input signal can be obtained by differentiating the response of the 
system to the original signal. It can also be seen that the response to the integral of the 
original signal can be obtained by integrating the response of the system to the original 
signal and by determining the integration constant from the zero output initiaI condi- 
tion.This is a property of linear time-invariant systems. Linear time-varying systems and 
nonlinear systems do not possess this property. 

5-3 SECOND-ORDER SYSTEMS 

In this section, we shall obtain the response of a typical second-order control system to 
a step input, ramp input, and impulse input. Here we consider a servo system as an 
example of a second-order system. 

Servo System. The servo system shown in Figure 5-5(a) consists of a proportional 
controller and load elements (inertia and viscous friction elements). Suppose that we 
wish to control the output position c  in accordance with the input position r.  

The equation for the load elements is 

J %  + Bi = T  

where T is the torque produced by the proportional controller whose gain is K. By 
taking Laplace transforms of both sides of this last equation, assuming the zero initial 
conditions, we obtain 

J S ~ C ( S )  + B S C ( S )  = T ( S )  

So the transfer function between C ( s )  and T ( s )  is 

By using this transfer function. Figure 5-5(a) can be redrawn as in Figure 5-5(b), which 
can be modified to that shown in Figure 5-5(c).The closed-loop transfer function is then 
obtained as 

Such a system where the closed-loop transfer function possesses two poles is called a 
second-order system. (Some second-order systems may involve one or two zeros.) 

Chapter 5 / Transient and Steady-State Response Analyses 



Figure 5-5 
(a) Servo system; 
(b) block diagram; 
(c) simplified block 
diagram. 

Step Response of Second-Order System. The closed-loop transfer function of 
the system shown in Figure 5-5(c) is 

which can be rewritten as 

The closed-loop poles are complex conjugates if B2 - 4JK < 0 and they are real if 
B2 - 4JK r 0. In the transient-response analysis, it is convenient to write 

where a is called the attenuation; w,, the undamped natural frequency; and {, the damp- 
ing ratio of the system. The damping ratio is the ratio of the actual damping B to the 
critical damping B, = 2 m  or 
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Figure 5-6 
Second-order system. 

In terms of 5 and w,, the system shown in Figure 5-5(c) can be modified to that shown 
in Figure 5-6, and the closed-loop transfer function C ( s ) / R ( s )  given by Equation (5-9) 
can be written 

This form is called the standard form of the second-order system. 
The dynamic behavior of the second-order system can then be described in terms of 

two parameters 5 and on. If 0 < 5 < 1, the closed-loop poles are complex conjugates 
and lie in the left-half s plane. The system is then called underdamped, and the tran- 
sient response is oscillatory, If 5 = 0, the transient response does not die out. If 5 = 1, 
the system is called critically damped. Overdamped systems correspond to 5 > 1. 

We shall now solve for the response of the system shown in Figure 5-6 to a unit-step 
input. We shall consider three different cases: the underdamped ( 0  < 5 < I) ,  critically 
damped ( 5  = I ) ,  and overdamped ( 5  > 1) cases. 

(1) Underdamped case ( 0  < 5 < 1): In this case, C ( s ) / R ( s )  can be written 

where w, = w n d l  - 5'. The frequency o, is called the damped natural frequency. For 
a unit-step input, C ( s )  can be written 

The inverse Laplace transform of Equation (5-11) can be obtained easily if C ( s )  is writ- 
ten in the following form: 

In Chapter 2 it was shown that 

%-I[, +'Ln;?+ w:] = e'4' cos w,t 

I = e-rWfll sin wdt 
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Hence the inverse Laplace transform of Equation (5-11) is obtained as 

.Y-'[c(s)] = c(t) 

This result can be obtained directly by using a table of Laplace transforms. From 
Equation (5-12), it can be seen that the frequency of transient oscillation is the damped 
natural frequency od and thus varies with the damping ratio 5. The error signal for this 
system is the difference between the input and output and is 

e(t) = r(t) - c(t) 
I * \ 

This error signal exhibits a damped sinusoidal oscillation. At steady state, or at t = oo, 
no error exists between the input and output. 

If the damping ratio 5 is equal to zero, the response becomes undamped and 
oscillations continue indefinitely. The response c(t) for the zero damping case may be 
obtained by substituting 5 = 0 in Equation (5-12), yielding 

~ ( t )  = 1 - cos w,t, for t 2 0 (5-13) 

Thus, from Equation (5-13), we see that w, represents the undamped natural frequen- 
cy of the system.That is, w, is that frequency at which the system output would oscillate 
if the damping were decreased to zero. If the linear system has any amount of damping, 
the undamped natural frequency cannot be observed experimentally. The frequency 
that may be observed is the damped natural frequency cod, which is equal to w , m .  
This frequency is always lower than the undamped natural frequency. An increase in 5 
would reduce the damped natural frequency wd. If 5 is increased beyond unity, the 
response becomes overdamped and will not oscillate. 

(2) Critically damped case (b = 1): If the two poles of C(s)/R(s) are equal, the system 
is said to be a critically damped one. 

For a unit-step input, R(s) = l / s  and C(s) can be written 

The inverse Laplace transform of Equation (5-14) may be found as 

c ( t ) = l - e - " f i f ( l + o , t ) ,  f o r t 2 0  (5-15) 

This result can also be obtained by letting 5 approach unity in Equation (5-12) and by 
using the following limit: 

sin wd t sin w,V'l - l2 t 
lim = lim = w,t 
1 s+1 d m  
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(3) Overdumped case (J  > 1): In this case, the two poles of C(s)/R(s) are negative 
real and unequal. For a unit-step input, R(s) = 11s and C(s) can be written 

The inverse Laplace transform of Equation (5-16) is 

fort 2 0 (5-17) 

where s, = (5 + -)w, and s2 = (5 - m ) w , .  Thus, the response c(t) 
includes two decaying exponential terms. 

When 5 is appreciably greater than unity, one of the two decaying exponentials 
decreases much faster than the other, so the faster decaying exponential term (which 
corresponds to a smaller time constant) may be neglected. That is, if -s2 is located very 
much closer to the jw axis than -s, (which means Is2( < /sll), then for an approximate 
solution we may neglect -s, . This is permissible because the effect of -s, on the response 
is much smaller than that of -s2, since the term involving s, in Equation (5-17) decays 
much faster than the term involving s2. Once the faster decaying exponential term has 
disappeared, the response is similar to that of a first-order system, and C(s)/R(s) may 
be approximated by 

C(s) - gw, - w,d[2 - 1 - s2 rn s + (w, - '0,- - 3 + s2 

This approximate form is a direct consequence of the fact that the initial values and 
final values of both the original C(s)/R(s) and the approximate one agree with each 
other. 

With the approximate transfer function C(s)/R(s), the unit-step response can be 
obtained as 

The time response c(t) is then 

c(t) = 1 - e - ( 6 - f i ) w , , r  , fort r 0 

This gives an approximate unit-step response when one of the poles of C(s)/R(s) can 
be neglected. 

A family of unit-step response curves c(t) with various values of g is shown in Fig- 
ure 5-7, where the abscissa is the dimensionless variable w,t. The curves are functions 
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Figure 5-7 
Unit-step response 
curves of the system 
shown in Figure 5-6. 

only of l. These curves are obtained from Equations (5-12), (5-15), and (5-17). The 
system described by these equations was initially at rest. 

Note that two second-order systems having the same Y but different w, will exhibit 
the same overshoot and the same oscillatory pattern. Such systems are said to have the 
same relative stability. 

It is important to note that, for second-order systems whose closed-loop transfer 
functions are different from that given by Equation (5-lo), the step-response curves 
may look quite different from those shown in Figure 5-7, 

From Figure 5-7, we see that an underdamped system with [ between 0.5 and 0.8 gets 
close to the final value more rapidly than a critically damped or overdamped system. 
Among the systems responding without oscillation, a critically damped system exhibits 
the fastest response. An overdamped system is always sluggish in responding to  any 
inputs. 

Definitions of Transient-Response Specifications. In many practical cases, 
the desired performance characteristics of control systems are specified in terms of 
time-domain quantities. Systems with energy storage cannot respond instantaneously 
and will exhibit transient responses whenever they are subjected to inputs or 
disturbances. 

Frequently, the performance characteristics of a control system are specified in terms 
of the transient response to a unit-step input since it is easy to generate and is suffi- 
ciently drastic. (If the response to a step input is known, it is mathematically possible to 
compute the response to any input.) 

The transient response of a system to a unit-step input depends on the initial condi- 
tions. For convenience in comparing transient responses of various systems, it is a com- 
mon practice to use the standard initial condition that the system is at rest initially with 
the output and all time derivatives thereof zero. Then the response characteristics of 
many systems can be easily compared. 
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The transient response of a practical control system often exhibits damped oscilla- 
tions before reaching steady state. In specifying the transient-response characteristics of 
a control system to a unit-step input, it is common to specify the following: 

1. Delay time, td 

2. Rise time, t, 
3. Peak time, t, 
4. Maximum overshoot, M, 
5. Settling time, t, 

These specifications are defined in what follows and are shown graphically in Figure 5-8. 

1. Delay time, t , :  The delay time is the time required for the response to reach half 
the final value the very first time. 

2. Rise time, r,: The rise time is the time required for the response to rise from 10% 
to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped second- 
order systems, the 0% to 100% rise time is normally used. For overdamped systems, 
the 10% to 90% rise time is commonly used. 

3. Peak time, t,:The peak time is the time required for the response to reach the first 
peak of the overshoot. 

4. Maximum (percent) overshoot, M,: The maximum overshoot is the maximum 
peak value of the response curve measured from unity. If the final steady-state 
value of the response differs from unity, then it is common to use the maximum 
percent overshoot. It is defined by 

"(t,) - " ( G o )  
Maximum percent overshoot = X 100% 

The amount of the maximum (percent) overshoot directly indicates the relative 
stability of the system. 

5. Settling time, t,: The settling time is the time required for the response curve to 
reach and stay within a range about the final value of size specified by absolute per- 
centage of the final value (usually 2% or 5%). The settling time is related to the 
largest time constant of the control system. Which percentage error criterion to use 
may be determined from the objectives of the system design in question. 

Allowable tolerance 

Figure 5-8 
Unit-step response 
curve showing t d ,  t , ,  
t p ,  M p ,  and t,. I - t ,  -1 
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Figure 5-9 
Definition of the 
angle P .  

The time-domain specifications just given are quite important since most control 
systems are time-domain systems; that is, they must exhibit acceptable time responses. 
(This means that, the control system must be modified until the transient response is 
satisfactory.) 

Note that not all these specifications necessarily apply to any given case. For exam- 
ple, for an overdamped system, the terms peak time and maximum overshoot do not 
apply. (For systems that yield steady-state errors for step inputs, this error must be kept 
within a specified percentage level. Detailed discussions of steady-state errors are post- 
poned until Section 5-9.) 

A Few Comments on Transient-Response Specifications. Except for certain 
applications where oscillations cannot be tolerated, it is desirable that the transient re- 
sponse be sufficiently fast and be sufficiently damped.Thus, for a desirable transient re- 
sponse of a second-order system, the damping ratio must be between 0.4 and 0.8. Small 
values of L ( [  < 0.4) yield excessive overshoot in the transient response, and a system 
with a large value of b([  > 0.8).responds sluggishly. 

We shall see later that the maximum overshoot and the rise time conflict with each other. 
In other words, both the maximum overshoot and the rise time cannot be made smaller 
simultaneously. If one of them is made smaller, the other necessarily becomes larger. 

Second-Order Systems and Transient-Response Specification?. , In the fol- 
lowing, we shall obtain the rise time, peak time, maximum overshoot, and settling time 
of the second-order system given by Equation (5-10). These values will be obtained in 
terms of 5 and w,. The system is assumed to be underdamped. 

Rise time t,: Referring to Equation (5-12), we obtain the rise time t ,  by letting c(t,) = 1. 

5 cos o,tr + d2 sin odtr 

Since e-i"l;" # 0, we obtain from Equation (5-18) the following equation: 

5 cos w,t, + d2 sinodtr = 0 

Thus, the rise time t ,  is 

where p is defined in Figure 5-9. Clearly, for a small value of t,, w, must be large. 
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Peak time t,: Referring to Equation (5-12), we may obtain the peak time by differen- 
tiating c(t) with respect to time and letting this derivative equal zero. Since 

and the cosine terms in this last equation cancel each other, dc/dt, evaluated at t = t,, 
can be simplified to 

*, 
= (sin ~ , ~ t , > )  - l2  e-imn'~ = 0 

This last equation yields the following equation: 

sin wLl t, = 0 

odtp = 0, rr, 2rr, 3rr, . . . 
Since the peak time corresponds to the first peak overshoot, wdtp = rr. Hence 

The peak time t, corresponds to one-half cycle of the frequency of damped oscillation. 

Maximum overshoot M,: The maximum overshoot occurs at the peak time or at 
t = t, = .rr/w,,.Assuming that the final value of the output is unity, M, is obtained from 
Equation (5-12) as 

The maximum percent overshoot is e-("/"")" X 100%. 
If the final value c(w) of the output is not unity, then we need to use the following 

equation: 

Settling time t,,: For an underdamped second-order system, the transient response is 
obtained from Equation (5-12) as 

e-5wn' 
c(t) = 1 - sin wdt + tan-' ( , c f o r t 2 0  

The curves 1 * ( e - 5 " f J / m )  are the envelope curves of the transient response to 
a unit-step input. The response curve c(t) always remains within a pair of the envelope 
curves, as shown in Figure 5-10. The time constant of these envelope curves is 1/ lo,. 
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Figure 5-10 
Pair of envelope 
curves for the unit- 
step response curve 
of the system shown 
in Figure 5-6. 

The speed of decay of the transient response depends on the value of the time 
constant l/Jw,,. For a given w,,, the settling time t ,  is a function of the damping ratio J. 
From Figure 5-7, we see that for the same wn and for a range of J between 0 and 1 the 
settling time t, for a very lightly damped system is larger than that for a properly damped 
system. For an overdamped system, the settling time t, becomes large because of the 
sluggish response. 

The settling time corresponding to a f 2% or *5% tolerance band may be measured 
in terms of the time constant T = l/Jwn from the curves of Figure 5-7 for different 
values of J.The results are shown in Figure 5-11. For 0 < J < 0.9, if the 2% criterion is 
used, t, is approximately four times the time constant of the system. If the 5% criterion 
is used, then t ,  is approximately three times the time constant. Note that the settling 
time reaches a minimum value around J = 0.76 (for the 2% criterion) or J = 0.68 (for 
the 5% criterion) and then increases almost linearly for large values of J. 
The discontinuities in the curves of Figure 5-11 arise because an infinitesimal change 
in the value of i can cause a finite change in the settling time. 

For convenience in comparing the responses of systems, we commonly define the 
settling time t ,  to be 

4 4 t = 4 ~ = - = -  (2% criterion) (5-22) 
Jwn 

or 

3 3 t = 3 ~ = - - = - -  (5% criterion) 
i w n  

Note that the settling time is'inversely proportional to the product of the damping 
ratio and the undamped natural frequency of the system. Since the value of J is usually 
determined from the requirement of permissible maximum overshoot, the settling time 
is determined primarily by the undamped natural frequency w,. This means that the 

Section 5-3 / Second-Order Systems 233 



Figure 5-11 
Settling time t ,  
versus 5 curves. 

Figure 5-12 
M p  versus [ curve. 

duration of the transient period may be varied, without changing the maximum over- 
shoot, by adjusting the undamped natural frequency w,. 

From the preceding analysis, it is evident that for rapid response w, must be large. 
To limit the maximum overshoot M, and to make the settling time small, the damping 
ratio 5 should not be too small. The relationship between the maximum percent over- 
shoot M ,  and the damping ratio 5 is presented in Figure 5-12. Note that if the damping 
ratio is between 0.4 and 0.7 then the maximum percent overshoot for step response is 
between 25% and 4%. 

@) - s2 + 2564,s + w,2 

Mp : Maximum overshoot 

Chapter 5 / Transient and Steady-State Response Analyses 



It is important to note that the equations for obtaining the rise time,peak time,max- 
imum overshoot, and settling time are valid only for the standard second-order system 
defined by Equation (5-10). If the second-order system involves a zero or two zeros, 
the shape of the unit-step response curve will be quite different from those shown in 
Figure 5-7. 

EXAMPLE 5-1 Consider the system shown in Figure 5-6, where = 0.6 and w ,  = 5 rad/sec. Let us obtain the rise 
time t,, peak time t,,, maximum overshoot M,, and settling time t ,  when the system is subjected 
to a unit-step input. 

From the given values of 5 and w,, we obtain w , ~  = w a r n  = 4 and u = ~ O J ,  = 3. 

Rise time t,: The rise time is 

where p is given by 

p = tan-l % = - = 
u 

0.93 rad 
3 

The rise time t ,  is thus 

3.14 - 0.93 
tr = 

4 
= 0.55 sec 

Peak time t,: The peak time is 

7T 3.14 
t, = - = - = 0.785 sec 

wd 4 

Maximum overshoot M,: The maximum overshoot is 

M = e-(n/w,i)r = e-(3/4)x3 14 = 0.095 

The maximum percent overshoot is thus 9.5%. 

Settling time ts:  For the 2% criterion, the settling time is 

t = - = - =  1.33 sec " 3 

For the 5% criterion, 

t = - = - =  1 sec " 3 

Servo System with Velocity Feedback. The derivative of the output signal can 
be used to improve system performance. In obtaining the derivative of the output 
position signal, it is desirable to use a tachometer instead of physically differentiating the 
output signal. (Note that the differentiation amplifies noise effects. In fact, if 
discontinuous noises are present, differentiation amplifies the discontinuous noises more 
than the useful signal. For example, the output of a potentiometer is a discontinuous 
voltage signal because, as the potentiometer brush is moving on the windings, voltages 
are induced in the switchover turns and thus generate transients. The output of the po- 
tentiometer therefore should not be followed by a differentiating element.) 
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Figure 5-13 
(a) Block diagram of 
a servo system; 
(b) simplified block 
diagram. 

The tachometer, a special dc generator, is frequently used to measure velocity with- 
out differentiation process. The output of a tachometer is proportional to the angular 
velocity of the motor. 

Consider the servo system shown in Figure 5-13(a). In this device, the velocity signal, 
together with the positional signal, is fed back to the input to produce the actuating 
error signal. In any servo system, such a velocity signal can be easily generated by a 
tachometer. The block diagram shown in Figure 5-13(a) can be simplified, as shown in 
Figure 5-13(b), giving 

Comparing Equation (5-24) with Equation (5-9), notice that the velocity feedback has 
the effect of increasing damping. The damping ratio 5 becomes 

The undamped natural frequency o, = is not affected by velocity feedback. Not- 
ing that the maximum overshoot for a unit-step input can be controlled by controlling 
the value of the damping ratio 5 ,  we can reduce the maximum overshoot by adjusting 
the velocity feedback constant Kh SO that 5 is between 0.4 and 0.7. 

Remember that velocity feedback has the effect of increasing the damping ratio 
without affecting the undamped natural frequency of the system. 

EXAMPLE 5-2 For the system shown in Figure 5-13(a), determine the values of gain K and velocity feedback 
constant Kh SO that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec. 
With these values of K and K,, obtain the rise time and settling time. Assume that J = 1 kg-m2 and 
B = 1 N-mlradlsec. 

Determination of the values of K and Kh: The maximum overshoot M, is given by Equation 
(5-21) as 
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This value must be 0.2. Thus, 

e i ~ ~ G h  = 0.2 

which yields 

The peak time t ,  is specified as 1 see  therefore, from Equation (5-20), 

w,, = 3.14 

Since 5 is 0.456, w, is 

W, = 
Wd 

d g  = 3.53 

Since the natural frequency w, is equal to m, 
K = Jo; = 0; = 12.5 N-m 

Then, Kh is, from Equation (5-25), 

2 m 5 -  B 2-5- 1 
Kt, = - - 

K K 
= 0.178 sec 

Rise time t,: From Equation (5-19), the rise time t ,  is 

. - - P  t, = -- 
"Jd 

where 

p  = tan-' = tan-' 1.95 = 1.10 
u 

Thus, t ,  is 

t, = 0.65 sec 

Settling time t , :  For the 2% criterion, 

4 
t, = - = 2.48 sec 

u 

For the 5% criterion, 

3 
t, = - = 1.86 sec 

u 
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Figure 5-14 
Unit-impulse 
response curves of 
the system shown in 
Figure 5-5. 

Impulse Response of Second-Order Systems. For a unit-impulse input r ( t ) ,  the 
corresponding Laplace transform is unity, or R ( s )  = 1.The unit-impulse response C ( s )  
of the second-order system shown in Figure 5-6 is 

The inverse Laplace transform of this equation yields the time solution for the response 
c ( t )  as follows: 

For 0 5 J < 1, 

w  n c ( t )  = e-i"rJ sin wnd= t ,  for t  2 0 (5-26) rn 
F o r t  = 1, 

c ( t )  = , fort 2 0 

For J > 1, 

c ( t )  = w" e < ~ - f i ) u n f  - 
W n e - ( i + m ) u , , t  

2- 2- 
, fort 2 0 (5-28) 

Note that without taking the inverse Laplace transform of C ( s )  we can also obtain 
the time response c ( t )  by differentiating the corresponding unit-step response since 
the unit-impulse function is the time derivative of the unit-step function. A family of 
unit-impulse response curves given by Equations (5-26) and (5-27) with various val- 
ues of 5 is shown in Figure 5-14. The curves c ( t ) / w ,  are plotted against the dimen- 
sionless variable w,t, and thus they are functions only of J. For the critically damped 
and overdamped cases, the unit-impulse response is always positive or zero; that is, 
c ( t )  r 0. This can be seen from Equations (5-27) and (5-28). For the underdamped 
case, the unit-impulse response c ( t )  oscillates about zero and takes both positive and 
negative values. 

"Jnt 
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Figure 5-15 
Unit-impulse 
response curve of the 
system shown in 
Figure 5-6. 

From the foregoing analysis, we may conclude that if the impulse response c ( t )  does 
not change sign, the system is either critically damped or overdamped, in which case 
the corresponding step response does not overshoot but increases or decreases monot- 
onically and approaches a constant value. 

The maximum overshoot for the unit-impulse response of the underdamped system 
occurs at 

tan-' 
t =  5 

, where 0 < 5 < 1 
W , W  

[Equation (5-29) can be obtained by equating dcldt  to zero and solving for t.] The max- 
imum overshoot is 

[Equation (5-30) can be obtained by substituting Equation (5-29) into Equation (5-26).] 
Since the unit-impulse response function is the time derivative of the unit-step 

response function, the maximum overshoot M ,  for the unit-step response can be 
found from the corresponding unit-impulse response. That is, the area under the unit- 
impulse response curve from t = 0 to the time of the first zero, as shown in Figure 
5-15, is 1 i- M,, where M ,  is the maximum overshoot (for the unit-step response) 
given by Equation (5-21). The peak time t ,  (for the unit-step response) given by 
Equation (5-20) corresponds to the time that the unit-impulse response first crosses 
the time axis. 

5-4 HIGHER-ORDER SYSTEMS 

In this section we shall present a transient response analysis of higher-order systems in - 
general terms. It will be seen that the response of higher-order systems is the sum of the 
responses of first-order and second-order systems. 
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Figure 5-16 
Control system. 

Transient Response of Higher-Order Systems. Consider the system shown in 
Figure 5-16. The closed-loop transfer function is 

In general, G(s)  and H(s )  are given as ratios of polynomials in s, or 

4 s )  p(S) and H(s )  = - G(s) = - 
q(s) 4 s )  

where p(s) ,  q(s),  n(s), and d(s)  are polynomials in sfjThe closed-loop transfer function 
given by Equation (5-31) may then be written 

The transient response of this system to any given input can be obtained by a computer 
simulation. (See Section 5-5.) If an analytical expression for the transient response is de- 
sired, then it is necessary to factor the denominator polynomial. [MATLAB may be 
used for finding the roots of the denominator polynomial. Use the command roots(den).] 
Once the numerator and the denominator have been factored, C(s)/R(s) can be writ- 
ten in the form 

Let us examine the response behavior of this system to a unit-step input. Consider 
first the case where the closed-loop poles are all real and distinct. For a unit-step input, 
Equation (5-32) can be written 

where a, is the residue of the pole at s = -p , .  (If the system involves multiple poles, 
then C(s)  will have multiple-pole terms.) [The partial-fraction expansion of C(s),  as 
given by Equation (5-33). can be obtained easily with MATLAB. Use the residue 
command.] 

If aIl closed-loop poles lie in the left-half s plane, the relative magnitudes of the 
residues determine the relative importance of the components in the expanded form of 
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C ( s ) .  If there is a closed-loop zero close to a closed-loop pole, then the residue at this 
pole is small and the coefficient of the transient-response term corresponding to this pole 
becomes small. A pair of closely located poles and zeros will effectively cancel each 
other. If a pole is located very far from the origin, the residue at this pole may be small. 
The transients corresponding to such a remote pole are small and last a short time.Terms 
in the expanded form of C ( s )  having very small residues contribute little to the transient 
response, and these terms may be neglected. If this is done, the higher-order system may 
be approximated by a lower-order one. (Such an approximation often enables us to es- 
timate the response characteristics of a higher-order system from those of a simplified 
one.) 

Next, consider the case where the poles of C ( s )  consist of real poles and pairs of 
complex-conjugate poles. A pair of complex-conjugate poles yields a second-order term 
in s. Since the factored form of the higher-order characteristic equation consists of first- 
and second-order terms, Equation (5-33) can be rewritten 

where we assumed all closed-loop poles are distinct. [If the closed-loop poles involve 
multiple poles, C ( s )  must have multiple-pole terms.] From this last equation, we see that 
the response of a higher-order system is composed of a number of terms involving the 
simple functions found in the responses of first- and second-order systems. The unit- 
step response c ( t ) ,  the inverse Laplace transform of C ( s ) ,  is then 

+ c, e-[/cwk' sin w,< t ,  for t  r 0 (5-34) 
k=l 

Thus the response curve of a stable higher-order system is the sum of a number of 
exponential curves and damped sinusoidal curves. 

If all closed-loop poles lie in the left-half s  plane, then the exponential terms and 
the damped exponential terms in Equation (5-34) will approach zero as time t  increases. 
The steady-state output is then c(m)  = a. 

Let us assume that the system considered is a stable one.Then the closed-loop poles 
that are located far from the jw axis have large negative real parts. The exponential 
terms that correspond to these poles decay very rapidly to zero. (Note that the hori- 
zontal distance from a closed-loop pole to the jw axis determines the settling time of tran- 
sients due to that pole. The smaller the distance is, the longer the settling time.) 

Remember that the type of transient response is determined by the closed-loop 
poles, while the shape of the transient response is primarily determined by the closed- 
loop zeros. As we have seen earlier, the poles of the input R ( s )  yield the steady-state 
response terms in the solution, while the poles of C ( s ) / R ( s )  enter into the exponential 
transient-response terms and/or damped sinusoidal transient-response terms. The zeros 
of C ( s ) / R ( s )  do not affect the exponents in the exponential terms, but they do affect the 
magnitudes and signs of the residues. 
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Dominant Closed-Loop Poles. The relative dominance of closed-loop poles is 
determined by the ratio of the real parts of the closed-loop poles, as well as by the rel- 
ative magnitudes of the residues evaluated at the closed-loop poles. The magnitudes of 
the residues depend on both the closed-loop poles and zeros. 

If the ratios of the real parts exceed 5 and there are no zeros nearby, then the closed- 
loop poles nearest the jw axis will dominate in the transient-response behavior because 
these poles correspond to transient-response terms that decay slowly.Those closed-loop 
poles that have dominant effects on the transient-response behavior are called dominant 
closed-loop poles. Quite often the dominant closed-loop poles occur in the form of a 
complex-conjugate pair. The dominant closed-loop poles are most important among all 
closed-loop poles. 

Note that the gain of a higher-order system is often adjusted so that there will exist 
a pair of dominant complex-conjugate closed-loop poles. The presence of such poles in 
a stable system reduces the effects of such nonlinearities as dead zone, backlash, and 
coulomb-friction. 

Stability Analysis in the Complex Plane. The stability of a linear closed-loop 
system can be determined from the location of the closed-loop poles in the s plane. If 
any of these poles lie in the right-half s plane, then with increasing time they give rise 
to the dominant mode, and the transient response increases monotonically or oscillates 
with increasing amplitude. This represents an unstable system. For such a system, as 
soon as the power is turned on, the output may increase with time. If no saturation 
takes place in the system and no mechanical stop is provided, then the system may 
eventually be subjected to damage and fail since the response of a real physical sys- 
tem cannot increase indefinitely. Therefore, closed-loop poles in the right-half s plane 
are not permissible in the usual linear control system. If all closed-loop poles lie to the 
left of the jw axis, any transient response eventually reaches equilibrium. This repre- 
sents a stable system. 

Whether a linear system is stable or unstable is a property of the system itself and 
does not depend on the input or driving function of the system. The poles of the input, 
or driving function, do not affect the property of stability of the system, but they con- 
tribute only to steady-state response terms in the solution.Thus, the problem of absolute 
stability can be solved readily by choosing no closed-loop poles in the right-half s plane, 
including the jw axis. (Mathematically, closed-loop poles on the j o  axis will yield oscil- 
lations, the amplitude of which is neither decaying nor growing with time. In practical 
cases, where noise is present, however, the amplitude of oscillations may increase at a 
rate determined by the noise power level. Therefore, a control system should not have 
closed-loop poles on the jw axis.) 

Note that the mere fact that all closed-loop poles lie in the left-half s plane does not 
guarantee satisfactory transient-response characteristics. If dominant complex-conjugate 
closed-loop poles lie close to the jw axis, the transient response may exhibit excessive 
oscillations or may be very slow.Therefore, to guarantee fast, yet well-damped, transient- 
response characteristics, it is necessary that the closed-loop poles of the system lie in a 
particular region in the complex plane, such as the region bounded by the shaded area 
in Figure 5-17. 

Since the relative stability and transient-response performance of a closed-loop con- 
trol system are directly related to the closed-loop pole-zero configuration in the s plane, 
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Figure 5-1'7 
Region in the 
complex plane 
satisfying the 
conditions 5 > 0.4 
and t, < 4/c. 

it is frequently necessary to adjust one or more system parameters in order to obtain suit- 
able configurations. The effects of varying system parameters on the closed-loop poles 
will be discussed in detail in Chapter 6. 

5-5 TRANSIENT-RESPONSE ANALYSIS WITH MATLAB 

Introduction. The practicalprocedure for plotting time response curves of systems 
higher than second-order is through computer simulation, In this section we present the 
computational approach to the transient-response analysis with MATLAB. In particular, 
we discuss step response, impulse response, ramp response, and responses to other simple 
inputs. 

MATLAB Representation of Linear Systems. The transfer function of a system 
is represented by two arrays of numbers. Consider the system 

This system can be represented as two arrays, each containing the coefficients of the 
polynomials in decreasing powers of s as follows: 

num = [2 251 
den = [ I  4 251 

An alternative representation is 

num = [O 2 251 
den = [ I  4 251 
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In this expression a zero is padded. Note that if zeros are padded, the dimensions of 
"num" vector and "den" vector become the same. An advantage of padding zeros is that 
the "num" vector and "den" vector can be directly added. For example, 

num + den = [O 2 251 + [ I  4 251 
= [I 6 501 

If num and den (the numerator and denominator of the closed-loop transfer function) 
are known, commands such as 

will generate plots of unit-step responses (tin the step command is the user-specified time.) 
For a control system defined in a state-space form, where state matrix A, control 

matrix B, output matrix C, and direct transmission matrix D of state-space equations are 
known, the command 

step(A,B,C, D) 

will generate plots of unit-step responses. The time vector is automatically determined 
when t is not explicitly included in the step commands. 

Note that the command step(sys) may be used to obtain the unit-step response of a 
system. First, define the system by 

sys = tf(num,den) 

or 
sys = ss(A,B,C,D) 

Then, to obtain, for example, the unit-step response, enter 

into the computer. 
When step commands have left-hand arguments such as 

no plot is shown on the screen. Hence it is necessary to use a plot command to see the 
response curves. The matrices y and x contain the output and state response of the sys- 
tem, respectively, evaluated at the computation time points t. (y has as many columns as 
outputs and one row for each element in t. x has as many columns as states and one row 
for each element in t.) 

Note in Equation (5-36) that the scalar iu is an index into the inputs of the system 
and specifies which input is to be used for the response, and t is the user-specified time. 
If the system involves multiple inputs and multiple outputs, the step command, such as 
given by Equation (5-36), produces a series of step response plots, one for each input 
and output combination of 

(For details, see Example 5-3.) 
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I EXAMPLE 5-3 Consider the following system: 

Obtain the unit-step response curves. 
Although it is not necessary to obtain the transfer matrix expression for the system to obtain 

the unit-step response curves with MATLAB, we shall derive such an expression for reference. 
For the system defined by 

the transfer matrix G(s )  is a matrix that relates Y ( s )  and U ( s )  as follows: 

Taking Laplace transforms of the state-space equations, we obtain 

sX(s) - x(0) = AX(s) + BU(s) 

In deriving the transfer matrix, we assume that x(0) = 0. Then, from Equation (5-37), we get 

Substituting Equation (5-39) into Equation (5-38), we obtain 

Y ( s )  = [ C ( S I  - A)-'B + D ] U ( S )  

Thus the transfer matrix G(s )  is given by 

G(s )  = C(s1 - A)-'B + D  

The transfer matrix G ( s )  for the given system becomes 

Hence 

Since this system involves two inputs and two outputs, four transfer functions may be defined 
depending on which signals are considered as input and output. Note that, when considering the 
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signal u, as the input, we assume that signal ti2 is zero, and vice versa.The four transfer functions 
are 

Y2(s) - s + 7.5 -- U s )  - -- 6.5 
U,(s) s2 + s + 6.5 ' U~(S) s2 + s + 6.5 

The four individual step-response curves can be plotted by use of the command 

MATLAB Program 5-1 produces four such step-response curves.The curves are shown in Figure 
5-18. 

Step Response 

From: U I From: U2 
0.6 0.6 

Time (sec) 
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To plot two step-response curves for the input u, in one diagram and two step-response curves 
for the input u2 in another diagram, we may use the commands 

and 

respectively. MATLAB Program 5-2 is a program to plot two step-response curves for the input 
u, in one diagram and two step-response curves for the input u, in another diagram. Figure 5-19 
shows the two diagrams, each consisting of two step-response curves. 

MATLAB Program 5-2 

yo - -- - --- - ---- - -- Step-response curves for system defined in state 
O/o space am------------- 

% ***** In this program we plot step-response curves of a system 
% having two inputs (u l  and u2) and two outputs (y l  and y2) ***** 
% ***** We shall first plot step-response curves when the input is  
% u l .  Then we shall plot step-response curves when the input is 
OI0 U2 ***** 

% ***** Enter matrices A, B, C, and D ***** 
A = [-I  -1;6.5 01; 
B = [ l  1;l 01; 
C = [ I  0;o 1 I ;  
D = [O O;o 01; 

% ***** To plot step-response curves when the input is  u l ,  enter 
% the command 'step(A,B,C,D,l)' ***** 

step(A,B,C,D,I 
grid 
title ('Step-Response Plots: lnput = u l  (u2 = 0) ' )  
text(3.4, -0.06, 'Y1 ') 
text(3.4, 1.4,'Y2') 

% ***** Next, we shall plot step-response curves when the input 
% is  u2. Enter the command 'step(A,B,C,D,2)' ***** 

step(A,B,C,D,2) 
grid 
title ('Step-Response Plots: lnput = u2 (u l  = 0)') 
text(3,O.I 4,'YI ') 
text(2.8,l.l ,'Y2') 
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Step-Response Plots: Input = ul  (u2 = 0) 

Step-Response Plots: Input = u2 (u l  = 0) 

Figure 5-19 
Unit-step response 
curves. (a) u, is the 
input (u2 = 0); (b) u, 
is the input (u ,  = 0). 

Writing Text on the Graphics Screen. To write text on the graphics screen, enter, 
for example, the following statements: 

text(3.4, -0.06,'Y 1 ') 

and 

text(3.4,1.4,'Y2') 

The first statement tells the computer to write 'Yl' beginning at the coordinates x = 3.4, 
y = -0.06. Similarly, the second statement tells the computer to write 'Y2' beginning at 
the coordinates x = 3.4, y = 1.4. [See MATLAB Program 5-2 and Figure 5-19(a).] 
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Another way to write a text or texts in the plot is to use the gtext command. The 
syntax is 

gtext('textl) 

When gtext is executed, the computer waits until the cursor is positioned (using a mouse) 
at the desired position in the screen. When the left inouse button is pressed, the text 
enclosed in simple quotes is written on the plot at the cursor's position. Any number of 
gtext commands can be used in a plot. (See, for example, MATLAB Program 5-15.) 

MATLAB Description of Standard Second-Order System. As noted earlier, the 
second-order system 

is called the standard second-order system. Given w, and 5, the command 

prints numlden as a ratio of polynomials in s. 
Consider, for example, the case where wn = 5 rad/sec and 5 = 0.4. MATLAB Program 

5-3 generates the standard second-order system where on = 5 rad/sec and 5 = 0.4. 

MATLAB Program 5-3 

wn = 5; 
damping-ratio = 0.4; 
[numO,den] = ord2(wn,damping_ratio); 
num = 5/\2*numO; 
printsys(num,den,'sl) 
numlden = 

25 
SA2 + 4s + 25 

Obtaining the Unit-Step Response of the Transfer-Function System. Let us 
consider the unit-step response of the system given by 

MATLAB Program 5-4 will yield a plot of the unit-step response of this system. A plot 
of the unit-step response curve is shown in Figure 5-20. 

Notice in Figure 5-20 (and many others) that the x axis and y axis labels are auto- 
matically determined. If it is desired to label the x axis and y axis differently, we need 
to modify the step command. For example, if it is desired to label the x axis as 't Sec' and 
the y axis as 'Input and Output,' then use step-response commands with left-hand 
arguments, such as 

c = step(num,den,t) 
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or, more generally, 

[ytx,t1 = step(numlden,t) 

See, for example, MATLAB Program 5-6. 

MATLAB Program 5-4 

% - - - - - - - - - - - - - Unit-step response ------------- 

% ***** Enter the numerator and denominator of the transfer 
% function ***** 
num = [O 0 251; 
den = [I 4 251; 

% ***** Enter the following step-response command ***** 

step(num,den) 

O/O ***** Enter grid and title of the plot ***** 

grid 
title (' Unit-Step Response of G(s) = 25/(sA2+4s+25)') 

Figure 5-20 
Unit-step response 
curve. 

Unit-Step Response of G(s) = 25/(s2+4s+25) 

0 0.5 1 1.5 2 2.5 3 
Time (sec) 

Obtaining Three-Dimensional Plot of Unit-Step Response Curves with 
MATLAB. MATLAB enables us to plot three-dimensional plots easily.The command 
to obtain three-dimensional plots is "mesh." 

EXAMPLE 5-4 Consider the closed-loop system defined by 
I 

C ( s )  -- - 1 

R ( s )  s2 + 25s + 1 
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(The undamped natural frequency w, is normalized to 1.) Plot unit-step response curves c ( t )  when 
5 assumes the following values: 

5 = 0, 0.2, 0.4, 0.6. 0.8, 1.0 

Also plot a three-dimensional plot. 
An illustrative MATLAB program for plotting a three-dimensional diagram of unit-step 

response curves of this second-order system is given in MATLAB 5-5. This program includes a 
program to obtain a two-dimensional plot (ordinary unit-step response curves) and a program to 
obtain a three-dimensional plot.The resulting plots are shown in Figures 5-21(a) and (b). [Note 
that mt.sh(y) will produce a three-dimensional plot the same as Figure 5-21(b) except that x axis 
and y axis are interchanged. See Problem A-5-17.] 

When a MATLAB program involves repetitive computations, many different MATLAB 
programs can be written. In this book many different MATLAB programs using loops such as 
"while loop" and "for loop" are presented for illustration purposes.The reader is advised to study 
all those programs and try to improve them if possible. 

MATLAB Program 5-5 

% ------- Two-dimensional plot and three-dimensional plot of unit-step 
% response curves for the standard second-order system with wn = 1 
% and zeta = 0, 0.2, 0.4, 0.6, 0.8, and 1. ------- 

t = 0:0.2:10; 
zeta = [O 0.2 0.4 0.6 0.8 I ] ;  

for n = 1 :6; 
num = [O 0 11; 
den = [ I  2*zeta(n) I ] ;  
[y(l:5l ,n),x,t] = step(num,den,t); 
end 

% To plot a two-dimensional diagram, enter the command plot(t,y). 

plot(t,y) 
grid 
title('Plot of Unit-Step Response Curves with \omega-n = 1 and \zeta = 0,0.2, 0.4, 0.6, 0.8, 1 ') 
xlabel('t (sec)') 
ylabel('Responsel) 
text(4.1 ,I .86,'\zeta = 0') 
text(3.5,1.5,'0.2') 
text(3 .5,1.24,'0.40 
text(3.5,1.08,'0.6') 
text(3.5,0.95,'0.8') 
text(3.5,0.86,'1 .O1) 

% To plot a three-dimensional diagram, enter the command mesh(t,zeta,yl). 

mesh(t,zeta,yl) 
title('Three-Dimensional Plot of Unit-Step Response Curves') 
xlabel('t Sec') 
ylabel('\zetal) 
zIabel('Response1) 

Section 5-5 / Transient-Response Analysis with MATLAB 25 1 



Plot of Unit-Step Response Curves with w, = 1 and 5 = 0,0.2,0.4,0.6,0.8, 1 

0 1 2 3 4 5 6 7 8 9 1 0  
t (sec) 

(a) 

Three-Dimensional Plot of Unit-Step Response Curves 

Figure 5-21 
(a) Two-dimensional 
plots of unit-step 
response curves for 

= 0,0.2,0.4,0.6,0.8, 
and 1.0; (b) three- 
dimensional plots of 
unit-step response 
curves. 

2 
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Obtaining Rise Time, Peak Time, Maximum Overshoot, and Settling Time 
with MATLAB. MATLAB can conveniently be used to obtain the rise time, peak time, 
maximum overshoot, and settling time. Consider the system defined by 

C(s) - 25 

R ( s )  s2 + 6s + 25 
MATLAB Program 5-6 yields the rise time, peak time, maximum overshoot, and settling 
time. A unit-step response curve for this system is given in Figure 5-22 to verify the 
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results obtained with MATLAB Program 5-6. (Note that this program can also be 
applied to higher-order systems. See Problem A-5-12.) 

MATLAB Program 5-6 

% - - - - - - - This i s  a MATLAB program to find the rise time, peak time, 
% maximum overshoot, and settling time of the second-order system 
% and higher-order system ------- 
% - - - - - - - In this example, we assume zeta = 0.6 and wn = 5 ------- 
num = [O 0 251; 
den = [ I  6 251; 
t = 0:0.005:5; 
[y,x,tl = step(num,den,t); 
r = 1; while y(r) < 1.0001; r = r + 1; end; 
rise-time = (r - 1 )*0.005 

rise-time = 

0.5550 

lymax,tpl = max(y); 
peak-time = (tp - 1 )*0.005 

peak-time = 

0.7850 

max-overshoot = ymax-I 

max-overshoot = 

0.0948 

s = 1001; while y(s) > 0.98 & y(s) < 1.02; s = s - I; end; 
settling-time = (s - 1 )*0.005 

settling-time = 

1 .I 850 

Figure 5-22, 
Unit-step response 
curve. 
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Impulse Response. The unit-impulse response of a control system may be 
obtained by using one of the following MATLAB commands: 

The command impulse(num,den) plots the unit-impulse response on the screen. The 
command impulse(A,B,C,D) produces a series of unit-impulse-response plots, one for 
each input and output combination of the system 

x = Ax + Bu 
y = Cx + Du 

with the time vector automatically determined. Note that in Equations (5-42) and (5-43) 
the scalar iu is an index into the inputs of the system and specifies which input to be used 
for the impulse response. 

Note also that in Equations (5-41) and (5-43) t is the user-supplied time vector.The 
vector t specifies the times at which the impulse response is to be computed. 

If MATLAB is invoked with the left-hand argument [y,x,t], such as in the case of 
[y,x,tl = impulse(A,B,C,D), the command returns the output and state responses of the 
system and the time vector t. No plot is drawn on the screen. The matrices y and x con- 
tain the output and state responses of the system evaluated at the time points t. (y has 
as many columns as outputs and one row for each element in t. x has as many columns 
as state variables and one row for each element in t.) 

1 EXAMPLE 5-5 Obtain the unit-impulse response of the following system: 

A possible MATLAB program is shown in MATLAB Program 5-7.The resulting response curve 
is shown in Figure 5-23. 

MATLAB Program 5-7 

A = [O 1;-1 -1 I; 
B = [0;11; 
(2 = [ I  01; 
I3 = [Ol; 
impulse(A,B,C,D); 
grid; 
title0Unit-Impulse Response') 
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I Unit-Impulse Response 

Figure 5-23 
Unit-impulse 
response curve. Time (sec) 

EXAJtPLE 5-6 Obtain the unit-impulse response of the following system: 
C(s) -- - G(s) = 

1 

R ( s )  s2 + 0.2s + 1 

MATLAB Program 5-8 will produce the unit-impulse response. The resulting plot is shown in 
Figure 5-24. 

MATLAB Program 5-8 

num = [O 0 1 I; 
den = [I 0.2 1 I; 
impulse(num,den); 
grid 
title('Unit-Impulse Response of G(s) = l/(sA2 + 0.2s + 1)') 

Unit-Impulse Response of G(s) = l/(s2+0.2s+l) 

Figure 5-24 
Unit-impulse 

I r e s~ons i  curve. Time (sec) 
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Alternative Approach to Obtain Impulse Response. Note that when the initial 
conditions are zero the unit-impulse response of G(s )  is the same as the unit-step 
response of sG(s). 

Consider the unit-impulse response of the system considered in Example 5-6. Since 
R(s)  = 1 for the unit-impulse input, we have 

We can thus convert the unit-impulse response of G ( s )  to the unit-step response of 
sG ( s )  . 

If we enter the following num and den into MATLAB, 

num = [O 1 01 

den = [I 0.2 I ]  

and use the step-response command; as given in MATLAB Program 5-9, we obtain a 
plot of the unit-impulse response of the system as shown in Figure 5-25. 

MATLAB Program 5-9 

num = [O 1 01; 
den = [ I  0.2 I ] ;  
step(num,den); 
grid 
title('Unit-Step Response of sG(s) = s/(sA2 + 0.2s + 1 )') 

Unit-Step Response of sG(s) = s/(s2+0.2s+l) 

Figure 5-25 
Unit-impulse 
response curve 
obtained as the unit- 
step response of 
sC(s)  = 
s/(s2 + 0.2s + 1). 

0 5 10 15 20 25 30 35 40 45 50 
Time (sec) 

Chapter 5 / Transient and Steady-State Response Analyses 



Ramp Response. There is no ramp command in MATLAB. Therefore, we need 
to use the step command or the lsim command (presented later) to obtain the ramp re- 
sponse. Specifically, to obtain the ramp response of the transfer-function system G(s), 
divide G(s) by s and use the step-response command. For example, consider the closed- 
loop system 

C(s) -- - 
1 

R(s) s2 + s + 1 

For a unit-ramp input, R(s) = l /s2.  Hence 

To obtain the unit-ramp response of this system, enter the following numerator and de- 
nominator into the MATLAB program, 

den = [ I  1 1 01; 

and use the step-response command. See MATLAB Program 5-10. The plot obtained 
by using this program is shown in Figure 5-26. 

MATLAB Program 5-1 0 1 
y,, - - - - - - - - - - - -- - - U n it-ramp response --------------- 

% ***** The unit-ramp response is obtained as the unit-step 
% response of G(s)/s *****. 

% ***** Enter the numerator and denominator of G(s)/s ***** 

num = [O 0 0 1 I; 
den = [ I  1 1 01; 

% ***** Specify the computing time points (such as t = 0:0.1:7) 
% and then enter step-response command: c = step(num,den,t) ***** 

O/O ***** In plotting the ramp-response curve, add the reference 
% input to the plot. The reference input is t. Add to the 
% argument of the plot command with the following: t,t,'-'. Thus 
% the plot command becomes as follows: plot(t,c,'ol,t,t,'-'1 ***** 

% ***** Add grid, title, xlabel, and ylabel ***** 

grid 
title('Unit-Ramp Response Curve for System G(s) = ll(sA2 + s + I) ') 
xlabel('t Sec') 
ylabel('lnput and Output') 
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Unit-Ramp Response Curve for System G(s) = l/(s2+s+l) 

Figure 5-26 
Unit-ramp response 
curve. 

0 I 2 3 4 5 6 7 
t Sec 

Unit-Ramp Response of a System Defined in State Space. Next, we shall treat 
the unit-ramp response of the system in state-space form. Consider the system described by 

x = Ax + Bu 
y = Cx + Du 

where u is the unit-ramp function. In what follows, we shall consider a simple example 
to explain the method. Consider the case where 

C = [1 01, . D = [ 0 ]  

When the initial conditions are zeros, the unit-ramp response is the integral of the unit- 
step response. Hence the unit-ramp response can be given by 

z = k i y  dr (5-44) 

From Equation (5-44), we obtain 
z = y = x ,  

Let us define 
z = X3 

Then Equation (5-45) becomes 
i3 = XI 

Combining Equation (5-46) with the original state-space equation, we obtain 
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where u appearing in Equation (5-47) i s  the unit-step function. These equations can be 
written as 

x = AAx + BBu 
z = CCx + DDu 

where 

Note that x3 i s  the third element of x. A plot of the unit-ramp response curve z ( t )  can 
be obtained by entering M A T L A B  Program 5-11 into the c0mputer.A plot of the unit- 
ramp response curve obtained from this MATLAB program i s  shown in Figure 5-27. 

MATLAB Program 5-1 1 

% - - - - - - - - - - - - - - - Unit-ramp response --------------- 

% ***** The unit-ramp response is obtained by adding a new 
% state variable x3. The dimension of the state equation 
% is enlarged by one ***** 
% ***** Enter matrices A, B, C, and D of the original state 
% equation and output equation ***** 
A =  [O 1;-1 -11; 
B = [O; I ] ;  
C =- [ I  01; 
D = [O]; 

% ***** Enter matrices AA, BB, CC, and D D  of the new, 
% enlarged state equation and output equation ***** 
AA = [A zeros(2,I );C 01; 
BB = [B;O]; 
CC = [O 0 11; 
D D  = [O]; 

% ***** Enter step-response command: [z,x,tl = step(AA,BB,CC,DD) ***** 
[z,x,t] = step(AA,BB,CC,DD); 

% ***** In plotting x3 add the unit-ramp input t in the plot 
O/O by entering the following command: plot(t,x3,'01,t,t,'-'1 ***** 
x3 = LO 0 1 1*x1; plot(t,x3,'o',ttt,'-'1 
grid 
title('Unit-Ramp Response') 
xlabel('t Sec') 
ylabel('lnput and Output') 
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Figure 5-27 
Unit-ramp response 
curve. 

Unit-Ramp Response 
10 

0 1 2 3 4 5 6 7 8 9 1 0  
t Sec 

Obtaining Response to Arbitrary Input. To obtain the response to an arbitrary 
input, the command lsim may be used. The commands like 

will generate the response to input time function r or u. See the following two examples. 
(Also, see Problems A-5-14 through A-5-16.) 

EXAMPLE 5-7 Using the lsim command, obtain the unit-ramp response of the following system: 
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We may enter MATLAB Program 5-12 into the computer to obtain the unit-ramp response.The 
resulting plot is shown in Figure 5-28. 

MATLAB Program 5-1 2 

% - - - - - - - Ramp Response ------- 

num = [O 0 1 I; 
den = [ I  1 11; 

t = 0:0.1:8; 
r = t; 
y = Isim(num,den,r,t); 
plot(t,r,'-',t,y,'ol) 
grid 
title('Unit-Ramp Response Obtained by Use of Command "lsim"') 
xlabel('t Sec') 
ylabel('Unit-Ramp Input and System Output') 
text(2.1,4.65,'Unit-Ramp Input') 
text(4.5,2.0,'0utput1) 

Unit-Ramp Response Obtained by Use of Command "lsim" 

Figure, 5-28 
Unit-ramp response. t Sec 
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EXAMPLE 5-8 Consider the system 

1 Using MATLAB, obtain the response curves y(t) when the input u is given by 

1. u = unit-step input 
2. u = e-' 

Assume that the initial state is x(0) = 0. 
A possible MATLAB program to produce the responses of this system to the unit-step input 

[u = l(t)] and the exponential input [u = e-'1 is shown in MATLAB Program 5-13.The result- 
ing response curves are shown in Figures 5-29(a) and (b), respectively. 

MATLAB Program 5-1 3 

t = 0:0.1:12; 
A = [-I 0.5;-1 01; 
B = [0;1]; 
C = [I 01; li.' 

D = [O]; 

% For the unit-step input u = I (t), use the command "y = step(A,B,C,D,l ,t)". 

y = step(A,B,C,D,l,t); 
plot(t,y) 
grid 
title('Unit-Step Response') 
xlabeH1t Sec') 
ylabel('Outputl) 

O/O For the response to exponential input u = exp(-t), use the command 
% z = Isim(A,B,C,D,u,t). 

u = exp(-t); 
z = Isim(A,B,C,D,u,t); 
plot(t ,~~,~- ' , t ,~,~o') 
grid 
title('Response to Exponential Input u = exp(-t)') 
xlabel('t Sec') 
ylabel('Exponential Input and System Output') 
text(2.3,0.49,'Exponential input') 
text(6.4,0.28,'0utput') 
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Figure 5-29 
(a) Unit-step 
response; 
(b) response to input 
u = e". 

Response to Exponential Input u = e-' 

Unit-Step Response 
1.4 

t Sec 
(b) 

1.2 

Response to  Initial Condition. In what follows we shall present a few methods 
for obtaining the response to an initial condition. Commands that we may use are "step" 
or "initial". We shall first present a method to obtain the response to initial condition 
using a simple example.Then we shall discuss the response to initial condition when the 
system is given &state-space form. Finally, we shall present a command initial to obtain 
the response of a system given in a state-space form. 

. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  - .  : .: 
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EXAMPLE 5-9 

Figure 5-30 
Mechanical system. 

Consider the mechanical system shown in Figure 5-30, where m = 1 kg, b = 3 N-sec/m, and 
k = 2 N/m. Assume that at t = 0 the mass m is pulled downward such that x ( 0 )  = 0.1 m and 
x ( 0 )  = 0.05 m/sec.The displacement x(t) is measured from the equilibrium position before the 
mass is pulled down. Obtain the motion of the mass subjected to the initial condition. (Assume 
no external forcing function.) 

The system equation is 

mx + bx + k x  = 0 

with the initial conditions x ( 0 )  = 0.1 m and x ( 0 )  = 0.05 m/sec. (x is measured from the equilib- 
rium position.) The Laplace transform of the system equation gives 

Solving this last equation for X ( s )  and substituting the given numerical values, we obtain 

This equation can be written as 

0.1s' + 0.35s 1 - 
X ( s )  = s2 + 3s + 2 s 

Hence the motion of the mass m may be obtained as the unit-step response of the following 
system: 

MATLAB Program 5-14 will give a plot of the motion of the mass.The plot is shown in Figure 5-31. 

MATLAB Program 5-1 4 

ol0 - - - - - - - - - - - - - - - Response to initial condition --------------- 

O/O ***** System response to initial condition is converted to 
O/O a unit-step response by modifying the numerator polynomial ***** 
Ol0 ***** Enter the numerator and denominator of the transfer 
% function G(s) ***** I 
num = [0.1 0.35 01; 
den = [ I  3 21; 

1 O/O ***** Enter the following step-response command ***** I 
1 % ***** Enter grid and title o i the plot ***** I 

grid 
title('Response of Spring-Mass-Damper System to Initial Condition') 
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Figure 5--31 
Response of the 
mechanical system 
considered in 
Example 5-9. 

Response of Spring-Mass-Damper System to Initial Condition 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (sec) 

Response to Initial Condition (State-Space Approach, Case 1). Consider the 
system defined by 

x = Ax, x(0) = x, (5-49) 

Let us obtain the response x(t) when the initial condition x(0) is specified. (There is no 
external input function acting on this system.) Assume that x is an n-vector. 

First, take Laplace transforms of both sides of Equation (5-49). 

sX(s) - x(0) = AX(s) 

This equation can be rewritten as 

sX(s) = AX(s) + x(0) (5-50) 

Taking the inverse Laplace transform of Equation (5-50), we obtain 

(Notice that by taking the Laplace transform of a differential equation and then by 
taking the inverse Laplace transform of the Laplace-transformed equation we generate 
a differential equation that involves the initial condition.) 

Now define 

z = x  

Then Equation (5-51) can be written as 

2 = Az + x(0) 6(t) 

By integrating Equation (5-53) with respect to t, we obtain 

where 
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Referring to Equation (5-52), the state x(t) is given by z(t). Thus, 

x = z = A z + B u  (5-55) 

The solution of Equations (5-54) and (5-55) gives the response to the initial condition. 
Summarizing, the response of Equation (549) to the initial condition x(0) is obtained 

by solving the following state-space equations: 

where 

B = x(O), u = l ( t )  

MATLAB commands to obtain the response curves in one diagram are given next. 

[x,z,t] = step(A,B,A,B); 

XI = [I 0 0 ... 0]*x1; 

x2 = [O 1 0 ... 0]*x8; 

Response to  Initial Condition (State-Space Approach, Case 2). Consider the 
system defined by 

x = Ax, x(0) = xo (5-56) 

y = Cx (5-57) 

(Assume that x is an n-vector and y is an m-vector.) 
Similar to case 1, by defining 

we can obtain the following equation: 

z = AZ + x(O)l(r) = Az + Bu 

where 

B=x(O),  u = l ( t )  

Noting that x = z, Equation (5-57) can be written as 

y = c z  

By substituting Equation (5-58) into Equation (5-59), we obtain 

y = C(Az + Bu) = CAz + CBu 

Chapter 5 / Transient and Steady-State Response Analyses 



The solution of Equations (5-58) and (5-60) gives the response of the system to a given 
initial condition. MATLAB commands to obtain the response curves (output curves yl 
versus t, y2 versus t, ... , ym versus t) are shown next. 

EXAMPLE 5-10 Obtain the response of the system subjected to the given initial condition. 

or 

x = Ax, x(0) = x, 

Obtaining the response of the system to the given initial condition becomes that of solving the unit- 
step response of the following system: 

where 

Hence a possible MATLAB program for obtaining the response may be given as shown in 
MATLAB Program 5-15. The resulting response curves are shown in Figure 5-32. 

MATLAB Program 5-1 5 

t = 0:0.01:3; 
A = [O 1 ;-I 0 -51; 
B = [2;1 I ;  
[x,z,tl = step(A,B,A,B,l ,t); 
X I  = [I 0]*x1; 
x2 = [O 1 ]*xi; 
plot(t,xl ,'x1,t,x2,'-'1 
grid 
title('Response to Initial Condition') 
xlabel('t Sec') 
ylabel('State Variables xl and x2') 
gtext('x1 ' )  
gtext('x2') 
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I Response to Initial Condition 

Obtaining Response to Initial Condition by Use of Command Initial. If the 
system is given in the state-space form, then the following command 

will produce the response to the initial condition. 
Suppose that we have the system defined by 

x = A x  + Bu, x(0) = x0 

where 

Then the command "initial" can be used as shown in MATLAB Program 5-16 to obtain 
the response to the initial condition. The response curves x,(t) and x2(t) are shown in 
Figure 5-33. They are the same as those shown in Figure 5-32. 
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MATLAB Program 5-1 6 

t = 0:0.05:3; 
A = [O 1 ;-I0 -51; 
B = [0;'0]; 
c = [O 01; 
D = [O]; 
[y,xI = initial(AtB,C,D,[2;1],t); 
XI = [ I  O1*x8; 
x2 = [O I 1*x1; 
plot(t,xl ,'o',t,xl ,t,x2,'x',t,x2) 
grid 
title('Response to Initial Condition') 
xlabel('t Sec') 
ylabel('State Variables XI and x2') 
gtext('x1 ') 
gtext('x2') 

Resvonse to Initial Condition 

Figure 5-33 
Response curves to 
initial condition. t Sec 

EXAMP'LE 5-1 1 Consider the following system that is subjected to the initial condition. (No external forcing 
function is present.) 

y + 8y + 17y + 1Oy = 0  

y ( O ) = 2 ,  j ( O ) = l ,  y(O)=O.5 

Obtain the response y ( t )  to the given initial condition. 
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By defining the state variables as 

X l  = Y  

we obtain the following state-space representation for the system: 

A possible MATLAB program to obtain the response y ( t )  is given in MATLAB Program 5-17. 
The resulting response curve is shown in Figure 5-34. 

MATLAB Program 5-1 7 

t = 0:0.05:10; 
A = [0 1 0;O 0 1 ;-I0 -1 7 -81; 
B = [O;O;Ol; 
c = [I 0 01; 
D = [O]; 
y = initial(ArB,C,D,[2;1;0.5],t); 
plot(t,y) 
grid 
title('Response to Initial Condition') 
xlabel('t (sec)') 
ylabel('0utput y') 

Figure 5-34 
Response y  ( t )  to 
initial condition. 

Resoonse to Initial Condition 
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5-6 AN EXAMPLE PROBLEM SOLVED WITH MATLAB 

The purpose of this section is to present a MATLAB solution to the response of a 
mechanical vibratory system. 

Mechanical Vibratory System. Consider the mechanical vibratory system shown 
in Figure 5-35(a). A wheel has a spring-mass-damper system hanging from &.The wheel 
is in a track that contains a flat (horizontal) portion, a slanted (downward at 45") por- 
tion, and another flat (horizontal) portion. We start the motion of the system by nudg- 
ing the wheel over the edge of the ramp. As the wheel drops down the ramp for a total 
of 0.707 m (vertically measured),.the mass m hanging from the spring and damper drops 
with it, and the mass gains momentum that dissipates gradually. In this problem the 
wheel is assumed to slide on the slanted portion of the track without friction. On the sec- 
ond flat portion of the track, the wheel slides and rolls.The wheel continues to move on 
the flat portion of the track until it is stopped by an external means. 

Push off edge 
to start 

Figure 5-35 
(a) Wheel with 
hanging mass- 
damper system; 
(b) dynamic 
response of the 
system. 

1.4 
0 0.5 1 

t Sec 
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Figure 5-36 
(a) Wheel with mass 
rn slides on inclined 
plane; (b) curve x ( t )  
versus t. 

Assume the following numerical values for m, b, and k: 

m = 4  kg, b = 40 N-sec/m, k = 400 N/m 

Assume also that the mass m,  of the wheel is negligible compared with the mass m. 
Obtain x ( t ) ,  the vertical motion of the wheel.Then obtain Y (s), the Laplace transform 
of y( t ) ,  which represents the up and down motion of mass m.The coordinate y  is attached 
to the spring-mass-damper system as shown in Figure 5-35(a) and is measured from the 
equilibrium position of the system.The initial conditions are that y(0)  = 0  and y (0 )  = 0. 
Note that in this problem we are interested only in the vertical motions of the spring- 
mass-damper system. Note also that the system is frictionless with the exception of the 
damper, which relies on viscosity for its operation. 

As the spring-mass-damper component travels down the ramp, it will undergo an 
acceleration produced as a result of the gravity force. When the spring-mass-damper 
reaches the level region at the bottom of the ramp, a shock will immediately be imposed 
on the spring-mass-damper component. It will, however, eventually come to a state of 
equilibrium following the impact due to the settling effects of the damper and spring.The 
dynamic response of this system is shown in Figure 5-35(b). 

Determination of x(t). The system starts with zero initial velocity and follows the 
track. The input to the system is the vertical position x  along the track, and the output 
is the vertical position y  of the mass. Since we assume no sliding friction, referring to 
Figure 5-36(a) we have in the z direction the following equation: 
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mi' = mg sin 45" 

or 

Let us define the time it takes for the wheel to move from z = 0 to z = 1 m as t, .Then 

which yields 

t, = 0.537 sec 

Thus x(t) can be given as follows: 

x(t) = 0.7072 = 0.707 X 3.4678 t2 = 2.452 t2, for 0 5 t 5 0.537 

= 0.707, for 0.537 < t 

It follows that from t = 0.537 sec to t = CG we have an input defined by a constant of 
0.707. The position x at the end of the ramp is 0.707 and it takes 0.537 sec to get there. 
A curve x(t) versus t is shown in Figure 5-36(b). Note that the positive direction of x ( t )  
is vertically downward. 

To get a better picture of the events taking place in the system, we need to look at 
the input, shown in Figure 5-36(b). The effects of gravity do not allow us to model the 
behavior of the system with an ordinary ramp, but rather a parabolic function, which is 
followed by the input. 

Determination of Transfer Function Y(s)/X(s).  Next, we shall obtain the equation 
of motion for the system and then the transfer function Y(s)/X(s). Since y is measured 
from the equilibrium position, the system equation becomes 

where x is the input to the system and y is the output. By substituting the given numer- 
ical values for m, b, and k, we obtain 

The transfer function for the system can now be given by 

where the input x(t) is given by 2.452t2 (for 0 5 t 5 0.537) and 0.707 (for 0.537 < t). 
Our problem here is to plot the response curve with MATLAB. 
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MATLAB Solution. Since the input consists of two different time functions (one 
is an acceleration input and the other is a step input,) we shall use "lsim" command in 
this problem. Since 

x(t) = 2.452t2, for 0 5 t 5 0.537 
x ( t )  = 0.707, for 0.537 < t 

we choose the computing time interval to be 0.001 sec. We define x as an array of points 
in MATLAB.This array initially follows x(t) = 2.452t2 and, after t = 0.537 sec, follows 
x(t) = 0.707. We assume that the time region is 0 5 t 5 1.5. 

The acceleration input in the first part can be written as 
tl = 0:0.001:0.537 
XI = 2.452*(tI .A2) 

where tl represents a time count and xl is the first part of the complete input function. 
(There are 538 calculation points from the initial position until the input reaches 
0.707 m.) For the second part of the input, we need a step function with magnitude 0.707. 
After time 0.537 sec, 

t2 = 0.538:0.001 :I .5 
x2 = 0.707*ones(size(t2)) 

(There are 963 points from 0.538 sec through 1.5 sec, inclusive.) The next step is to trans- 
form both inputs to one complete input: 

x = [ X I  x21 
(The two input equations are transformed into a single vector, in order to appear as a 
single entry in the lsim command argument.) 

Now we can use the lsim command 
y = lsim(num,den,x,t) 

and plot the response y(t) as well as the input x ( t ) .  A possible MATLAB program is 
shown in MATLAB Program 5-18. Note that the plotted input and output functions 
are negated. The resulting curves x(t) and y(t) are shown in Figure 5-37. 

MATLAB Program 5-1 8 

num = [O 10 1001; 
den = [ I  10 1001; 
tl = 0:0.001:0.537; 
XI = 2.452*(t1."2); 
t2 = 0.538:0.001:1.5; 
x2 = 0.707*ones(size(t2)); 
t = [tl t21; 
x = [XI x21; 
y = Isim(num,den,x,t); 
plot(t,-x,'xl,t,-y) 
grid 
title('Response of Hanging Mass-Damper-Spring System') 
xlabel('t (sec)') 
ylable('Negative of lnput x and Negative of Output y') 
text(0.07,-0.66,'Negative of lnput x') 
text(0.55,-0.14,'Negative of Output y') 
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Figure 5-37 
Curves - x ( t )  versus t 
and - y ( t )  versus t .  
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5-7 ROUTH'S STABILITY CRITERION 

The most important problem in linear control systems concerns stability. That is, under 
what conditions will a system become unstable? If it is unstable, how should we stabi- 
lize the system? In Section 5-4 it was stated that a control system is stable if and only if 
all closed-loop poles lie in the left-half s plane. Most linear closed-loop systems have 
closed-loop transfer functions of the form 

- C(S) bosm t- blsm-' t- ... t- b,-,s + b, B ( s )  -- - - - - 
R(s) aosn + alsn-' + + a n - ~ s  + a, A(s) 

where the a's and b's are constants and m 5 n. A simple criterion, known as Routh's 
stability criterion, enables us to determine the number of closed-loop poles that lie in 
the right-half s plane without having to factor the denominator polynomial. (The 
polynomial may include parameters that MATLAB cannot handle.) 

Routh's Stability Criterion. Routh's stability criterion tells us whether or not 
there are unstable roots in a polynomial equation without actually solving for them. 
This stability criterion applies to polynomials with only a finite number of terms. When 
the criterion is applied to a control system, information about absolute stability can be 
obtained directly from the coefficients of the characteristic equation. 

The procedure in Routh's stability criterion is as follows: 

1. Write the polynomial in s in the following form: 
aOsn + alsn-' + + U,-~S + a, = 0 (5-61) 

where the coefficients are real quantities. We assume that a, # 0; that is, any zero 
root has been removed. 

2. If any of the coefficients are zero or negative in the presence of at least one posi- 
tive coefficient, there is a root or roots that are imaginary or that have positive 
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real parts.Therefore, in such a case, the system is not stable. If we are interested in 
only the absolute stability, there is no need to follow the procedure further. Note 
that all the coefficients must be positive. This is a necessary condition, as may be 
seen from the following argument: A polynomial in s having real coefficients can 
always be factored into linear and quadratic factors, such as (s + a) and 
(s2 + bs f c ) ,  where a, b, and c are real. The linear factors yield real roots and 
the quadratic factors yield complex-conjugate roots of the polynomial. The factor 
(s2 + bs + c )  yields roots having negative real parts only if b and c are both pos- 
itive. For all roots to have negative real parts, the constants a, b, c, and so on, in all 
factors must be positive.The product of any number of linear and quadratic factors 
containing only positive coefficients always yields a polynomial with positive 
coefficients. It is important to note that the condition that all the coefficients be 
positive is not sufficient to assure stability. The necessary but not sufficient 
condition for stability is that the coefficients of Equation (5-61) all be present and 
all have a positive sign. (If all a's are negative, they can be made positive by 
multiplying both sides of the equation by -1.) 

3. If all coefficients are positive, arrange the coefficients of the polynomial in rows 
and columns according to the following pattern: 

The process of forming rows continues until we run out of elements. (The total number 
of rows is n + 1.) The coefficients b,, b2, b3, and so on, are evaluated as follows: 
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The evaluation of the b's is continued until the remaining ones are all zero. The same 
pattern of cross-multiplying the coefficients of the two previous rows is followed in .  
evaluating the c's, d's, e's, and so on. That is, 

and 

This process is continued until thk nth row has been completed. The complete array of 
coefficients is triangular. Note that in developing the array an entire row may be divid- 
ed or multiplied by a positive number in order to simplify the subsequent numerical 
calculation without altering the stability conclusion. 

Routh's stability criterion states that the number of roots of Equation (5-61) with 
positive real parts is equal to the number of changes in sign of the coefficients of the first 
column of the array. It should be noted that the exact values of the terms in the first col- 
umn need not be known; instead, only the signs are needed. The necessary and suffi- 
cient condition that all roots of Equation (5-61) lie in the left-half s plane is that all the 
coefficients of Equation (5-61) be positive and all terms in the first column of the array 
have positive signs. 

EXAMF'LE 5-1 2 Let us apply Routh's stability criterion to the following third-order polynomial: 

where all the coefficients are positive numbers. The array of coefficients becomes 

s3 a0 a2 

The condition that all roots have negative real parts is given by 
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EXAMPLE 5-1 3 Consider the following polynomial: 

Let us follow the procedure just presented and construct the array of coefficients. (The first two 
rows can be obtained directly from the given polynomial. The remaining terms are obtained from 
these. If any coefficients are missing, they may be replaced by zeros in the array.) 

s4 1 3 5  
s3 2' A- ,0' The second row is divided 

1 2 0 by 2. 
s2 1 5  
s' - 3  
so 5  

In this example, the number of changes in sign of the coefficients in the first column is 2. This 
means that there are two roots with positive real parts. Note that the result is unchanged when the 
coefficients of any row are multiplied or divided by a positive number in order to simplify the 
computation. 

Special Cases. If a first-column term in any row is zero, but the remaining terms 
are not zero or there is no remaining term, then the zero term is replaced by a very small 
positive number E and the rest of the array is evaluated. For example, consider the 
following equation: 

s 3 + 2 s 2 + s + 2 = 0  (5-62) 

The array of coefficients is 

If the sign of the coefficient above the zero ( E )  is the same as that below it, it indicates 
that there are a pair of imaginary roots. Actually, Equation (5-62) has two roots at 
s = * j .  

If, however, the sign of the coefficient above the zero ( E )  is opposite that below it, it 
indicates that there is one sign change. For example, for the equation 

the array of coefficients is 

s3 1 - 3  
One sign change: 

s2 O G E  2 

There are two sign changes of the coefficients in the first column. This agrees with the 
correct result indicated by the factored form of the polynomial equation. 
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If all the coefficients in any derived row are zero, it indicates that there are roots of 
equal magnitude lying radially opposite in the s plane, that is, two real roots with equal 
magnitudes and opposite signs and/or two conjugate imaginary roots. In such a case, the 
evaluation of the rest of the array can be continued by forming an auxiliary polynomi- 
al with the coefficients of the last row and by using the coefficients of the derivative of 
this polynomial in the next row. Such roots with equal magnitudes and lying radially op- 
posite in the s plane can be found by solving the auxiliary polynomial, which is always 
even. For a 2n-degree auxiliary polynomial, there are n pairs of equal and opposite roots. 
For example, consider the following equation: 

The array of coefficients is 

s5 1 24 - 25 
s4 2 48 - 50 t Auxiliary polynomial P(s) 
s3 0 0 

The terms in the s3 row are all zero. (Note that such a case occurs only in an odd- 
numbered row.) The auxiliary polynomial is then formed from the coefficients of the s4 
row. The auxiliary polynomial P(s) is 

P(s) = 2s4 + 48s' - 50 

which indicates that there are two pairs of roots of equal magnitude and opposite sign 
(that is, two real roots with the same magnitude but opposite signs or two complex- 
conjugate roots on the imaginary axis).These pairs are obtained by solving the auxiliary 
polynomial equation P(s) = 0. The derivative of P(s) with respect to s is 

The terms in the s3 row are replaced by the coefficients of the last equation, that is, 8 and 96. 
The array of coefficients then becomes 

s5 1 24 - 25 
s4 2 48 - 50 
s3 8 96 t Coefficients of d P  (s)/ds 
s2 24 - 50 
s1 112.7 0 
so - 50 

We see that there is one change in sign in the first column of the new array.Thus, the orig- 
inal equation has one root with a positive real part. By solving for roots of the auxiliary 
polynomial equation, 

we obtain 
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Figure 5-38 
Control system. 

These two pairs of roots of P(s) are a part of the roots of the original equation. As a 
matter of fact, the original equation can be written in factored form as follows: 

(s + 1)(s - 1)(s + jS)(s - j5)(s + 2) = 0 

Clearly, the original equation has one root with a positive real part. 

Relative Stability Analysis. Routh's stability criterion provides the answer to 
the question of absolute stability. This, in many practical case$ is not sufficient. We usu- 
ally require information about the relative stability of the system. A useful approach 
for examining relative stability is to shift the s-plane axis and apply Routh's stability 
criterion. That is, we substitute 

s = i - a (a = constant) 

into the characteristic equation of the system, write the polynomial in terms of i; and 
apply Routh's stability criterion to the new polynomial in i. The number of changes of 
sign in the first column of the array developed for the polynomial in i is equal to the num- 
ber of roots that are located to the right of the vertical line s = -a.Thus, this test reveals 
the number of roots that lie to the right of the vertical line s = -a. 

Application of Routh's Stability Criterion to Control System Analysis. Routh's 
stability criterion is of limited usefulness in linear control system analysis mainly because 
it does not suggest how to improve relative stability or how to stabilize an unstable 
system. It is possible, however, to determine the effects of changing one or two 
parameters of a system by examining the values that cause instability. In the following, 
we shall consider the problem of determining the stability range of a parameter value. 

Consider the system shown in Figure 5-38. Let us determine the range of K for 
stability. The closed-loop transfer function is 

The characteristic equation is 

The array of coefficients becomes 

s4 1 3 K  
s3 3 2 0 

s2 K 
s' 2 - ; K  

so K 
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For stability, K must be positive, And all coefficients in the first column must be positive. 
Therefore, 

When K = y ,  the system becomes oscillatory and, mathematically, the oscillation is 
sustained at constant amplitude. 

Note that the ranges of design parameters that lead to stability may be determined 
by use of Routh's stability criterion. 

5-8 EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL 
ACTIONS ON SYSTEM PERFORMANCE 

In this section, we shall investigate the effects of integral and derivative control actions 
on the system performance. Here we shall consider only simple systems so that the 
effects of integral and derivative control actions on system performance can be clearly 
seen. 

Integral Control Action. In the proportional control of a plant whose transfer 
function does not possess an integrator l/s, there is a steady-state error, or offset, in the 
response to a step input. Such an offset can be eliminated if the integral control action 
is included in the controller. 

In the integral control of a plant, the control signal, the output signal from the 
controller, at any instant is the area under the actuating error signal curve up to that 
instant.The control signal u ( t )  can have a nonzero value when the actuating error signal 
e ( t )  is zero, as shown in Figure 5-39(a).This is impossible in the case of the proportional 
controller since a nonzero control signal requires a nonzero actuating error signal. 
(A nonzero actuating error signal at steady state means that there is an offset.) Figure 
5-39(b) shows the curve e ( t )  versus t and the corresponding curve u ( t )  versus t  when the 
controller is of the proportional type. 

Note that integral control action, while removing offset or steady-state error, may lead 
to oscillatory response of slowly decreasing amplitude or even increasing amplitude, 
both of which are usually undesirable. 

Figure 5-39 
(a) Plots of e ( t )  and 
u ( t )  curves showing 
nonzero ctontrol 
signal when the 
actuating error signal 
is zero (integral 
control); (b) plots of 
e ( t )  and u ( t )  curves 
showing zero control 
signal when the 
actuating error signal 
is zero (proportional 0 t 
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Figure 5-40 
Proportional control 
system. 

Proportional Control of Systems. We shall show that the proportional control 
of a system without an integrator will result in a steady-state error with a step input. We 
shall then show that such an error can be eliminated if integral control action is included 
in the controller. 

Consider the system shown in Figure 5-40. Let us obtain the steady-state error in the 
unit-step response of the system. Define 

Since 

the error E ( s )  is given by 

For the unit-step input R(s )  = l / s ,  we have 

The steady-state error is 

Ts  + 1 
e,, = lim e( t )  = lim sE(s)  = lim - 1  -- 

t+m S+O ~ + o T s + l + K  K + 1  

Such a system without an integrator in the feedforward path always has a steady-state 
error in the step response. Such a steady-state error is called an offset. Figure 5-41 shows 
the unit-step response and the offset. 

Offset 

Figure 5-41 
Unit-step response 
and offset. 

t Proportional Plant 
controller I 
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Figure 5-42 
Integral control 
system. 

Figure 5-43 
Control system with 
a torque disturbance. 

Integral Control of Systems. Consider the system shown in Figure 5-42. The 
controller is an integral controller. The closed-loop transfer function of the system is 

Hence 

Since the system is stable, the steady-state error for the unit-step response can be 
obtained by applying the final-value theorem, as follows: 

e,, = limsE(s) 
s - t o  

s 2 ( ~ s  + 1) 1 
= liin - 

s-0 TS' + s + K s 

Integral control of the system thus eliminates the steady-state error in the response to 
the step input. This is an important improvement over the proportional control alone, 
which gives offset. 

Response to Torque Disturbances (Proportional Control). Let us investigate 
the effect of a torque disturbance occurring at the load element. Consider the system 
shown in Figure 5-43.The proportional controller delivers torque T to position the load 
element, which consists of moment of inertia and viscous friction. Torque disturbance is 
denoted by D. 

Assuming that the reference input is zero or R(s)  = 0, the transfer function between 
C(s) and D(s) is given by 

Section 5-8 / Effects of Integral and Derivative Control Actions on System Performance 283 



Hence 

Figure 5-44 
Proportional-plus- 
integral control of a 
load element 
consisting of moment 
of inertia and viscous 
friction. 

The steady-state error due to a step disturbance torque of magnitude T, is given by 

e,, = limsE(s) 
s - t o  

-s 
= lim Td 

.-to i s 2  + bs + K, 

At steady state, the proportional controller provides the torque -Td, which is equal in 
magnitude but opposite in sign to the disturbance torque Td. The steady-state output due 
to the step disturbance torque is 

TA 

The steady-state error can be reduced by increasing the value of the gain K,. Increasing 
this value: however, will cause the system response to be more oscillatory. 

Response to  Torque Disturbances (Proportional-Plus-Integral Control). To 
eliminate offset due to torque disturbance, the proportional controller may be replaced 
by a proportional-plus-integral controller. 

If integral control action is added to the controller, then, as long as there is an error 
signal, a torque is developed by the controller to reduce this error, provided the control 
system is a stable one. 

Figure 5-44 shows the proportional-plus-integral control of the load element, 
consisting of moment of inertia and viscous friction. 

The closed-loop transfer function between C(s) and D(s) is 

In the absence of the reference input, or r ( t )  = 0, the error signal is obtained from 
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Figure 5-45 
Integral control of a 
load element 
consisting of moment 
of inertia and viscous 
friction. 

If this control system is stable, that is, if the roots of the characteristic equation 

have negative real parts, then the steady-state error in the response to a unit-step 
disturbance torque can be obtained by applying the final-value theorem as follows: 

e,, = limsE(s) 
s+O 

Thus steady-state error to the step disturbance torque can be eliminated if the controller 
is of the proportional-plus-integral type. 

Note that the integral control action added to the proportional controller has 
converted the originally second-order system to a third-order one. Hence the control 
system may become unstable for a large value of K p  since the roots of the characteristic 
equation may have positive real parts. (The second-order system is always stable if the 
coefficients in the system differential equation are all positive.) 

It is important to point out that if the controller were an integral controller, as in 
Figure 5-45, then the system always becomes unstable because the characteristic 
equation 

will have roots with positive real parts. Such an unstable system cannot be used in 
practice. 

Note that in the system of Figure 5-44 the proportional control action tends to 
stabilize the system, while the integral control action tends to eliminate or reduce steady- 
state error in response to various inputs. 

Derivative Control Action. Derivative control action, when added to a 
proportional controller, provides a means of obtaining a controller with high 
sensitivity. An advantage of using derivative control action is that it responds to the 
rate of change of the actuating error and can produce a significant correction before 
the magnitude of the actuating error becomes too large. Derivative control thus 
anticipates the actuating error, initiates an early corrective action, and tends to 
increase the stability of the system. 
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Figure 5-46 
(a) Proportional 
control of a system 
with inertia load; 
(b) response to a 
unit-step input. 

Although derivative control does not affect the steady-state error directly, it adds 
damping to the system and thus permits the use of a larger value of the gain K, which 
will result in an improvement in the steady-state accuracy. 

Because derivative control operates on the rate of change of the actuating error and 
not the actuating error itself, this mode is never used alone. It is always used in combi- 
nation with proportional or proportional-plus-integral control action. 

Proportional Control of Systems with Inertia Load. Before we discuss the effect 
of derivative control action on system performance, we shall consider the proportional 
control of an inertia load. 

Consider the system shown in Figure 5-46(a). The closed-loop transfer function is 
obtained as 

C ( s )  -- - KP 
R(s )  Js2 + Kp 

Since the roots of the characteristic equation 

Js2 + Kp = 0 

are imaginary, the response to a unit-step input continues to oscillate indefinitely, as 
shown in Figure 5-46(b). 

Control systems exhibiting such response characteristics are not desirable. We shall 
see that the addition of derivative control will stabilize the system. 

Proportional-Plus-Derivative Control of a System with Inertia Load. Let us 
modify the proportional controller to a proportional-plus-derivative controller whose 
transfer function is K,(I + T ~ S )  The torque developed by the controller is proportional 
to ~ , ( e  + ~ , e ) .  Derivative control is essentially anticipatory, measures the instantaneous 
error velocity, and predicts the large overshoot ahead of time and produces an 
appropriate counteraction before too large an overshoot occurs. 
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(a) ('J) 

Figure 5-47 
(a) Proportional-plus-derivative control of a system with inertia load; (b) response to a unit-step input. 

Consider the system shown in Figure 5-47(a). The closed-loop transfer function is 
given by 

C ( s )  ~ p ( l  + T~S) -- - 
R(s )  Js2 + KpTds + Kp 

The characteristic equation 

now has two roots with negative real parts for positive values of J, Kp, and Td. Thus 
derivative control introduces a damping effect. A typical response curve c ( t )  to a unit- 
step input is shown in Figure 5-47(b). Clearly, the response curve shows a marked 
improvement over the original response curve shown in Figure 5-46(b). 

Proportional-Plus-Derivative Control of Second-Order Systems. A compromise 
between acceptable transient-response behavior and acceptable steady-state behavior may 
be achieved by use of proportional-plus-derivative control action. 

Consider the system shown in Figure 5-48. The closed-loop transfer function is 

The steady-state error for a unit-ramp input is 

e, = - 

The characteristic equation is 
KP 

The effective damping coefficient of this system is thus B + Kd rather than B. Since the 
damping ratio 6 of this system is 

Figure 5-48 
Control system. 
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it is possible to make both the steady-state error e,, for a ramp input and the maximum 
overshoot for a step input small by making B small, K, large, and Kd large enough so that 
[ is between 0.4 and 0.7. 

5-9 STEADY-STATE ERRORS IN UNITY-FEEDBACK 
CONTROL SYSTEMS 

Errors in a control system can be attributed to many factors. Changes in the reference 
input will cause unavoidable errors during transient periods and may also cause steady- 
state errors. Imperfections in the system components, such as static friction, backlash, and 
amplifier drift, as well as aging or deterioration, will cause errors at steady state. In this 
section, however, we shall not discuss errors due to imperfections in the system com- 
ponents. Rather, we shall investigate a type of steady-state error that is caused by the 
incapability of a system to follow particular types of inputs. 

Any physical control system inherently suffers steady-state error in response to 
certain types of inputs.A system may have no steady-state error to a step input, but the 
same system may exhibit nonzero steady-state error to a ramp input. (The only way we 
may be able to eliminate this error is to modify the system structure.) Whether a given 
system will exhibit steady-state error for a given type of input depends on the type of 
open-loop transfer function of the system, to be discussed in what follows. 

Classification of Control Systems. Control systems may be classified according 
to their ability to follow step inputs, ramp inputs, parabolic inputs, and so on. This is a 
reasonable classification scheme because actual inputs may frequently be considered 
combinations of such inputs. The magnitudes of the steady-state errors due to these 
individual inputs are indicative of the goodness of the system. 

Consider the unity-feedback control system with the following open-loop transfer 
function G ( s ) :  

It involves the term sN in the denominator, representing a pole of multiplicity N at the 
origin.The present classification scheme is based on the number of integrations indicated 
by the open-loop transfer function. A system is called type 0, type 1, type 2,. . . ,if N = 0, 
N = 1, N = 2,.  . . ,respectively. Note that this classification is different from that of the 
order of a system. As the type number is increased, accuracy is improved; however, 
increasing the type number aggravates the stability problem. A compromise between 
steady-state accuracy and relative stability is always necessary. 

We shall see later that, if G ( s )  is written so that each term in the numerator and 
denominator, except the term sN, approaches unity as s approaches zero, then the open- 
loop gain I< is directly related to the steady-state error. 

Steady-State Errors. Consider the system shown in Figure 5-49.The closed-loop 
transfer function is 
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Figure 5-49 
Control system. 

The transfer function between the error signal e(t) and the input signal r ( t )  is 

where the error e ( t )  is the difference between the input signal and the output signal. 
The final-value theorem provides a convenient way to find the steady-state 

performance of a stable system. Since E(s)  is 

the steady-state error is 

e,, = lirn e(t) = limsE(s) = lim sR(s) 
t+m S+O s-0 1 -I- G(s) 

The static error constants defined in the following are figures of merit of control systems. 
The higher the constants, the smaller the steady-state error. In a given system, the out- 
put may be the position, velocity, pressure, temperature, or the like. The physical form 
of the output, however, is immaterial to the present analysis. Therefore, in what follows, 
we shall call the output  position^' the rate of change of the output "velocity," and so on. 
This means that in a temperature control system "position" represents the output tem- 
perature, "velocity" represents the rate of change of the output temperature, and so on. 

Static Position Error Constant K,. The steady-state error of the system for a 
unit-step input is 

s 1 
e,, = lirn 

3-0 1 + G(s) 2 

The static position error constant K, is defined by 

K, = lim G(s) = G(0) 
s+o 

Thus, the steady-state error in terms of the static position error constant K,  is given by 

For a type 0 system, 

K(T,S + l)(Tbs + I ) . . .  
K, = lim = K 

s-0 (TI s + ~ ) ( T ~ S  + 1) ... 
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For a type 1 or higher system, 

K(T,S + I)(T,S + I) ... 
Kp = lim = oo, for N r 1 

s-0 sN(T1s + 1)(T2s + I ) . . .  

Hence, for a type 0 system, the static position error constant K,  is finite, while for a type 
1 or higher system, Kp is infinite. 

For a unit-step input, the steady-state error e,, may be summarized as follows: 

1 
ess = - for type 0 systems 

1 + K '  

ess = 0, for type 1 or higher systems 

From the foregoing analysis, it is seen that the response of a feedback control system 
to a step input involves a steady-state error if there is no integration in the feedforward 
path. (If small errors for step inputs'can be tolerated, then a type 0 system may be 
permissible, provided that the gain K is sufficiently large. If the gain K is too large, how- 
ever, it is difficult to obtain reasonable relative stability.) If zero steady-state error for 
a step input is desired, the type of the system must be one or higher. 

Static Velocity Error Constant K,. The steady-state error of the system with a 
unit-ramp input is given by 

s 1 
e,, = lim 

$ 4 0  1 + G ( s )  s2 

1 
= lim - 

s+O sG(s)  

The static velocity error constant Kv is defined by 

Thus, the steady-state error in terms of the static velocity error constant K,  is given by 

The term velocity error is used here to express the steady-state error for a ramp 
input.The dimension of the velocity error is the same as the system error.That is, velocity 
error is not an error in velocity, but it is an error in position due to a ramp input. 
For a type 0 system, 

SK(T,S + I)(T,S + 1) ... 
Kv = lim = 0 

3-0 (TI s + 1)(T2s + 1) . . . 

For a type 1 system, 

SK(T,S + I)(T,S + 1) . . . 
Kv = lim = K 

s-0 S(T,S + 1)(T2s + 1 )  ... 
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Figure 5-C;O 
Response of a type 1 
unity-feedback 
system to ;3 ramp 
input. 

For a type 2 or higher system, 

SK(T,S + I)(T,S + I )  . . . 
KO = lim = CO, for N r 2 

.-to s N ( ~ , s  + 1)(T2s + I). . .  

The steady-state error e,, for the unit-ramp input can be summarized as follows: 

1 
e,, = - - - c o  for type 0 systems 

Kv 
1 1  - - ess = - - for type 1 systems 

K, K' 

1 
ess = - - - 0, for type 2 or higher systems 

K" 

The foregoing analysis indicates that a type 0 system is incapable of following a ramp 
input in the steady state.The type 1 system with unity feedback can follow the ramp input 
with a finite error. In steady-state operation, the output velocity is exactly the same as the 
input velocity, but there is a positional error. This error is proportional to the velocity of 
the input and is inversely proportional to the gain K. Figure 5-50 shows an example of the 
response of a type 1 system with unity feedback to a ramp input. The type 2 or higher 
system can follow a ramp input with zero error at steady state. 

Static Acceleration Error Constant K,. The steady-state error of the system 
with a unit-parabolic input (acceleration input), which is defined by 

t2 
r ( t )  = -, fort 2 0 

2 

= 0, fort < 0 
is given by 

s 1 
e,, = lim - 

s+o 1 + G ( s )  s3 

- - 1 
lim s 2 ~ ( s )  
s- to  
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The static acceleration error constant K, is defined by the equation 

Ka = lim s 2 ~ ( s )  
s+0 

The steady-state error is then 

Note that the acceleration error, the steady-state error due to a parabolic input, is an 
error in position. 

The values of K ,  are obtained as follows: 
For a type 0 system, 

s 2 ~ ( T , s  + 1)(T6s + I ) . . .  
Ka = lim = 0 

s-0 (T,S + 1)(T2s + 1) . . . 

For a type 1 system, 

S ~ K ( T , S  + I ) ( T ~ S  + I ) . . .  
Ka = lim = 0 

s-0 S(T,S + 1)(T2s + 1) ... 

For a type 2 system, 

S ~ K ( T , ,  + I)(T,S + 1) ... 
KO = lim = K  

s-0 s2(T1s + 1)(T2s + 1) " '  

For a type 3 or higher system, 

S'K(T,S + 1)(Tbs + 1) ... 
K, = lim = CQ, for N r 3 

s-0 sN(T1s + 1)(T2s + 1)s.. 

Thus, the steady-state error for the unit parabolic input is 

e,, = m, for type 0 and type 1 systems 

1 
ess = , for type 2 systems 

e,, = 0, for type 3 or higher systems 

Note that both type 0 and type 1 systems are incapable of following a parabolic input 
in the steady state. The type 2 system with unity feedback can follow a parabolic input 
with a finite error signal. Figure 5-51 shows an example of the response of a type 2 sys- 
tem with unity feedback to a parabolic input. The type 3 or higher system with unity 
feedback follows a parabolic input with zero error at steady state. 
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Figure 5-51 
Response of a type 2 
unity-feedback 
system to a parabolic 
input. 

Summary. Table 5-1 summarizes the steady-state errors for type 0, type 1, and 
type 2 systems when they are subjected to various inputs. The finite values for steady- 
state errors appear on the diagonal line. Above the diagonal, the steady-state errors are 
infinity; below the diagonal, they are zero. 

Table 5-1 Steady-State Error in Terms of Gain K 

Remember that the terms position error, velocity error, and acceleration error mean 
steady-state deviations in the output position. A finite velocity error implies that after 
transients have died out the input and output move at the same velocity but have a finite 
position difference. 

The error constants Kp, K,, and K, describe the ability of a unity-feedback system 
to reduce or eliminate steady-state error. Therefore, they are indicative of the steady-state 
performance. It is generally desirable to increase the error constants, while maintaining 
the transient response within an acceptable range. It is noted that to improve the steady- 
state performance we can increase the type of the system by adding an integrator or 
integrators to the feedforward path. This, however, introduces an additional stability 
problem.The design of a satisfactory system with more than two integrators in series in 
the feedforward path is generally not easy. 

Type 0 system 

Type 1 system 

Type 2 system 
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Step Input 
r ( t )  = 1 

1 
1 + K 

0 

0 

Ramp Input 
r ( t )  = t  

00 

1 
- 

K 

0 

Acceleration Input 
r ( t )  = $t2 

00 

00 

1 - 
K 



EXAMPLE PROBLEMS AND SOLUTIONS 

A-5-1. In the system of Figure 5-52, x ( t )  is the input displacement and O(t) is the output angular 
displacement. Assume that the masses involved are negligibly small and that all motions are 
restricted to be small; therefore, the system can be considered linear. The initial conditions for x 
and 0  are zeros, or x(0-)  = 0 and O(0-) = 0. Show that this system is a differentiating element. 
Then obtain the response O(t) when x ( t )  is a unit-step input. 

Solution. The equation for the system is 

b ( ~  - ~ e )  =  LO 

The Laplace transform of this last equation, using zero initial conditions, gives 

And so 

Thus the system is a differentiating system. 
For the unit-step input X ( s )  = l / s ,  the output O(s )  becomes 

The inverse Laplace transform of O(s )  gives 

Figure 5-52 
Mechanical system. 
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Figure 5-53 
Unit-step i~nput and 
the response of the 
mechanical system 
shown in F g  '1 ure 
5-52. 

Note that if the value of k / b  is large the response 8 ( r )  approaches a pulse signal as shown in 
Figure 5-53. 

A-5-2. Consider the mechanical system shown in Figure 5-54. Suppose that the system is at rest initially 
[x (o )  = 0, i ( 0 )  = 01, and at t = 0  it is set into motion by a unit-impulse force. Obtain a mathe- 
matical model for the system.Then find the motion of the system. 

Solution. The system is excited by a unit-impulse input. Hence 

This is a mathematical model for the system. 
Taking the Laplace transform of both sides of this last equation gives 

m [ s 2 x ( s )  - sx(0) - i ( 0 ) ]  + k X ( s )  = 1 

By substituting the initial conditions x(0)  = 0  and k ( 0 )  = 0  into this last equation and solving for 
X ( s ) ,  we obtain 

The inverse Laplace transform of X ( s )  becomes 

The oscillation is a simple harmonic motion.The amplitude of the oscillation is l / a .  

Figure 5-54 
Mechanicall system. 

- x  

Impulsive 
force 
S(t1 
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A-5-3. Gear trains are often used in servo systems to reduce speed, to magnify torque, or to obtain the 
most efficient power transfer by matching the driving member to the given load. 

Consider the gear train system shown in Figure 5-55. In this system, a load is driven by a 
motor through the gear train. Assuming that the stiffness of the shafts of the gear train is infinite 
(there is neither backlash nor elastic deformation) and that the number of teeth on each gear is 
proportional to the radius of the gear, obtain the equivalent moment of inertia and equivalent 
viscous-friction coefficient referred to the motor shaft and referred to the load shaft. 

In Figure 5-55 the numbers of teeth on gears 1,2,3, and 4 are N l ,  N2 ,  N3,  and N4,  respectively. 
The angular displacements of shafts, 1,2, and 3 are 0 , ,  B2,  and 03, respectively.Thus, 02/01 = N, IN2 
and 03/02 = N3/N4.  The moment of inertia and viscous-fraction coefficient of each gear train 
component are denoted by J,, b ,;  Jz ,  b2; and J3, b j ;  respectively. (J3 and b3 include the moment of 
inertia and friction of the load.) 

Solution. For this gear train system, we can obtain the following equations: For shaft 1, 

where T,,, is the torque developed by the motor and TI is the load torque on gear 1 due to the rest 
of the gear train. For shaft 2, 

J2o2 + b2b2 + T3 = T2 (5-64) 

where T2 is the torque transmitted to gear 2 and T3 is the load torque on gear 3 due to the rest of 
the gear train. Since the work done by gear 1 is equal to that of gear 2, 

Figure 5-55 
Gear train system. 

If N1/Nz < 1, the gear ratio reduces the speed as well as magnifies the torque. For shaft 3, 

where T, is the load torque and T, is the torque transmitted to gear 4. T3 and T4 are related by 

and O3 and 0, are related by 

NI 
Shaft I 

N3 
Shaft 2 

Input torque 
from motor @ J 2 . h  p I ka '-Gear 3 

Tm (t)  
- 

Gear 2 -t- Shaft 3 
- 

Gear 4 -+ 

torque 
TL (0 
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Eliminating TI ,  T2, T3, and T4 from Equations (5-63), (5-64), and (5-65) yields 

Eliminating 8' and O3 from this last equation and writing the resulting equation in terms of O1 and 
its time derivatives, we obtain 

Thus, the equivalent moment of inertia and viscous-friction coefficient of the gear train referred 
to shaft 1 are given, respectively, by 

Similarly, the equivalent moment of inertia and viscous-friction coefficient of the gear train referred 
to the load shaft (shaft 3) are given, respectively, by 

The relationship between J,,, and J3eq is thus 

and that between bleq and bjcq is 

The effect of J2 and J3 on an equivalent moment of inertia is determined by the gear ratios Nl/N2 
and N3/N4. For speed-reducing gear trains, the ratios, Nl/N2 and N3/N4 are usually less than unity. 
If Nl IN2 G 1 and N3/N4 < 1, then the effect of J2 and J3 on the equivalent moment of inertia J,,, 
is negligible. Similar comments apply to the equivalent viscous-friction coefficient bIeq of the gear 
train. In terms of the equivalent moment of inertia Jleq and equivalent viscous-friction coefficient 
ble, , Equation (5-66) can be simplified to give 

where 
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A-5-4. When the system shown in Figure 5-%(a) is subjected to a unit-step input, the system output 
responds as shown in Figure 5-56(b). Determine the values of K and T from the response curve. 

Solution. The maximum overshoot of 25.4% corresponds to 6 = 0.4. From the response curve 
we have 

t ,  = 3 

Consequently, 

It follows that 

From the block diagram we have 

from which 

Therefore, the values of T and K are determined as 

Figure 5-56 
(a) Closed-loop 
system; (b) unit-step 
response curve. 
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A-5-5. Determine the values, of K and k of the closed-loop system shown in Figure 5-57 so that the maximum 
overshoot in unit-step response is 25% and the peak time is 2 sec. Assume that J = 1 kg-m2. 

Solution. The closed-loop transfer function is 

C ( s )  -- - K 

R ( s )  Js2 + Kks  + K 

By substituting J = 1 kg-m2 into this last equation, we have 

C ( s )  -- - K 

R ( s )  s2 + Kks  + K 
Note that in this problem 

The maximum overshoot M ,  is 

M = e-<"lm 

which is specified as 25%. Hence 

e - 5 v / m  = 0 25 

from which 

The peak time tp is specified as 2 sec. And so 

Then the undamped natural frequency w, is 

'3'd - 
0, = = 1.72 

e - v ' i T i 2  
Therefore, we obtain 

K = 02, = 1.722 = 2.95 N-m 

25% 2 x 0.404 x 1.72 k = - -  - 
K 

= 0.471 sec 
2.95 

Figure 5-5'7 
Closed-loop system. 
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A-5-6. Figures 5-58(a) shows a mechanical vibratory system. When 2 lb of force (step input) is applied 
to the system, the mass oscillates, as shown in Figure 5-58(b). Determine m, b, and k of the system 
from this response curve. The displacement x is measured from the equilibrium position. 

Solution. The transfer function of this system is 

Since 

we obtain 

It follows that the steady-state value of x is 

Hence 

k = 20 lb,/ft 

Note that M ,  = 9.5% corresponds to [ = 0.6.The peak time t ,  is given by 

The experimental curve shows that t ,  = 2 sec. Therefore, 

Figure 5-58 
(a) Mechanical 
vibratory system; 
(b) step-response 
curve. 
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Since w2, = k l m  = 2 0 / m ,  we obtain 

20 
20 - 5.2 slugs = 166 lb m = - = - -  

w;. 1.962 

(Note that 1 slug = 1 lb,-sec2/ft.) Then b is determined from 

A-5-7. Consider the unit-step response of the second-order system 

(3s) 2 
-- - "Jn 

R ( s )  s2 + 25w,s + "J: 
The amplitude of the exponentially.damped sinusoid changes as a geometric series. At time 
t = t , = a / w , ,  the amplitude is equal to eiu1""b. After one oscillation, or at 
t = t ,  + 2 r / w d  = 3 r / w d ,  the amplitude is equal to e-(u1"c1)3rr; after another cycle of oscillation, the 
amplitude is eiul"d)5". The logarithm of the ratio of successive amplitudes is called the logarithmic 
decrement. Determine the logarithmic decrement for this second-order system. Describe a method 
for experimental determination of the damping ratio from the rate of decay of the oscillation. 

Solution. Let us define the amplitude of the output oscillation at t = t i  to be xi, where 
ti = t ,  + ( i  - 1)T(T = period of oscillation). The amplitude ratio per one period of damped 
oscillation is 

Thus, the logarithmic decrement 8 is 

It is a function only of the damping ratio 5. Thus, the damping ratio 5 can be determined by use 
of the logarithmic. decrement. 

In the experimental determination of the damping ratio 5 from the rate of decay of the oscil- 
lation, we measure the amplitude x, at t = t ,  and amplitude xn at t = t ,  + ( n  - l)T. Note that 
it is necessary to choose n large enough so that the ratio o xl/xn is not near unity. Then 

Hence 
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A-5-8. In the system shown in Figure 5-59, the numerical values of rn, b, and k are given as rn = 1 kg, 
b = 2 N-sec/m, and k = 100 N/m. The mass is displaced 0.05 m and released without initial ve- 
locity. Find the frequency observed in the vibration. In addition, find the amplitude four cycles later. 
The displacement x is measured from the equilibrium position. 

Solution. The equation of motion for the system is 

I 1 , Substituting the numerical values form, b, and k into this equation gives 

where the initial conditions are x(0) = 0.05 and x(0)  = 0. From this last equation the undamped Figure 5-59 . 
natural frequency w ,  and the damping ratio are found to be 

Spring-mass-damper 
system. w, = 10, 5 = 0.1 

The frequency actually observed in the vibration is the damped natural frequency w d .  

wd = a,- = 10- = 9.95 rad/sec 

In the present analysis, x(0)  is given as zero.Thus, solution x( t )  can be written as 

It follows that at t = nT, where T = 27r/wd, 

Consequently, the amplitude four cycles later becomes 

x(4T) = x ( o ' ) e - i w n 4 ~  = x(0)e-(o.l)(lo)(4)(o.6315) 

A-5-9. Obtain both analytically and computationally the unit-step response of tbe following higher-order 
system: 

C ( s )  3s3 + 25s2 + 72s + 80 -- - 
R(s )  s4 + 8s3 + 40s2 + 96s + 80 

[Obtain the partial-fraction expansion of C ( s )  with MATLAB when R(s )  is a unit-step function.] 

Solution. MATLAB Program 5-19 yields the unit-step response curve shown in Figure 5-60. It 
also yields the partial-fraction expansion of C ( s )  as follows: 

Chapter 5 / Transient and Steady-State Response Analyses 



MATLAB Program 5-1 9 

% ------- Unit-Step Response of C(s)/R(s) and Partial-Fraction Expansion of C(s) ------- 

num = [O 3 25 72 801; 
den = [ I  8 40 96 801; 
step(num,den); 
v = [O 3 0 1.21; axis(v), grid 

% To obtain the partial-fraction expansion of C(s), enter commands 

% numl = [O 0 3 25 72 801; 
% denl = [I 8 40 96 80 01; 
% [r,p,k] = residuehum1 ,den1 

numl = [O 0 3 25 72 801; 
denl = [I 8 40 96 80 01; 
[r,p,k] = residuehum1 ,den1 ) 

r = 

-0.281 3- 0.1 71 9i 
-0.281 3+ 0.1 71 9i 
-0.4375 
-0.3750 
1 .oooo 

P = 

-2.0000+ 4.0000i 
-2.0000- 4.0000i 
-2.0000 
-2.0000 
0 

k = 

[I 

Hence, the time response c ( t )  can be given by 

The fact that the response curve is an exponential curve superimposed by damped sinusoidal 
curves can be seen from Figure 5-60. 
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Figure 5-60 
Unit-step response 
curve. Time (sec) 

A-5-10. Obtain both analytical and computational solutions of the unit-step response of a unity-feedback 
system whose open-loop transfer function is 

Solution. The closed-loop transfer function is 

The unit-step response of this system is then 

The time response c ( t )  can be found by taking the inverse Laplace transform of C ( s )  as follows: 

3  17 11 13 
~ ( t )  = 1  + - e-I cos 3t - - e-' sin 3t - - e-3t cos t  - - e-3'sin t ,  for t  2 0 

8 24 8 8 

A MATLAB program to obtain the unit-step response of this system is shown in MATLAB 
Program 5-20. The resulting unit-step response curve is shown in Figure 5-61. 
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Figure 5-61 
Unit-step response 
curve. 

MATLAB Program 5-20 

% - -- - ---- --- - --- U nit-step-response --------- ------ 

num = [0 0 0 5 1001; 
den = [ I  8 32 80 1001; 
step(num,den) 
grid 
title('Unit-Step Response of C(s)/R(s) = (5s + 1 00)/(sA4 + 8sA3 + 32sA2 + 80s + 100)') 

Unit-Step Response of C(s)lR(s) = (5s+100)l(s4+8s3+32s2+80s+100) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (sec) 

A-5-11. When the closed-loop system involves a numerator dynamics, the unit-step response curve may 
exhibit a large overshoot. Obtain the unit-step response of the following system with MATLAB: 

Obtain also the unit-ramp response with MATLAB. 

Solution. MATLAB Program 5-21 produces the unit-step response as well as the unit-ramp 
response of the system.The unit-step response curve and unit-ramp response curve, together with 
the unit-ramp input, are shown in Figures 562(a) and (b), respectively. 

Notice that the unit-step response curve exhibits over 215% of overshoot. The unit-ramp 
response curve leads the input curve.These phenomena occurred because of the presence of a large 
derivative term in the numerator. 

Example Problems and Solutions 305 



1 MATLAB Program 5-21 I 

Unit-Steo Resoonse 

num = [O 10 41; 
den = [ I  4 41; 
t = 0:0.02:10; 
y = step(num,den,t); 
plot(t,y) 
grid 
title('Unit-Step Response') 
xlabel('t (sec)') 
ylabel('0utput') 

numl = [O 0 10 41; 
den1 = [ I  4 4 01; 
yl  = step(num1 ,den1 ,t); 
plot(t,t,'--',t,yl ) 
v = [O 1 0 0 101; axis(v); 
grid 
title('Unit-Ramp Response') 
xlabel('t (sec)') 
ylabel('Unit-Ramp Input and Output') 
text(6.1 ,S.O,'Unit-Ramp Input') 
te~t(3.5~7.1 ,'Output1) 

Unit-Ramo Resoonse 

0 1 2 3 4 5 6 7 8 9 1 0  0 1 2 3 4 5 6 7 8 9 1 0  
t (sec) t (sec) 

(a) (b) 

Figure 5-62 
(a) Unit-step response curve; (b) unit-ramp response curve plotted with unit-ramp input. 
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A-5-12. Consider a higher-order system defined by 

Using MATLAB, plot the unit-step response curve of this system. Using MATLAB, obtain the rise 
time, peak time, maximum overshoot, and settling time. 

Solution. MATLAB Program 5-22 plots the unit-step response curve as well as to give the rise 
time, peak time, maximum overshoot, and settling time. The unit-step response curve is shown in 
Figure 5-63. 

MATLAB Program 5-22 

% ------- This program is to plot the unit-step response curve, as well as to 
% find the rise time, peak time, maximum overshoot, and settling time. 
% In this program the rise time i s  calculated as the time required for the 
% response to rise from 10% to 90% of its final value. ------- 

num = [O 0 6.3223 18 12.81 I I; 
den= [ I  6 11.3223 18 12.811]; 
t = 0:0.02:20; 
[y,x,t] = step(num,den,t); 
plot(t,y) 
grid 
title('Unit-Step Response') 
xlabel('t (sec)') 
ylabel('0utput y(t)') 

r l  = I; while y(r1) < 0.1, rl. = r l  + l ;  end; 
r2 = I; while y(r2) < 0.9, r2 = r2+1; end; 
rise-time = (r2-rl)*O. 02 

rise-time = 

0.5800 

[ymax,tpl = max(y); 
peak-time = (tp-1)*0.02 

peak-time = 

1.6600 

max-overshoot = ymax-I 

max-overshoot = 

0.61 82 

s = 1001; while y(s) > 0.98 8( y(s) < 1.02; s = s-1; end; 
settling-time = (s-l)*0.02 

settling-time = 

10.0200 
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Figure 5-63 
Unit-step response 
curve. 

Unit-Step Response 
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A-5-13. Consider the closed-loop system defined by 

Using a "for loop," write a MATLAB program to obtain unit-step response of this system for the 
following four cases: 

Casel: 5 = 0 . 3 ,  w , = 1  

Case 2: 5 = 0.5, on = 2 

Case 3: 5 = 0.7, w, = 4 

Case 4: 5 = 0.8, w, = 6 

Solution. Define W: = a and 25w, = b. Then, u and b each have four elements as follows: 

Using vectors a and b, MATLAB Program 5-23 will produce the unit-step response curves as 
shown in Figure 5-64. 
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MATLAB Program 5-23 
\ 

\ 
a = [ I  4 16 361; 

\ 

b = [0.6 2 5.6 9.61; 
t = 0:O. 1 :8; 
y = zeros(81,4); 

for i = 1 :4; 
num = [O 0 ati)]; 
den = [ I  b(i) a(i)]; 
y(:,i) = step(num,den,t); 
end 

plot(t,y(:,l ),'0',t,y(:,2),'~',t,y(:,3),'-',t,y~:,4~,'-.') 
grid 
title(' Unit-Step Response Curves for Four Cases') 
xlabel('t Sec') 
ylabel('0utputs') 
gtext(' I ') 
gtext('2') 
gtext('3') 
gtext('4') 

Unit-Step Response Curves for Four Cases 

Figure 5-64 
Unit-step response 
curves for four cases. 
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A-5-14. Using MATLAB, obtain the unit-ramp response of the closed-loop control system whose closed- 
loop transfer function is 

Also, obtain the response of this system when the input is given by 
= e-~.5r 

Solution. MATLAB Program 5-24 produces the unit-ramp response and the response to the 
exponential input r = e-0.5'. The resulting response curves are shown in Figures 5-65(a) and (b), 
respectively. 

MATLAB Program 5-24 

oi0 - --- - - - -- Unit-Ramp Response --------- 

num = [O 0 1 101; 
den = [ I  6 9 101; 
t = 0:O.l :I 0; 
r = t; 
y = Isim(num,den,r,t); 
plot(t,r,'-',t,y,'ol) 
grid 
title('Unit-Ramp Response by Use of Command "lsim"') 
xlabel('t Sec') 
ylabel('Outputl) 
text(3.2,6.5,'Unit-Ramp Input') 
text(6.0,3.1 ,'Output1) 

Ol0 --------- Response to lnput r l  = exp(-0.5t). --------- 

num = [O 0 1 101; 
den = [ I  6 9 101; 
t = 0:0.1:12; 
r l  = exp(-0.5*t); 
y l  = Isim(num,den,rl ,t); 
plot(t,rl ,I-',t,yl ,'o') 
grid 
title('Response to lnput r l  = exp(-0.5t)') 
xlabel('t Sec') 
ylabel('lnput and Output') 
text(l.4,0.75,'lnput r l  = exp(-0.5t)') 
text(6.2,0.34,'0utput1) 
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Unit-Ramp Response by Use of Command "lsim" 

Figure 5-65 
(a) Unit-ramp 
response curve; 
(b) response to 
exponential input 

= e-0.51 

" 0 1 2 3 4 5 6 7 8 9 1 0  
t Sec 

(a) 

Response to Input r ,  = e4.5t 

t Sec 

(b) 

A-5-15. Obtain the response of the closed-loop system defined by 

C ( s )  -= 5 

R(s )  s2 + s + 5 
when the input r ( t )  is given by 

r ( t )  = 2 + t  

[The input r ( t )  is a step input of magnitude 2 plus unit-ramp input.] 
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Figure 5-66 
Response to input 
r ( t )  = 2 + r .  

Solution. A possible MATLAB program is shown in MATLAB Program 5-25. The resulting 
response curve, together with a plot of the input function, is shown in Figure 5-66. 

I MATLAB Program 5-25 I 
num = [O 0 51; 
den = [ I  1 51; 
t = 0:0.05:10; 
r = 2+t; 
c = Isim(num,den,r,t); 
plot(t,r,'-',t,c,'ot) 
grid 
title('Response to lnput r(t) = 2 + t') 
xlabel('t Sect) 
ylabel('0utput c(t) and lnput r(t) = 2 + tl) 

Response to Input r(t) = 2 + t 

Figure 5-67 
Control system. 

" 0 1 2 3 4 5 6 7 8 9 1 0  
t Sec 

A-5-16. Obtain the response of the system shown in Figure 5-67 when the input r ( t )  is given by 

I 
r ( t )  = - t 2  

2 

[The input r ( t )  is the unit-acceleration input.] 
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Figure 5-68 
Response to unit- 
acceleration input. 

Solution. The closed-loop transfer function is 

MATLAB Program 5-26 produces the unit-accerelation response.The resulting response, together 
with the unit-acceleration input, is shown in Figure 5-68. 

MATLAB Program 5-26 

num = [O O 21; 
den = [ I  1 21; 
t = 0:0.2:10; 
r = 0.5*t.A2; 
y = Isim(num,den,r,t); 
plot(t,r, '-',t,y,'ol,t,y, I-') 
grid 
title('Unit-Acceleration Response') 
xlabel('t Sec') 
ylabel('lnput and Output') 
text(2.1f2f.5,'Unit-Acceleration Input') 
text(7.2,7.5,'0utput1) 

Unit-Acceleration Response 

" 0 1 2 3 4 5 6 7 8 9 1 0  
t Sec 

A-5-17. Consider the system defined by 

C ( s )  -- A 
1 

R ( s )  s2 + 2[s + 1 
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where 5 = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Write a MATLAB program using a "for loop" to 
obtain the two-dimensional and three-dimensional plots of the system output. The input is the 
unit-step function. 

Solution. MATLAB Program 5-27 is a possible program to obtain two-dimensional and three- 
dimensional plots. Figure 5-69(a) is the two-dimensional plot of the unit-step response curves for 
various values of 5. Figure 5-69(b) is the three-dimensional plot obtained by use of the command 
"mesh(y)" and Figure 5-69(c) is obtained by use of the command "mesh(y1)". (These two 
three-dimensional plots are basically the same.The only difference is that x axis and y axis are in- 
terchanged.) 

MATLAB Program 5-27 

t = 0:0.2:12; 
for n = 1 :6; 
num = [O 0 1 I; 
den = [I 2*(n-1)*0.2 1 I; 
[y(l:6l ,n),x,tl = step(num,den,t); 
end 

plot(t,y) 
grid 
title('Unit-Step Response Curves') 
xlabel('t Sec') 
ylabel('Outputsl) 
gtext('\zeta = 0'1, 
gtext('0.2') 
gtext('0.4') 
gtext('0.6') 
gtext('0.8') 
gtext('1 .O1) 

% To draw a three-dimensional plot, enter the following command: mesh(y) or mesh(yl). 
% We shall show two three-dimensional plots, one using "mesh(y)" and the other using 
% "mesh(yl)". These two plots are the same, except that the x axis and y axis are 
% interchanged. 

mesh(y) 
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y)"') 
xlabel('n, where n = 1,2,3,4,5,6') 
ylabel('Computation Time Points') 
zlahel('0utputs') 

mesh(yl) 
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y transpose)"') 
xlabel('Computation Time Points') 
ylabel('n, where n = 1,2,3,4,5,6') 
zlabel('Outputsl) 
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Figure 5 4 9  
(a) Two-dimensional 
plot of unit-step 
response curves; 
(b) three-dimensional 
plot of unit-step 
response curves 
usign comrna'nd 
"mesh(y)": 
(c) three-di~mensional 
plot of unit -step 
response cllrves 
using comrnand 
"mesh(yl)". 

Unit-Step Response Curves 

0 2 4 6 8 10 12 
t Sec 

(a) 

Tbree-Dimensional Plot of Unit-Step Response Curves using Command "mesh@)" Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y transpose)" 

V L 

ComputationTime Points n, where n = 1, 2,3,4, 5 ,6  
L U  . 

n, where n = 1, 2, 3.4, 5 ,6  Computation Time Points 

A-5-18. Consider the following characteristic equation: 

s 4 + K s 3 + s 2 + s + 1 = 0  

Determine the range of K for stability. 

Solution. The Routh array of coefficients is 

s4 1  1 1  
s3 K 1 0  
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For stability, we require that 

From the first and second conditions, K must be greater than 1. For K > 1, notice that the term 
1 - [K' / (K - 1)) is always negative, since 

Thus, the three conditions cannot be fulfilled simultaneously. Therefore, there is no value of K that 
allows stability of the system. 

A-5-19. Consider the characteristic equation given by 

The Hurwitz stability criterion, given next, gives conditions for all the roots to have negative real 
parts in terms of the coefficients of the polynomial. As stated in the discussions of Routh's stability 
criterion in Section 5-7, for all the roots to have negative real parts, all the coefficients a's must 
be positive.This is a necessary condition but not a sufficient condition. If this condition is not sat- 
isfied, it indicatesthat some of the roots have positive real parts or are imaginary or zero. A suf- 
ficient condition for all the roots to have negative real parts is given in the following Hurwitz 
stability criterion: If all the coefficients of the polynomial are positive, arrange these coefficients 
in the following determinant: 

a,  a3 a5 " '  0 0 0  
a, a, a', ... . 
0 a,  a3 ... a, 0 0 

0 a, a2 ... a 0 0 
. . .  an-2 an 0 
. . . an-3 an-, 0 
0 0 0 ... a,-', an-2 a, 

where we substituted zero for a, if s > n. For all the roots to have negative real parts, it is neces- 
sary and sufficient that successive principal minors of A, be positive. The successive principal 
minors are the following determinants: 
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( i = 1 , 2  ,..., n - 1 )  Ai = 

where a, = 0 if s > n. (It is noted that some of the conditions for the lower-order determinants 
are included in the conditions for the higher-order determinants.) If all these determinants are 
positive, and a, > 0 as already assumed, the equilibrium state of the system whose characteristic 

a, a, ... f l z l - l  

a0 a2 ". f l21-2 

0 a,  ... 
. . 

0 0 ... a, 



equation is given by Equation (5-67) is asymptotically stable. Note that exact values of determi- 
nants are not needed; instead, only signs of these determinants are needed for the stability criterion. 

Now consider the following characteristic equation: 

Obtain the conditions for stability using the Hurwitz stability criterion. 

Solution. The conditions for stability are that all the a's be positive and that 

It is clear that, if all the a's are positive and if the condition A3 > 0 is satisfied, the condition 
A2 > 0 is also satisfied.Therefore, for all the roots of the given characteristic equation to have neg- 
ative real parts, it is necessary and sufficient that all the coefficients a's are positive and Ag > 0. 

A-5-20. Show that the first column of the Routh array of 

st' + alsn-' + u,s"-~ + ... + an-,s + an = 0 

is given by 

where 

a , = O  i f k > n  

Solution. The Routh array of coefficients has the form 
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The first term in the first column of the Routh array is 1. The next term in the first column is a , ,  
which is equal to A,.  The next tern1 is b l ,  which is equal to 

The next term in the first column is c ,  , which is equal to 

In a similar manner the remaining terms in the first column of the Routh array can be found. 
The Routh array has the property that the last nonzero terms of any columns are the same; 

that is, if the array is given by 

then 

and if the array is given by 

then 

In any case, the last term of the first column is equal to a,,  or 

An-~fln An 
fln = - = - 

An-1 4 , - 1  
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For example, if n = 4, then 

Thus it has been shown that the first column of the Routh array is given by 

A-5-21. Show that the Routh's stability criterion and Hurwitz stability criterion are equivalent. 

Solution. If we write Hurwitz determinants in the triangular form 

where the elements below the diagonal line are all zeros and the elements above the diagonal 
line any numbers, then the Hurwitz conditions for asymptotic stability become 

which are equivalent to the conditions 

a,, > 0, a, > 0, ... ann > 0 

We shall show that these conditions are equivalent to 

where a,, b, , cl , . . . , are the elements of the first column in the Routh array. 
Consider, for example, the following Hurwitz determinant, which corresponds to i = 4: 

The determinant is unchanged if we subtract from the ith row k times the jth row. By subtracting 
from the second row ao/a, times the first row, we obtain 
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Similarly, subtracting from the fourth row a,/al times the third row yields 

where 

Next, subtracting from the third row a ,  /az2 times the second row yields 

where 

Finally, subtracting from the last row 243/a33 times the third row yields 

where 
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From this analysis, we see that 

A1 = a11 

The Hurwitz conditions for asymptotic stability 

reduce to the conditions 

The Routh array for the polynomial' 

where a. > 0 and n = 4, is given by 

a0 a2 a4 

fll a3 

bl b2 

CI 

dl 
From this Routh array, we see that 

(The last equation is obtained using the fact that a,, = 0, 244 = a4 ,  and a,  = b2 = d l  .) Hence the 
Hurwitz conditions for asymptotic stability become 

Thus we have demonstrated that Hurwitz conditions for asymptotic stability can be reduced to 
Routh's conditions for asymptotic stability. The same argument can be extended to Hurwitz 
determinants of any order, and the equivalence of Routh's stability criterion and Hurwitz stabil- 
ity criterion can be established. 

A-5-22. Consider the characteristic equation 

Using the Hurwitz stability criterion, determine the range of K for stability. 

Solution. Comparing the given characteristic equation 
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with the following standard fourth-order characteristic equation: 

a,s4 + als3 + a2s2 + a3s + a4 = 0 

we find 

a , = l ,  a l = 2 ,  a 2 = 4 + K ,  a 3 = 9 ,  a 4 = 2 5  

The Hurwitz stability criterion states that A, is given by 

For all the roots to have negative real parts, it is necessary and sufficient that succesive principal 
minors of A, be positive. The successive principal minors are 

A1 = (all = 2  

For all principal minors to be positive, we require that Ai(i = 1 , 2 , 3 )  be positive.Thus, we require 

2 K - 1 > O  

from which we obtain the region of K for stability to be 

A-5-23. Explain why the proportional control of a plant that does not possess an integrating property 
(which means that the plant transfer function does not include the factor 11s) suffers offset in 
response to step inputs. 

Solution. Consider, for example, the system shown in Figure 5-70. At steady state, if c were equal 
to a nonzero constant r ,  then e = 0 and u = K e  = 0, resulting in c = 0, which contradicts the 
assumption that c = r  = nonzero constant. 

A nonzero offset must exist for proper operation of such a control system. In other words, at 
steady state, if e were equal to r / ( l  + K ) ,  then u = K r / ( l  + K )  and c = K r / ( l  + K ) ,  which 
results in the assumed error signal e = r / ( l  f K ) .  Thus the offset of r / ( l  + K) must exist in such 
a system. 

Figure 5-70 
Control system. 
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A-5-24. Consider the system shown in Figure 5-71. Show that the steady-state error in following the unit- 
ramp input is B/K.This error can be made smaller by choosing B small and/or K large. However. 
making B small and/or K large would have the effect of making the damping ratio small, which 
is normally not desirable. Describe a method or methods to make B/K small and yet make the 
damping ratio have reasonable value (0.5 < 5 < 0.7). 

Solution. From Figure 5-71 we obtain 

The steady-state error for the unit-ramp response can be obtained as follows: For the unit-ramp 
input, the steady-state error e,, is 

e,, = lim sE(s )  
s+o 

Js2 + Bs 1 
= lims 

s+O Js2 + Bs + K s2 

where 

To assure acceptable transient response and acceptable steady-state error in following a ramp 
input, 5 must not be too small and on must be sufficiently large. It is possible to make the steady- 
state error e,, small by making the value of the gain K large. (A large value of K has an additional 
advantage of suppressing undesirable effects caused by dead zone, backlash, coulomb friction, 
and the like.) A large value of K would, however, make the value of 5 small and increase the 
maximum overshoot, which is undesirable. 

It is therefore necessary to compromise between the magnitude of the steady-state error to a 
ramp input and the maximum overshoot to a unit-step input. In the system shown in Figure 5-71, 
a reasonable compromise may not be reached easily. It is then desirable to consider other types 
of control action that may improve both the transient-response and steady-state behavior. Two 
schemes to improve both the transient-response and steady-state behavior are available. One 
scheme is to use a proportional-plus-derivative controller and the other is to use tachometer feed- 
back. 

Figure 5-7:L 
Control system. 
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A-5-25. The block diagram of Figure 5-72 shows a speed control system in which the output member of 
the system is subject to a torque disturbance. In the diagram, fir(s), ?l(s), T(s), and D(s) are the 
Laplace transforms of the reference speed, output speed, driving torque, and disturbance torque, 
respectively. In the absence of a disturbance torque, the output speed is equal to the reference 
speed. 

Figure 5-72 
Block diagram of a 
speed control system. 

Figure 5-73 
Block diagram of the 
speed control system 
of Figure 5-72 when 
fjr(s) = 0. 

Investigate the response of this system to a unit-step disturbance torque. Assume that the 
reference input is zero, or Or(s) = 0. 

Solution. Figure 5-73 is a modified block diagram convenient for the present ana1ysis.The closed- 
loop transfer function is 

where OD(s) is the Laplace transform of the output speed due to the disturbance torque. For a unit- 
step disturbance torque, the steady-state output velocity is 

From this analysis, we conclude that, if a step disturbance torque is applied to the output 
member of the system, an error speed will result so that the ensuing motor torque will exactly can- 
cel the disturbance torque. To develop this motor torque, it is necessary that there be an error in 
speed so that nonzero torque will result. 
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A-5-26. In the system considered in Problem A-5-25, it is desired to eliminate as much as possible the 
speed errors due to torque disturbances. 

Is it possible to cancel the effect of a disturbance torque at steady state so that a constant 
disturbance torque applied to the output member will cause no speed change at steady state? 

Solution. Suppose that we choose a suitable controller whose transfer function is G c ( s ) ,  as shown. 
in Figure 5-74.Then in the absence of the reference input the closed-loop transfer function between 
the output velocity O D ( s )  and the disturbance torque D ( s )  is 

The steady-state output speed due to a unit-step disturbance torque is 

s  1 
= lim 

s-0 J s  + G c ( s )  s 

To satisfy the requir5ment that 

w,(m) = 0 

we must choose GJO) = co.This can be realized if we choose 

Integral control action will continue to correct until the error is zero. This controller, however, 
presents a stability problem because the characteristic equation will have two imaginary roots. 

One method of stabilizing such a system is to add a proportional mode to the controller or 
choose 

Figure 5-74 
Block diagram of a 
speed control system. 
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Figure 5-75 
Block diagram of the 
speed control system 
of Figure 5-74 when 
Gc(s) = K,, + (Kls) 
and Or(s) = 0. 

With this controller, the block diagram of Figure 5-74 in the absence of the reference input can 
be modified to that of Figure 5-75. The closed-loop transfer function OD(s)/D(s) becomes 

For a unit-step disturbance torque, the steady-state output speed is 

s2 
o,(co) = limsllD(s) = lim 

1 - = o  
s-10 3-0 Js2 + Kps + K s 

Thus, we see that the proportional-plus-integral controller eliminates speed error at steady state. 
The use of integral control action has increased the order of the system by 1. (This tends to 

produce an oscillatory response.) 
In the present system, a step disturbance torque will cause a transient error in the output 

speed, but the error will become zero at steady state. The integrator provides a nonzero output 
with zero error. (The nonzero output of the integrator produces a motor torque that exactly 
cancels the disturbance torque.) 

Note that the integrator in the transfer function of the plant does not eliminate the steady-state 
error due to a step disturbance torque. To eliminate this, we must have an integrator before the 
point where the disturbance torque enters. 

A-5-27. Consider the system shown in Figure 5-76(a). The steady-state error to a unit-ramp input is 
e, = 2510,. Show that the steady-state error for following a ramp input may be eliminated if the 
input is introduced to the system through a proportional-plus-derivative filter, as shown in Figure 
5-76(b), and the value of k is properly set. Note that the error e ( t )  is given by r ( t )  - c ( t ) .  

Solution. The closed-loop transfer function of the system shown in Figure 5-76(b) is 

Then 
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4 
S(S + 2 l 4  

Figure 5-76 
(a) Control system; 
(b) control system 
with input filter. (a) (b) 

0: 

s(s + 2lw,,) 
- - C(s) 

7 



If the input is a unit ramp, then the steady-state error is 

= lims 

Therefore, if k is chosen as 

then the steady-state error for following a ramp input can be made equal to zero. Note that, if there 
are any variations in the values of 5 andlor w, due to environmental changes or aging, then a 
nonzero steady-state error for a ramp response may result. 

A-5-28. Consider the servo system with tachometer feedback shown in Figure 5-77. Obtain the error 
signal E ( s )  when both the reference input R ( s )  and disturbance input D ( s )  are present. Obtain 
also the steady-state error when the system is subjected to a reference input (unit-ramp input) and 
disturbance input (step input of magnitude d). 

Figure 5-77 
Servo system with 
tachometer 
feedback. 

Solution. When we consider the reference input R ( s )  we can assume that the disturbance input 
D ( s )  is zero, and vice versa. Then, a block diagram that relates the reference'input R ( s )  and the 
output C ( s )  may be drawn as shown in Figure 5-78(a). Similarly, Figure 5-78(b) relates the 
disturbance input D(s )  and the output C ( s ) .  

The closed-loop transfer function C ( s ) / R ( s )  can be obtained from Figure 5-78(a) as follows: 

Similarly. the closed-loop transfer function C ( s ) / D ( s )  can be obtained from Figure 5-78(b) as 

If both R ( s )  and D ( s )  are present, then 
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Figure 5-78 
(a) Block diagram 
that relates reference 
input R(s) and 
output C(s); 
(b) block diagram 
that relates 
disturbance input 
D(s) and output 
C(s). 

Since 

we obtain 

Hence the steady-state error can be obtained as follows: 

lirn e ( t )  = l i i s E ( s )  
1-m 

S 
= lim [ ~ ( J s  + B + KK,)R(S) - ~ ( s ) ]  

3-0 JS' + ( B  + KKJS + K 

Since R(s) = l/s2 (unit-ramp input) and D(s) = d/s (step input of magnitude d) the steady-state 
error is 

B + KKh s2 
lirn e ( t )  = ,!cO ( j rn  [ K s2 K s  

Chapter 5 / Transient and Steady-State Response Analyses 



A-5-29. Consider the stable unity-feedback control system with feedforward transfer function G ( s ) .  
Suppose that the closed-laop transfer function can be written 

Show that 

i w e ( r ) d t  = (TI + T, + . - .  + T,) - (T, + Tb + ..- + T,) 

where e ( t )  is the error in the unit-step response. Show also that 

Solution. Let us define 

(T,S + l)(Tbs + l ) . . . ( ~ , s  + 1) = P(s )  

and 

(T1s + 1)(T2s + I)...(T,s + 1)  = Q(s)  

Then 

and 

For a unit-step input, R ( s )  = l / s  and 

Since the system is stable, Jwe(r) dt converges to a constant value. Referring to Table 2-2 (item 9), 
we have 

E ( s )  iwe(f) dr = lirns- = limE(s) 
s- to 3 s - t o  

Hence 

= lim 
el($) - P'(s) 

s t 0  Q ( s )  + sQ'(s)  

= J lim t o  [Q'(s)  - ~ ' ( s ) ]  
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Since 

limP1(s) = T, + Tb + ... + Tm 
s-io 

we have 

For a unit-step input r ( t ) ,  since 

L m e ( t )  dt = lim E(s) = lim 
1 

R(s) = lim 
1 1  - 1 

- 
1 - - 

s-+O 3-0 1 + G(S) s - o I + G ( s ) ~ - ~ ~ ~ s G ( s )  K~ 

we have 

Note that zeros in the left half-plane (that is, positive c,, Tb, . . . , Tm) will improve K,. Poles close 
to the origin cause low velocity-error constants unless there are zeros nearby. 

PROBLEMS 

B-5-1. A thermometer requires 1 min to indicate 98% of B-5-4. Figure 5-79 is a block diagram of a space-vehicle 
the response t'o a step input.Assuming the thermometer to attitude-control system. Assuming the time constant T of 
be a first-order system, find the time constant. the controller to be 3 sec and the ratio K/J  to be rad2/sec2, 

If the thermometer is placed in a bath, the temperature find the damping ratio of the system. 
of which is changing linearly at a rate of lO0/min, how much 
error does the thermometer show? K(Ts + I) 

B-5-2. Consider the unit-step response of a unity-feedback 
I- Space 

control system whose open-loop transfer function is vehicle 

1 Figure 5-79 
G(s) = - 

s(s  + 1) Space-vehicle attitude-control system. 

Obtain the rise time, peak time, maximum overshoot, and 
settling time. 

B-5-3. Consider the closed-loop system given by 

Determine the values of 5 and w, so that the system 
responds to a step input with approximately 5% overshoot 
and with a settling time of 2 sec. (Use the 2% criterion.) 

B-5-5. Consider the system shown in Figure 5-80.The sys- 
tem is initially at rest. Suppose that the cart is set into mo- 
tion by an impulsive force whose strength is unity. Can it be 
stopped by another such impulsive force? 

- x  

Impulsive 

Figure 5-80 
Mechanical system. 
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B-5-6. Obtain the unit-impulse response and the unit- 
step respolnse of a unity-feedback system whose open-loop 
transfer function is 

B-5-7. Consider the system shown in Figure 5-81. Show 
that the transfer function Y ( s ) / X ( s )  has a zero in the right- 
half s plane. Then obtain y ( t )  when x ( t )  is a unit step. Plot 
y ( t )  versus t. 

B-5-8. An oscillatory system is known to have a transfer 
function of the following form: 

Assume that a record of a damped oscillation is available 
as shown in Figure 5-82. Determine the damping ratio 5 of 
the system from the graph. 

B-5-9. Consider the system shown in Figure 5-83(a). The 
damping ratio of this system is 0.158 and the undamped nat- 
ural frequency is 3.16 rad/sec. To improve the relative sta- 
bility, we employ tachometer feedback. Figure 5-83(b) shows 
such a tachometer-feedback system. 

Determine the value of K, so that the damping ratio of 
the system is 0.5. Draw unit-step response curves of both 
the original and tachometer-feedback systems. Also draw 
the error-versus-time curves for the unit-ramp response of 
both systems. 

- 
Figurle 5-81 
Syste~m with zero in the right-half s plane. 

Figure 5-82 
Decaying oscillation. 

Figure 5-83 
(a) Control system; (b) control system with tachometer feedback. 
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B-5-10. Referring to the system shown in Figure 5-84, de- B-5-13. Using MATLAB, obtain the unit-step response, 
termine the values of K and k such that the system has a unit-ramp response, and unit-impulse response of the fol- 
damping ratio 5 of 0.7 and an undamped natural frequency lowing system: 
o, of 4 rad/sec. 

B-5-11. Consider the system shown in Figure 5-85. Deter- 
mine the value of k such that the damping ratio { is 0.5.Then 
obtain the rise time t,, peak time t,, maximum overshoot 
M,, and settling time t ,  in the unit-step response. 

L A 2 J  
B-5-12. Using MATLAB, obtain the unit-step response, 
unit-ramp response, and unit-impulse response of the fol- where is the input and is the output. 
lowing system: 

B-5-14. Obtain both analytically and computationally the 

where R ( s )  and C ( s )  are Laplace transforms of the input 
r ( t )  and output c ( t ) ,  respectively. 

rise time, peak time, maximum overshoot, and settling time 
in the unit-step response of a closed-loop system given by 

I I 

Figure 5-84 
Closed-loop system. 

1 I 

Figure 5-85 
Block diagram of a system. 
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B-5-15. Figure 5-86 shows three systems. System I is a po- B-5-16. Consider the position control system shown in Fig- 
sitional servo system. System I1 is a positional servo system ure 5-87. Write a MATLAB program to obtain a unit-step 
with PD control action. System I11 is a positional servo sys- response and a unit-ramp response of the system.Plot curves 
tem with velocity feedback. Compare the unit-step, unit- xl( t)  versus t, x,(t) versus t. x3(t) versus t, and e ( t )  versus t 
~mpulse, and unit-ramp responses of the three systems. [where e ( t )  = r( t)  - xl(t)] for both the unit-step response 
Which syst'em is best with respect to the speed of response and the unit-ramp response. 
and maximum overshoot in the step response? 

I I 
System I 

System I1 

System 111 

Figure 5-86 
Positional servo system (System I), positional servo system with PD control 
action (System 11), and positional servo system with velocity feedback 
(System 111). 

Figure 5-87 
Position control system. 

Problems 

- A -  - - 



B-5-17. Using MATLAB, obtain the unit-step response The unit acceleration input is defined by 
curve for the unity-feedback control system whose open- 
loop transfer function is 1 

r ( t ) = - t 2  ( t ~ 0 )  
2 

B-5-22. Consider the differential equation system given by 

Using MATLAB, obtain also the rise time, peak time, max- jj + 3y + 2y = 0, y(0) = 0.1, y(0)  = 0.05 
imum overshoot, and settling time in the unit-step response 
curve. Obtain the response y ( t ) ,  subject to the given initial 

condition. 
B-5-18. Consider the closed-loop system defined by 

B-5-23. Determine the range of K for stability of a unity- 

C ( s )  25s + 1 feedback control system whose open-loop transfer func- 
-- - 
R ( s )  s2 + 25s + 1 

tion is 

where 5 = 0.2,0.4,0.6,0.8, and 1.0. Using MATLAB, plot G ( s )  = 
K 

a two-dimensional diagram of unit-impulse response S ( S  + 1 ) ( s  f 2 )  

curves. Also plot a three-dimensional plot of the response 
curves. B-5-24. Consider the unity-feedback control system with 

the following open-loop transfer function: 
B-5-19. Consider the second-order system defined by 

G ( s )  = 
10 

s(s  - 1)(2s + 3) 

Is this system stable? 
where 5 = 0.2,0.4, O.6,0.8, 1.0. Plot a three-dimensional 
diagram of the unit-step response curves. B-5-25. Consider the following characteristic equation: 

B-5-20. Obtain the unit-ramp response of the system s4 + 2~~ + ( 4  + K ) S ~  + 9~ + 25 = o 
defined by 

Using Routh stability criterion, determine the range of K 
for stability. 

B-5-26. Consider the closed-loop system shown in Figure 
5-88. Determine the range of K for stability. Assume that 
K > 0. 

where u is the unit-ramp input. Use lsim command to obtain 
the response. 

B-5-21. Using MATLAB obtain the unit acceleration R(si B"[Hy (S + l)(s2 + 6s + 25) , c(> 
response curve of the unity-feedback control system whose 
open-loop transfer function is 

10(s + 1 )  
G ( s )  = Figure 5-88 

s2(s + 4 )  Closed-loop system. 
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B-5-27. Consider the satellite attitude control system 
shown in Figure 5-89(a).The output of this system exhibits 
continued oscillations and is not desirable. This system can 
be stabilized by use of tachometer feedback, as shown in 
Figure 5-89(b). If K/J  = 4, what value of Kh will yield the 
damping ratio to be 0.6? 

B-5-28. Consider the servo system with tachometer 
feedback :shown in Figure 5-90. Determine the ranges of 
stability for K and Kh. (Note that Ki, must be positive.) 

B-5-29. Consider the system 
x = Ax 

where matrix A is given by 

A = [ : ] 
0 - b2 - bl 

(A is called Schwarz matrix.) Show that the first column of 
the Routh's array of the characteristic equation Is1 - A/ = 0 
consists of 1, b,, b,, and b,b3. 

Figure 5-89 
(a) Unstable satellite attitude control system; (b) stabilized 
system. 

I I 

Figure 5-90 
Servo system with tachometer feedback. 

Problems 



B-5-30. Consider a unity-feedback control system with the 
closed-loop transfer function 

Determine the open-loop transfer function G(s). 
- Show that the steady-state error in the unit-ramp 

response is given by 

B-5-31. Consider a unity-feedback control system whose 
open-loop transfer function is 

Discuss the effects that varying the values of K and B has on 
the steady-state error in unit-ramp response. Sketch typical 
unit-ramp response curves for a small value, medium value, 
and large value of K, assuming that B is constant. 

B-5-32. If the feedforward path of a control system 
contains at least one integrating element, then the output 
continues to change as long as an error is present. The out- 
put stops when the error is precisely zero. If an external dis- 
turbance enters the system, it is desirable to have an 
integrating element between the error-measuring element 
and the point where the disturbance enters so that the effect 
of the external disturbance may be made zero at steady state, 

Show that, if the disturbance is a ramp function, then 
the steady-state error due to this ramp disturbance may be 
eliminated only if two integrators precede the point where 
the disturbance enters. 
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Root -Locus Analysis 

6-1 INTRODUCTION 

The basic characteristic of the transient response of a closed-loop system is closely 
related to the location of the closed-loop poles. If the system has a variable loop gain, 
then the location of the closed-loop poles depends on the value of the loop gain chosen. 
It is important, therefore, that the designer know how the closed-loop poles move in 
the s plane as the loop gain is varied. 

From the design viewpoint, in some systems simple gain adjustment may move the 
closed-loop poles to desired locations. Then the design problem may become the selec- 
tion of an appropriate gain value. If the gain adjustment alone does not yield a desired 
result, addition of a compensator to the system will become necessary. (This subject is 
discussed in detail in Chapter 7.) 

The closed-loop poles are the roots of the characteristic equation. Finding the roots 
of the characteristic equation of degree higher than 3 is laborious and will need computer 
solution. (MATLAB provides a simple solution to this problem.) However, just finding 
the roots of the characteristic equation may be of limited value, because as the gain of 
the open-loop transfer function varies the characteristic equation changes and the 
computations must be repeated. 

A simple method for finding the roots of the characteristic equation has been 
developed by W. R. Evans and used extensively in control engineering. This method, 
called the root-locus method, is one in which the roots of the characteristic equation are 



plotted for all values of a system parameter. The roots corresponding to a particular 
value of this parameter can then be located on the resulting graph. Note that the pa- 
rameter is usually the gain, but any other variable of the open-loop transfer function 
may be used.(See Chapter 7.) Unless otherwise stated, we shall assume that the gain 
of the open-loop transfer function is the parameter to be varied through all values, 
from zero to infinity. 

By using the root-locus method the designer can predict the effects on the location 
of the closed-loop poles of varying the gain value or adding open-loop poles and/or 
open-loop zeros.Therefore, it is desired that the designer have a good understanding of 
the method for generating the root loci of the closed-loop system, both by hand and by 
use of a computer software like MATLAB. 

Root-Locus Method. The basic idea behind the root-locus method is that the 
values of s that make the transfer function around the loop equal -1 must satisfy the 
characteristic equation of the system. 

The root locus is the locus of roots of the characteristic equation of the closed-loop 
system as a specific parameter (usually, gain K) is varied from zero to infinity, giving 
the method its name. Such a plot clearly shows the contributions of each open-loop pole 
or zero to the locations of the closed-loop poles. 

In designing a linear control system, we find that the root-locus method proves quite 
useful since it indicates the manner in which the open-loop poles and zeros should be 
modified so that the response meets system performance specifications. This method is 
particularly suited to obtaining approximate results very quickly. 

Because generating the root loci by use of MATLAB is very simple, one may think 
sketching the root loci by hand is a waste of time and effort. However, experience in 
sketching the root loci by hand is invaluable for interpreting computer-generated root 
loci, as well as for getting a rough idea of the root loci very quickly. 

By using the root-locus method, it is possible to determine the value of the loop 
gain K that will make the damping ratio of the dominant closed-loop poles as pre- 
scribed. If the location of an open-loop pole or zero is a system variable, then the 
root-locus method suggests the way to choose the location of an open-loop pole or 
zero. 

Outline of the Chapter. This chapter introduces the basic concept of the root- 
locus method and presents useful rules for graphically constructing the root loci, as well 
as the generation of root loci with MATLAB. 

The outline of the chapter is as follows: Section 6-1 has presented an introduction 
to the root-locus method. Section 6-2 details the concepts underlying the root-locus 
method and presents the general procedure for sketching root loci using illustrative 
examples. Section 6-3 summarizes general rules for constructing root loci. (If the de- 
signer follows the general rules for constructing the root loci, sketching the root loci 
for a given system will become a simple matter.) Section 6-4 discusses generating 
root-locus plots with MATLAB. Section 6-5 treats a special case when the closed- 
loop system has positive feedback. Section 6-6 treats conditionally stable systems. Fi- 
nally, Section 6-7 extends the root-locus method to treat closed-loop systems with 
transport lag. 
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6-2 ROOT-LOCUS PLOTS 

Figure 6-1. 
Control system. 

Angle and Magnitude Conditions. Consider the system shown in Figure 6-1.The 
closed-loop transfer function is 

The characteristic equation for this closed-loop system is obtained by setting the 
denominator of the right-hand side of Equation (6-1) equal to zero. That is, 

1  + G ( s ) H ( s )  = 0 

Here we assume that G ( s ) H ( s )  is a ratio of polynomials in s. [Later, in Section 6-7, we 
extend the analysis to the case when G ( s ) H ( s )  involves the transport lag e-Ts.] Since 
G ( s ) H ( s )  is a complex quantity, Equation (6-2) can be split into two equations by equat- 
ing the angles and magnitudes of both sides, respectively, to obtain the following: 

Angle condition: 

Magnitude condition: 

The values of s  that fulfill both the angle and magnitude conditions are the roots of the 
characteristic equation, or the closed-loop poles. A locus of the points in the complex 
plane satisfying the angle condition alone is the root locus. The roots of the character- 
istic equation (the closed-loop poles) corresponding to a given value of the gain can be 
determined from the magnitude condition. The details of applying the angle and mag- 
nitude conditions to obtain the closed-loop poles are presented later in this section. 

In many cases, G ( s ) H ( s )  involves a gain parameter K, and the characteristic equa- 
tion may be written as 

1  + K ( s  + z,)(s + ~ 2 )  ... ( S  + 2,) = 0 
( S  + P I ) ( s  + ~ 2 )  '.. ( s  + p,) 

Then the root loci for the system are the loci of the closed-loop poles as the gain K is 
varied from zero to infinity. 

Note that to begin sketching the root loci of a system by the root-locus method we 
must know the location of the poles and zeros of G ( s ) H ( s ) .  Remember that the angles 
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Figure 6-2 
(a) and (b) Diagrams 
showing angle 
measurements from 
open-loop poles and 
open-loop zero to 
test point s. 

of the complex quantities originating from the open-loop poles and open-loop zeros to 
the test point s  are measured in the counterclockwise direction. For example, if G ( s )  H ( s )  
is given by 

where -p2 and -p3 are complex-conjugate poles, then the angle of G ( s ) H ( s )  is 

/ G ( s ) H ( s )  = - O1 - O2 - 83 - 84 

where $,, O,, 02, 03, and 0, are measured counterclockwise as shown in Figures 6-2(a) 
and (b).The magnitude of G ( s ) H ( s )  for this system is 

where A,, A,, A,, A,, and B1 are the magnitudes of the complex quantities s  + p,, 
s  + p2, s + p3, s + p4, and s  + zl, respectively, as shown in Figure 6-2(a). 

Note that, because the open-loop complex-conjugate poles and complex-conjugate 
zeros, if any, are always located symmetrically about the real axis, the root loci are always 
symmetrical with respect to this axis.Therefore, we only need to construct the upper half 
of the root loci and draw the mirror image of the upper half in the lower-half s  plane. 

Illustrative Examples. In what follows, two illustrative examples for constructing 
root-locus plots will be presented. Although computer approaches to the construction 
of the root loci are easily available, here we shall use graphical computation, combined 
with inspection, to determine the root loci upon which the roots of the characteristic 
equation of the closed-loop system must lie. Such a graphical approach will enhance 
understanding of how the closed-loop poles move in the complex plane as the open-. 
loop poles and zeros are moved. Although we employ only simple systems for illustrative 
purposes, the procedure for finding the root loci is no more complicated for higher- 
order systems. 
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The first step in the procedure for constructing a root-locus plot is to  seek out the 
loci of possible roots using the angle condition.Then, if necessary, the loci can be scaled, 
o r  graduated, in gain using the magnitude condition. 

Because graphical measurements of angles and magnitudes are involved in the analy- 
sis, we find it necessary to  use the same divisions on the abscissa as on the ordinate axis 
when sketching the root locus on graph paper. 

Consider the system shown in Figure 6-3. (We assume that the value of gain K is nonnegative.) 
For this system, 

Let us sketch the root-locus plot and then determine the value of K such that the damping ratio 
5 of a pair of dominant complex-conjugate closed-loop poles is 0.5. 

For the given system, the angle condition becomes 

The magnitude condition is 

A typical procedure for sketching the root-locus plot is as follows: 

1. Determine the root loci on the real axis. The first step in constructing a root-locus plot is to 
locate the open-loop poles, s = 0, s = -1, and s = -2, in the complex plane. (There are no open- 
loop zeros in this system.) The locations of the open-loop poles are indicated by crosses. (The lo- 
cations of the open-loop zeros in this book will be indicated by small circles.) Note that the starting 
points of the root loci (the points corresponding to K = 0) are open-loop poles. The number of 
individual root loci for this system is three, which is the same as the number of open-loop poles. 

To determine the root loci on the real axis, we select a test point, s. If the test point is on the 
positive real axis, then 

This shows that the angle condition cannot be satisfied. Hence, there is no root locus on the positive 
real axis. Next, select a test point on the negative real axis between 0 and -1. Then 

Thus 

Figure 6-3 
Control system. 
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and the angle condition is satisfied.Therefore, the portion of the negative real axis between 0 and 
-1 forms a portion of the root locus. If a test point is selected between -1 and -2, then 

fi = 1s + 1 = 180°, /s + 2 = 0" 

and 

-b-  / s +  1 - /S + 2 = - 3 6 0 "  

It can be seen that the angle condition is not satisfied. Therefore, the negative real axis from -1 
to -2 is not a part of the root locus. Similarly, if a test point is located on the negative real axis from 
-2 to -m, the angle condition is satisfied. Thus, root loci exist on the negative real axis between 
0 and -1 and between -2 and -m. 

2. Determine the asymptotes of the root loci. The asymptotes of the root loci as s approaches 
infinity can be determined as follows: If a test point s is selected very far from the origin, then 

lirn G(s) = lim 
K K 

= lirn - 
s-+m S'W s(s  + 1)(s + 2) s-+m s3 

and the angle condition becomes 

&18O0(2k + 1) 
Angles of asymptotes = 

3 
(k = 0,1,2, . . . ) 

Since the angle repeats itself as k is varied, the distinct angles for the asymptotes are determined 
as 60°, -60a, and 180°.Thus, there are three asymptotes. The one having the angle of 180" is the 
negative real axis. 

Before we can draw these asymptotes in the complex plane, we must find the point where 
they intersect the real axis. Since 

if a test point is located very far from the origin, then G(s) may be written as 

For large values of s, this last equation may be approximated by 

A root-locus diagram of G(s) given by Equation (6-5) consists of three straight 1ines.This can be 
seen as follows: The equation of the root locus is 

which can be written as 
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By substituting s = u + jo into this 'last equation, we obtain 

w 
tan-' - = 60°, -60°, 0" 

c r + l  

Taking the tangent of both sides of this last equation, 

which can be written as 

These three equations represent three straight lines, as shown in Figure 6-4.The three straight lines 
shown are the asymptotes. They meet at point s = -1. Thus, the abscissa of the intersection of 
the asymptotes and the real axis is obtained by setting the denominator of the right-hand side of 
Equation (6-5) equal to zero and solving for s. The asymptotes are almost parts of the root loci 
in regions very far from the origin. 

3. Determine the breakaway point. To plot root loci accurately, we must find the breakaway 
point, where the root-locus branches originating from the poles at 0 and -1 break away (as K is 
increased) from the real axis and move into the complex plane.The breakaway point corresponds 
to a point in the s plane where multiple roots of the characteristic equation occur. 

A simple method for finding the breakaway point is available. We shall present this method 
in the following: Let us write the characteristic equation as 

Figure 6-4 
Three asymptotes. 
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where A ( s )  and B ( s )  do not contain K .  Note that f ( s )  = 0 has multiple roots at points where 

This can be seen as follows: Suppose that f ( s )  has multiple roots of order r.Then f ( s )  may be writ- 
ten as 

f ( s )  = ( S  - s , ) ~ ( s  - s2). . . ( S  - s,) 

If we differentiate this equation with respect to s and set s = s,, then we get 

This means that multiple roots o f f  ( s )  will satisfy Equation (6-7). From Equation (6-6), we 
obtain 

where 

The particular value of K that will yield multiple roots of the characteristic equation is obtained 
from Equation (6-8) as 

If we substitute this value of K into Equation (6-6), we get 

If Equation (6-9) is solved for s, the points where multiple roots occur can be obtained. On the 
other hand, from Equation (6-6) we obtain 

and 

If dI</ds is set equal to zero, we get the same equation as Equation (6-9). Therefore, the break- 
away points can be simply determined from the roots of 

It should be noted that not all the solutions of Equation (6-9) or of dK/ds = 0 correspond to 
actual breakaway points. If a point at which dK/ds = 0 is on a root locus, it is an actual breakaway 
or break-in point. Stated differently, if at a point at which d K / d s  = 0 the value of K takes a real 
positive value then that point is an actual breakaway or break-in point. 
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For the present example, the characteristic equation G ( s )  + 1 = 0 is given by 

By setting dIC/ds = 0, we obtain 

Since the breakaway point must lie on a root locus between 0 and -1, it is clear that s = -0.4226 
corresponds to the actual breakaway point. Point s = -1.5774 is not on the root locus. Hence, this 
point is not an actual breakaway or break-in point. In fact, evaluation of the values of I< corre- 
sponding to s = -0.4226 and s = -1.5774 yields 

I< = 0.3849, for s = -0.4226 

I< = -0.3849, for s = -1.5774 

4. Determine the points where the root loci cross the imuginury axis. These points can be found 
by use of Routh's stability criterion as follows: Since the characteristic equation for the present 
system is 

s' + 3s2 + 2s + I< = 0 

the Routh array becomes 

s3 1 2 
r2 3 K 

The value of K that makes the s' term in the first column equal zero is K = 6.The crossing points 
on  the imaginary axis can then be found by solving the auxiliary equation obtained from the s' 
row; that is, 

3s' + I< = 3s2 + 6 = 0 

which yields 
s = i - j f i  

The frequencies at  the crossing points on the imaginary axis are thus w = +fi. The gain value 
corresponding to the crossing points is K = 6. 

A n  alternative approach is to let s = jw in the characteristic equation, equate both the real 
part and the imaginary part to zero, and then solve for w and I<. For the present system, the char- 
acteristic equation, with s = jw, is 

( j w ) ?  + 3 ( j 0 ) ~  + 2 ( j w )  + I< = 0 

Equating both the real and imaginary parts of this last equation to zero, we obtain 
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Figure 6-5 
Construction of root 
locus. 

I from which 

Thus, root loci cross the imaginary axis at w = f fi, and the value of K at the crossing points is 6. 
Also, a root-locus branch on the real axis touches the imaginary axis at w = 0. 

5. Choose a test point in the broad neighborhood of the jw axis and the origin, as shown in 
Figure 6-5, and apply the angle condition. If a test point is on the root loci, then the sum of the 
three angles, 0, + 0, + 6, ,  must be 180". If the test point does not satisfy the angle condition, 
select another test point until it satisfies the condition. (The sum of the angles at the test point will 
indicate which direction the test point should be moved.) Continue this process and locate a 
sufficient number of points satisfying the angle condition. 

6. Draw the root loci, based on the information obtained in the foregoing steps, as shown in 
Figure 6-6. 

Figure 6-6 
Root-locus plot. 
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7. Determine a pair of dominant complex-conjugate closed-loop poles such that the damping 
ratio 5 is 0.5. Closed-loop poles with 5 = 0.5 lie on lines passing through the origin and making 
the angles f cos-I 5 = icos-' 0.5 = f 60" with the negative real axis. From Figure 6-6, such closed- 
loop poles having 5 = 0.5 are obtained as follows: 

The value of K that yields such poles is found from the magnitude condition as follows: 

Using this value of K, the third pole is found at s = -2.3326. 
Note that, from step 4, it can be seen that for K = 6 the dominant closed-loop poles lie on the 

imaginary axis at s = ij*. With this value of K, the system will exhibit sustained oscillations. 
For K > 6, the dominant closed-loop poles lie in the right-half s plane, resulting in an unstable 
system. 

Finally, note that, if necessary, the root loci can be easily graduated in terms of K by use of the 
magnitude condition. We simply pick out a point on a root locus, measure the magnitudes of the 
three complex quantities s, s + 1, and s t 2, and multiply these magnitudes; the product is equal 
to the gain value K at that point, or 

/sJ 1s + 11 . IS + 21 = K 

Graduation of the root loci can be done easily by use of MATLAB. (See Section 6-4.) 

W(;AMIPLE 6-2 In this example, we shall sketch the root-locus plot of a system with complex-conjugate open- 
loop poles. Consider the system shown in Figure 6-7. For this system, 

where K 2 0. It is seen that G ( s )  has a pair of complex conjugate poles at 

A typical procedure for sketching the root-locus plot is as follows: 

1. Determine the root loci on the real axis. For any test points on the real axis, the sum of the 
angular contributions of the complex-conjugate poles is 360°, as shown in Figure 6-8.Thus the net 
effect of the complex-conjugate poles is zero on the real axis.The location of the root locus on the 
real axis is determined From the open-loop zero on the negative real axis. A simple test reveals that 
a section of the negative real axis, that between -2 and -m, is a part of the root locus. It is noted 
that, since this locus lies between two zeros (at s = -2 and s = -m), it is actually a part of two 
root loci, each of which starts from one of the two complex-conjugate poles. In other words, two 
root loci break in the part of the negative real axis between -2 and -m. 

Figure 6 4  
Control system. 
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Figure 6-8 
Determination of the 
root locus on the real 
axis. 

Since there are two open-loop poles and one zero, there is one asymptote, which coincides with 
the negative real axis. 

2. Determine the angle of departure from the complex-conjugate open-loop poles. The pres- 
ence of a pair of complex-conjugate open-loop poles requires the determination of the angle of 
departure from these poles. Knowledge of this angle is important since the root locus near a com- 
plex pole yields information as to whether the locus originating from the complex pole migrates 
toward the real axis or extends toward the asymptote. 

Referring to Figure 6-9, if we choose a test point and move it in the very vicinity of the com- 
plex open-loop pole at s = -p, , we find that the sum of the angular contributions from the pole 
at s = pz and zero at s = -2, to the test point can be considered remaining the same. If the test 
point is to be on the root locus, then the sum of &i, -0,, and -0; must be f 180°(2k + I) ,  where 
k = 0,1,2,. . . .Thus, in the example, 

I The angle of departure is then 

Figure 6-9 
Determination of the 

1 angle of departure. 1 
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Since the root locus is symmetric about the real axis, the angle of departure from the pole at 
s = -p2 is -145". 

3. Determine the break-in point. A break-in point exists where a pair of root-locus branches 
coalesces as K is increased. For this problem, the break-in point can be found as follows: Since 

we have 

which gives 

Notice that point s = -3.7320 is on the root locus. Hence this point is an actual break-in point. 
(Note that at point s = -3.7320 the corresponding gain value is K = 5.4641.) Since point 
s = -0.2680 is not on the root locus, it cannot be a break-in point. (For point s = -0.2680, the cor- 
responding gain value is K = -1.4641.) 

4. Sketch a root-locus plot, based on the information obtuined in the foregoing steps. To 
determine accurate root loci, several points must be found by trial and error between the break- 
in point and the complex open-loop poles. (To facilitate sketching the root-locus plot, we should 
find the direction in which the test point should be moved by mentally summing up the changes 
on the angles of the poles and zeros.) Figure 6-10 shows a complete root-locus plot for the system 
considered. 

I Figure 6-10 
Root-locus plot. 

Section 6-2 / Root-Locus Plots 



The value of the gain K at any point on root locus can be found by applying the magnitude 
condition or by use of MATLAB (see Section 6-4). For example, the value of K at which the 
complex-conjugate closed-loop poles have the damping ratio 5 = 0.7 can be found by locating the 
roots, as shown in Figure 6-10, and computing the value of K as follows: 

Or use MATLAB to find the value of K. (See Section 6-4.) 
It is noted that in this system the root locus in the complex plane is a part of a circle. Such a 

circular root locus will not occur in most systems. Circular root loci may occur in systems that in- 
volve two poles and one zero, two poles and two zeros, or one pole and two zeros. Even in such 
systems, whether circular root loci occur depends on the locations of poles and zeros involved. 

To show the occurrence of a circular root locus in the present system, we need to derive the 
equation for the root locus. For the present system, the angle condition is 

/s + 2 - / s  + 1 - j f i  - / s  + 1 + jV'? = *180°(2k + 1) 

If s = u + jw is substituted into this last equation, we obtain 

which can be written as 

0-a W + v 2  ( + ) + tan-'(=) = tan-'(*) * 180°(2k + 1) tan-' --- 

Taking tangents of both sides of this last equation using the relationship 

tanx f tany 
tan(x * y) = 

1 + tanxtany 

we obtain 

w + a  

[ (Wg-+y) + tan-' (=)I = tan [tan-' (5) + 180°(2k + I)] tan tan-' --- 

which can be simplified to 

This last equation is equivalent to 
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These two equations are the equations for the root loci for the present system. Notice that the first 
equation, o = 0,  is the equation for the real axis. The real axis from s = -2 to s = -ca corre- 
sponds to a root locus for K 2 0. The remaining part of the real axis corresponds to a root locus 
when K is negative. (In the present system, K is nonnegative.) The second equation for the root 
locus is an equation of a circle with center at u = -2, w = 0 and the radius equal to f i .Tha t  part 
of the circle to the left of the complex-conjugate poles corresponds to a root locus for K 2 0. 
The remaining part of the circle corresponds to a root locus when K is negative. 

It is important to note that easily interpretable equations for the root locus can be derived for 
simple systems only. For complicated systems having many poles and zeros, any attempt to derive 
equations for the root loci is discouraged. Such derived equations are very complicated and their 
configuration in the complex plane is difficult to visualize. 

6-3 SUMMARY OF GENERAL RULES 
FOFl CONSTRUCTING ROOT LOCI 

For a complicated system with many open-loop poles and zeros, constructing a root- 
locus plot may seem complicated, but actually it is not difficult if the rules for constructing 
the root loci are applied. By locating particular points and asymptotes and by comput- 
ing angles of departure from complex poles and angles of arrival at complex zeros, we 
can construct the general form of the root loci without difficulty. 

Some of the rules for constructing root loci were given in Section 6-2. The purpose 
of this section is to summarize the general rules for constructing root loci of the system 
shown in Figure 6-11. While the root-locus method is essentially based on a trial-and- 
error technique, the number of trials required can be greatly reduced if we use these rules. 

General Rules for Constructing Root Loci. We shall now summarize the general 
rules and procedure for constructing the root loci of the system shown in Figure 6-11. 

First, obtain the characteristic equation 

Then rearrange this equation so that the parameter of interest appears as the multiply- 
ing factor in'the form 

~ ( s  + zl)(s + zz ) . . . ( s  + z,) 
1 + = 0 

( S  + P I ) ( s  + P*) . . . ( S  + p,,) 
In the present discussions, we assume that the parameter of interest is the gain K, where 
K > 0. (If K < 0, which corresponds to the positive-feedback case, the angle condi- 
tion must be modified. See Section 6-5.) Note, however, that the method is still appli- 
cable to systems with parameters of interest other than gain. (See Section 7-6.) 

Figure 6-11 
: Control system. u 
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I. Locate the poles and zeros o f  G(s )  H ( s )  on the s plnne. The root-locus branches start 
from open-loop poles and terminate at zeros (finite zeros or zeros at infinity). From the 
factored form of the open-loop transfer function, locate the open-loop poles and zeros 
in the s plane. [ ~ o t e  that the open-loop zeros are the zeros of C ( s ) H ( s ) ,  while the 
closed-loop zeros consist of the zeros of G ( s )  and the poles of ~ ( s ) . ]  

Note that the root loci are symmetrical abocit the real axis of the s plane, because the 
complex poles and complex zeros occur only in conjugate pairs. 

A root-locus plot will have just as many branches as there are roots of the characteris- 
tic equation. Since the number of open-loop poles generally exceeds that of zeros, the num- 
ber of branches equals that of poles. If the number of closed-loop poles is the same as the 
number of open-loop poles, then the number of individual root-locus branches terminat- 
ing at finite open-loop zeros is equal to the number m of the open-loop zeros.The remaining 
n - rn branches terminate at infinity ( n  - rn implicit zeros at infinity) along asymptotes. 

If we include poles and zeros at infinity, the number of open-loop poles is equal to 
that of open-loop zeros. Hence we can always state that the root loci start at the poles 
of G(s)H(.s)  and end at the zeros of G ( s ) H ( s ) ,  as K increases from zero to infinity, 
where the poles and zeros include both those in the finite s plane and those at infinity. 

2. Determine the root loci on the real axis. Root loci on the real axis are determined 
by open-loop poles and zeros lying on it.The complex-conjugate poles and zeros of the 
open-loop transfer function have no effect on the location of the root loci on the real 
axis because the angle contribution of a pair of complex-conjugate poles or zeros is 360" 
on the real axis. Each portion of the root locus on the real axis extends over a range 
from a pole or zero to another pole or zero. In constructing the root loci on the real 
axis, choose a test point on it. If the total number of real poles and real zeros to the right 
of this test point is odd, then this point lies on a root locus. If the open-loop poles and 
open-loop zeros are simple poles and simple zeros, then the root locus and its comple- 
ment form alternate segments along the real axis. 

3. Deterrnir~e the asymptotes oj'roor loci. If the test point s is located far from the origin, 
then the angle of each conlplex quantity may be considered the same. One open-loop zero 
and one open-loop pole then cancel the effects of the other.Therefore. the root loci for very 
large values of s must be asylnptotic to straight lines whose angles (slopes) are given by 

*180°(2k + 1)  
Angles of asymptotes = ( k  = 0,1,2, . . . )  

n - r n  

where n = number of finite poles of G ( s )  H ( s )  

rrz = number of finite zeros of G ( s ) H ( s )  

Here, k = 0 corresponds to the asymptotes with the smallest angle with the real axis.Al- 
though lc assumes an infinite number of values, as k is increased the angle repeats itself, 
and the number of distinct asymptotes is n - rn. 

All the asymptotes intersect on the real axis.The point at which they do so is obtained 
as follows: IS both the numerator and denominator of the open-loop transfer functiol: 
are expanded, the result is 
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If a test point is located very far from the origin, then by dividing the denominator by 
the numerator, it is possible to write G(s) H(s) as 

n 
G(s)H(s) = 

sn-" + [(pl + p2 + - . . +  Pn) - (zl + zz + . . . + Z,n)lSn-m-l + . . . 

L "  , n - m  J 
The abscissa of the intersection of the asymptotes and the real axis is then obtained by 
setting the denominator of the right-hand side of Equation (6-12) equal to zero and 
solving for s, or 

s = -  (PI f ~2 + ... + pn) - (21 + ~2 + .. .  + zm) 
(6-13) 

n - m  

[Example 6-1 shows why Equation (6-13) gives the intersection.] Once this intersection 
.is determined, the asymptotes can be readily drawn in the complex plane. 

It is important to note that the asymptotes show the behavior of the root loci for 
Is1 S 1. A root locus branch may lie on one side of the corresponding asymptote or may 
cross the corresponding asymptote from one side to the other side. 

4. Find the breakaway and break-in points. Because of the conjugate symmetry of 
the root loci, the breakaway points and break-in points either lie on the real axis or 
occur in complex-conjugate pairs. 

If a root locus lies between two adjacent open-loop poles on the real axis, then there 
exists at least one breakaway point between the two poles. Similarly, if the root locus lies 
between two adjacent zeros (one zero may be located at -a) on the real axis, then there 
always exists at least one break-in point between the two zeros. If the root locus lies be- 
tween an open-loop pole and a zero (finite or infinite) on the real axis, then there may 
exist no breakaway or break-in points or there may exist both breakaway and break-in 
points. 

Suppose that the characteristic equation is given by 

The breakaway points and break-in points correspond to multiple roots of the charac- 
teristic equation. Hence, as discussed in Example 6-1, the breakaway and break-in points 
can be determined from the roots of 

where the prime indicates differentiation with respect to s. It is important to note that 
the breakaway points and break-in points must be the roots of Equation (6-14), but not 
all roots of Equation (6-14) are breakaway or break-in points. If a real root of Equation 
(6-14) lies on the root-locus portion of the real axis, then it is an actual breakaway or 
break-in point. If a real root of Equation (6-14) is not on the root-locus portion of the 
real axis, then this root corresponds to neither a breakaway point nor a break-in point. 
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If two roots s = sl and s = -sl of Equation (6-14) are a complex-conjugate pair and if 
it is not certain whether they are on root loci, then it is necessary to check the corre- 
sponding K value. If the value of K corresponding to a roots = s ,  of d K / d s  = 0 is pos- 
itive, point s = s, is an actual breakaway or break-in point. (Since K is assumed to be 
nonnegative, if the value of I< thus obtained is negative, or a complex quantity, then 
point s = s ,  is neither a breakaway nor break-in point.) 

5. Determine the angle of departure (angle of  arrival) of the root locus from a com- 
plex pole (at a complex zero). To sketch the root loci with reasonable accuracy, we must 
find the directions of the root loci near the complex poles and zeros. If a test point is cho- 
sen and moved in the very vicinity of a complex pole (or complex zero), the sum of the 
angular contributions from all other poles and zeros can be considered to remain the 
same. Therefore, the angle of departure (or angle of arrival) of the root locus from a 
complex pole (or at a complex zero) can be found by subtracting from 180" the sum of 
all the angles of vectors from all other poles and zeros to the complex pole (or complex 
zero) in question, with appropriate signs included. 

Angle of departure from a complex pole = 180" 
- (sum of the angles of vectors to a complex pole in question from other poles) 
+ (sum of the angles of vectors to a complex pole in question from zeros) 

Angle of arrival at a complex zero = 180" 
- (sum of the angles of vectors to a complex zero in question from other zeros) 
+ (sum of the angles of vectors to a complex zero in question from poles) 

The angle of departure is shown in Figure 6-12. 

6.  Find the points where the root loci may cross the imaginary axis. The points where 
the root loci intersect the jw axis can be found easily by (a) use of Routh's stability cri- 
terion or (b) letting s = jw in the characteristic equation, equating both the real part and 
the imaginary part to zero, and solving for w and K.The values of w thus found give the 
frequencies at which root loci cross the imaginary axis. The K value corresponding to 
each crossing frequency gives the gain at the crossing point. 

7. Taking a series of test points in the broad neighborhood of  the origin of the s plane, 
sketch the root loci. Determine the root loci in the broad neighborhood of the jw axis 
and the origin. The most important part of the root loci is on neither the real axis nor 
the asymptotes, but the part in the broad neighborhood of the jw axis and the origin.The 

Figure 6-12 
Construction of the 
root locus. [Angle of 
departure 
= 180" - 

[ ~ l  + $21 + 4.1 
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Figure 6-13 
Root-locus plots. 

shape of the root loci in this important region in the s plane must be obtained with rea- 
sonable accuracy. (If accurate shape of the root loci is needed, MATLAB may be used 
rather than hand calculations of the exact shape of the root loci.) 

8. Determine closed-loop poles. A particular point on each root-locus branch will be 
a closed-loop pole if the value of K at that point satisfies the magnitude condition. Con- 
versely, the magnitude condition enables us to determine the value of the gain K at any 
specific root location on the locus. (If necessary, the root loci may be graduated in terms 
of I<. The root loci are continuous with K.) 

The value of K corresponding to any point s on a root locus can be obtained using 
the magnitude condition, or 

product of lengths between point s to poles 
K =  

product of lengths between point s to zeros 

This value can be evaluated either graphically or analytically. (MATLAB can be used 
for graduating the root loci with K. See Section 6-4.) 

If the gain K of the open-loop transfer function is given in the problem, then by ap- 
plying the magnitude condition, we can find the correct locations of the closed-loop 
poles for a given I< on each branch of the root loci by a trial-and-error approach or by 
use of MATLAB, which will be presented in Section 6-4. 

Comments on the Root-Locus Plots. It is noted that the characteristic equa- 
tion of the system whose open-loop transfer function is 

~ ( s " '  + blsm-I + ... + b,) 
G(s)H(s)  = + a l s n - l  4- ... (n e m) 

+ a,, 
is an nth-degree algebraic equation in s. If the order of the numerator of G(s)H(s)  is 
lower than that of the denominator by two or more (which means that there are two or 
more zeros at infinity), then the coefficient a, is the negative sum of the roots of the 
equation and is independent of K. In such a case, if some of the roots move on the locus 
toward the left as K is increased, then the other roots must move toward the right as K 
is increased.This information is helpful in finding the general shape of the root loci. 

It is also noted that a slight change in the pole-zero configuration may cause signif- 
icant changes in the root-locus configurations. Figure 6-13 demonstrates the fact that a 
slight change in the location of a zero or pole will make the root-locus configuration 
look quite different. 
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Cancellation of Poles of G(s) with Zeros of H(s). It is important to note that 
if the denominator of G ( s )  and the numerator of H ( s )  involve common factors then the 
corresponding open-loop poles and zeros will cancel each other, reducing the degree of 
the characteristic equation by one or more. For example, consider the system shown in 
Figure 6-14(a). (This system has velocity feedback.) By modifying the block diagram of 
Figure 6-14(a) to that shown in Figure 6-14(b), it is clearly seen that G ( s )  and H ( s )  
have a common factor s  + 1. The closed-loop transfer function C ( s ) / R ( s )  is 

The characteristic equation is 

Because of the cancellation of the terms ( s  + 1)  appearing in G ( s )  and H ( s ) ,  however, 
we have 

The reduced characteristic equation is 

The root-locus plot of G ( s ) H ( s )  does not show all the roots of the characteristic equa- 
tion, only the roots of the reduced equation. 

To obtain the complete set of closed-loop poles, we must add the canceled pole of 
G ( s ) H ( s )  to those closed-loop poles obtained from the root-locus plot of G ( s ) H ( s ) .  
The important thing to remember is that the canceled pole of G ( s ) H ( s )  is a closed-loop 
pole of the system, as seen from Figure 6-14(c). 

Figure 6-14 . 
(a) Control system 
with velocity 
feedback; (b) ahd 
(c) modified block 
diagrams. 
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Typical Pole-Zero Configurations and Corresponding Root Loci. In summa- 
rizing, we show several open-loop pole-zero configurations and their corresponding 
root loci in Table 6-1. The pattern of the root loci depends only on the relative separa- 
tion of the open-loop poles and zeros. If the number of open-loop poles exceeds the 
number of finite zeros by three or more, there is a value of the gain K beyond which root 
loci enter the right-half s plane, and thus the system can become unstab1e.A stable sys- 
tem must have all its closed-loop poles in the left-half s plane. 

Table 6-1 Open-Loop Pole-Zero Configurations 
and the Corresponding Root Loci 
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Note that once we have some experience with the method, we can easily evaluate the 
changes in the root loci due to the changes in the number and location of the open-loop 
poles and zeros by visualizing the root-locus plots resulting from various pole-zero 
configurations. 

Summary. From the preceding discussions, it should be clear that it is possible to 
sketch a reasonably accurate root-locus diagram for a given system by following simple 
rules. (The reader should study the various root-locus diagrams shown in the solved 
problems at the end of the chapter.) At preliminary design stages, we may not need the 
precise locations of the closed-loop poles. Often their approximate locations are all that 
is needed to make an estimate of system performance. Thus, it is important that the 
designer have the capability of quickly sketching the root loci for a given system. 

6-4 ROOT-LOCUS PLOTS WITH MATLAB 

In this section we present the MATLAB approach to the generation of root-locus plots 
and finding relevant information from the root-locus plots. 

Plotting Root Loci with MATLAB. In plotting root loci with MATLAB we 
deal with the system equation given in the form of Equation (6-ll), which may be 
written as 

num 
1 + K -  = 0 

den 

where num is the numerator polynomial and den is the denominator polynomial. 
That is, 

Note that both vectors num and den must be written in descending powers of s. 
A MATLAB command commonly used for plotting root loci is 

rlocus(num,den) 

Using this command, the root-locus plot is drawn on the screen.The gain vector K is au- 
tomatically determined. (The vector K contains all the gain values for which the closed- 
loop poles are to be computed.) 

For the systems defined in state space, rlocus(A,B,C,D) plots the root locus of the 
system with the gain vector automatically determined. 

Note that commands 
rlocus(num,den,K) and rlocus(A,B,C,D,K) 

use the user-supplied gain vector K. 
If invoked with left-hand arguments 

[r,K] = rlocus(num,den) 
[r,K] = rlocus(num,den,K) 
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[r,Kl = rlocus(A,B,C,D) 
[r,Kl = rlocus(A,B,C,D,K) 
[r,Kl = rlocus(sys) 

the screen will show the matrix r and gain vector K. (r has length K rows and length 
den - 1 columns containing the complex root locations. Each row of the matrix corre- 
sponds to a gain from vector K.) The plot command 

plot(r,'-'1 
plots the root loci. 

If it is desired to plot the root loci with marks '0' or 'x', it is necessary to use the fol- 
lowing command: 

Plotting root loci using marks o or x is instructive, since each calculated closed-loop pole 
is graphically shown; in some portion of the root loci those marks are densely placed and 
in another portion of the root loci they are sparsely placed. MATLAB supplies its own 
set of gain values used to calculate a root-locus plot. It does so by an internal adaptive 
step-size routine. Also, MATLAB uses the automatic axis-scaling feature of the plot 
command. 

Finally, note that, since the gain vector is automatically determined, root-locus plots of 

are all the same.The num and den set of the system is the same for all three systems.The 
num and den are 

num= [O 0 1 I ]  
den = [ l  5 6 01 

EXAlYPLE 6-3 Consider the system shown in Figure 6-15. Plot root loci with a square aspect ratio so that a line 
with slope 1 is a true 45" line. Choose the region of root-locus plot to be 

- 6 5 x 5 6 ,  - 6 5 ~ 5 6  

where x  and y  are the real-axis coordinate and imaginary-axis coordinate, respectively. 

Figure 6-15 
Control system. 
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To set the given plot region on the screen to be square, enter the command 

v = [-6 6 -6 61; axis (v); axis('squarel) 

With this command, the region of the plot is as specified and a line with slope 1 is at a true 45O, 
not skewed by the irregular shape of the screen. 

For this problem, the denominator is given as a product of first- and second-order terms. So 
we must multiply these terms to get a polynomial in s. The multiplication of these terms can be 
done easily by use of the convolution command, as shown next. 

Define 
a = s ( s +  1):' a = [ I  1 01 
b = s 2 + 4 s + 1 6 :  b =  [ l  4 161 

Then we use the following command: 

Note that conv(a, b) gives the product of two polynomials a and b. See the following computer output: 

a = [ I  1 01; 
b =  [ l  4 161; 
c = conv (a,b) 

1 5 20 16 0 

The denominator polynomial is thus found to be 

den = [ I  5 20 16 01 
To find the complex-conjugate open-loop poles (the roots of s2 + 4s + 16 = 0), we may enter 

the roots command as follows: 

Thus, the system has the following open-loop zero and open-loop poles: 
Open-loop zero: s = -3 

Open-loop poles: s = 0, s = -1, s = -2 + j3.4641 

MATLAB Program 6-1 will plot the root-locus diagram for this system. The plot is shown in 
Figure 6-16. 

/ MATLAB Program 6-1 1 
- - - - -- - - - Root-locus plot --------- 

num = 10 0 0 1 31; 
den = [I 5 20 16 01; 
rlocus(num,den) 
v = 1-6 6 -6 61; 
axis(v); axis('squarei) 
grid; 
title ('Root-Locus Plot of G(s) = I<(s + 3)/[s(s + I )(sA2 + 4s + 16)l') 
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I Root-Locus Plot o f  G(s) = K(s + 3)/[s(s + l)(s2 + 4s + 16)] 

Figure 6--16 - 
Root-locus plot. Real Axis 

Note that in MATLAB Program 6-1, instead of 

den = [ I  5 20 16 01 
we may enter 

den = conv ([1 1 01, [ I  4 161) 
The results are the same. 

EXAPrlPLE 6-4 Consider the system whose open-loop transfer function G ( s ) H ( s )  is 

There are no open-loop zeros. Open-loop poles are located at s = -0.3 + j3.1480, 
s = -0.3 - j3.1480, s  = -0.5, and s  = 0. 

Entering MATLAB Program 6-2 into the computer, we obtain the root-locus plot shown in 
Figure 6-17. 

MATLAB Program 6-2 1 

num=[O 0 0 0 11; 
den = [ I  1.1 10.3 5 01; 
r = rlocus(num,den); 
plot(r,'ol) 
v = [-6 6 -6 61; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K/[s(s + 0.5)(sA2 + 0.6s+l 0))') 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Root-Locus Plot of G(s) = Kl[s(s+0.5)(s2+0.6s+10)] 

Figure 6-17 
Root-locus plot. 

-6 4 -2 0 2 4 6 
Real Axis 

Notice that in the regions near x = -0.3, y = 2.3 and x = -0.3, y = -2.3 two loci approach 
each other. We may wonder if these two branches should touch or not. To explore this situation, 
we may plot the root loci using smaller increments of K in the critical region. 

By a conventional trial-and-error approach or using the command rlocfind to be presented 
later in this section, we find the particular region of interest to be 20 5 K 5 30. By entering 
MATLAB Program 6-3, we obtain the root-locus plot shown in Figure 6-18. From this plot, it 
is clear that the two branches that approach in the upper half-plane (or in the lower half-plane) 
do not touch. 

MATLAB Program 6-3 

% --------- Root-locus plot --------- 

num = [O 0 0 0 I ] ;  
den = [ l  1.1 10.3 5 01; 
K1 = 0:0.2:20; 
K2 = 20:0.1:30; 
K3 = 30:5:1000; 
K = [Kl K2 K31; 
r = rlocus(num,den,K); 
plot(r, '0') 

v = [-4 4 -4 41; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K/[s(s + 0.5)(sA2 + 0.6s + lo) ]  '1 
xlabel('Keal Axis') 
ylabel('lmag Axis') 
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1 Root-Locus Plot of G(s) = W[s(s+0.5)(s2+0.6s+10)] 

Figure 6-118 
~oot- locus  plot. Real Axis 

EXAMPLE 6-5 Consider the system shown in Figure 6-19.The system equations are 

x = Ax + Bu 

y = Cx + Du 

In this example problem we shall obtain the root-locus diagram of the system defined in state 
space. As an example let us consider the case where matrices A, B, C, and D are 

C =  [l 0 01, D = [O] 

The root-locus plot for this system can be obtained with MATLAB by use of the following 
command: 

Figure 6-19 
i Closed-lo'op control 1 system. 
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Figure 6-20 
Root-locus plot of 
system defined in 
state space, where A, 
B, C, and D are as 
given by Equation 
(6-1 5). 

This command will produce the same root-locus plot as can be obtained by use of the rlocus 
(num,den) command, where num and den are obtained from 

[num,den] = ss2tf(AtB,C,D) 
as follows: 

num = [O 0 1 01 
den = [I 14 56 1601 

MATLAB Program 6-4 is a program that will generate the root-locus plot as shown in Figure 
6-20. 

I MATLAB Program 6-4 I 

A = [0 I 0;O 0 1;-I 60 -56 -141; 
B = [0;1;-141; 
c = [I 0 01; 
D = [O]; 
K = 0:0.1:400; 
rlocus(A,B,C,D,K); . 
v = [-20 20 -20 201; axis(v) 
grid 
title('Root-Locus Plot of System Defined in State Space') 

Root-Locus Plot of System Defined in State Space 

Real Axis 
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Figure 6-21 
(a) Complex poles; 
(b) lines of constant 
damping ratio J. 

Constant 5 Loci and Constant m, Loci. Recall that in the complex plane the 
damping ratio 5 of a pair of complex-conjugate poles can be expressed in terms of the 
angle 4, which is measured from the negative real axis, as shown in Figure 6-21(a) with 

In other words, lines of constant damping ratio J are radial lines passing through the 
origin as shown in Figure 6-21(b). For example, a damping ratio of 0.5 requires that 
the complex poles lie on the lines drawn through the origin making angles of +60° 
with the negative real axis. (If the real part of a pair of complex poles is positive, which 
means that the system is unstable, the corresponding l is negative.) the damping ratio 
determines the angular location of the poles, while the distance of the pole from the 
origin is determined by the undamped natural frequency w,. The constant w, loci are 
circles. 

To draw constant 5 lines and constant w, circles on the root-locus diagram with 
MATLAB, use the command sgrid. 

Plotting Polar Grids in the Root-Locus Diagam. The command 

sgrid 

overlays lines of constant damping ratio (( = 0 - 1 with 0.1 increment) and circles of 
constant w, on the root-locus plot. See MATLAB Program 6-5 and the resulting diagram 
shown in Figure 6-22. 

If only particular constant J lines (such as the ( = 0.5 line and 5 = 0.707 line) and 
particular constant w, circles (such as the w,, = 0.5 circle, w ,  = 1 circle, and w, = 2 cir- 
cle) are desired, use the following command: 

sgrid([0.5, 0.7071, [0.5, 1, 21) 
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Figure 6-22 
Constant 5 lines and 
constant w ,  circles. 

MATLAB Program 6-5 

sgrid 
v = [-2 2 -2 21; axis(v); axis('squarel) 
title('Constant \zeta Lines and Constant \omega-n Circles') 
xlabel(Rea1 Axis') 
ylabel('lmag Axis') 
gtext('\zeta = 0.9') 
gtext('0.8') 
gtext('0.7') 
gtext('0.6') 
gtext('0.5') 
gtext('0.4') 
gtext('0.3') 
gtext('0.2') 
gtext('0.l '1 
gtext('\omega-n = 1 I) 
gtext('\omega-n = 2') 

Constant 5 Lines and Constant w, Circles 

Real Axis 

If we wish to overlay lines of constant 5 and circles of constant w, as given above to a 
root-locus plot of a system with 

num=[O 0 0 11 
den = [ I  4 5 01 

then enter MATLAB Program 6-6 into the computer. The resulting root-locus plot is 
shown in Figure 6-23. 
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If we want to omit either the entire constant < lines or entire constant w, circles, we 
may use empty brackets [ I  in the arguments of the sgrid command. For example, if we want 
to overlay only the constant damping ratio line corresponding to 5 = 0.5 and no constant 
w, circles to the root-locus plot shown in Figure 6-23, then we may use the command 

sgrid(0.5, [ I )  
See MATLAB Program 6-7 and the resulting plot shown in Figure 6-24. 

MATLAB Program 6-6 

n u m = [ O  0 0 I] ;  
den = [ I  4 5 01; 
rlocus(num, den); 
v = [-3 1 -2 21; axis(v); axis('squarel) 
sgrid([0.5,0.707], [0.5,1,21) 
title('Root-Locus Plot with \zeta = 0.5 and 0.707 Lines and \omega-n = 0.5, 1 ,  and 2 Circles') 
gtext('\zeta = 0.5') 
gtext('\zeta = 0.707') 
gtext('\omega-n = 2') 
gtext('\omega-n = 1 '1 
gtext('\omega-n = 0.5') 

Root-Locus Plot w ~ t h  5 = 0 5 and 0.707 Lines 
and w, = 0 5, 1, and 2 Clrcles 

2 

MATLAB Program 6-7 

num=[O 0 0 I]; 
den = [ I  4 5 01; 
rlocus(num, den) 
v = 1-3 1 -2 21; axis(v); axis('squarel) 
sgrid(0.5, [ I )  
title('Root-Locus Plot and \zeta = 0.5 Line') 
gtext('\zeta = 0.5') 

1 5  
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w, = 0.5 - 

Figure 6-2!3 
Constant !: lines and -1.5 

constant a,,, circles 
superimposed on a -3 -25 -2 -15  -1 -05 0 0 5  1 
root-locus plot. Real Axis 
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Figure 6-24 
Root-locus plot with 
5 = 0.5 line. 

Figure 6-25 
Plots of constant- 
gain and constant- 
phase loci in the 
G ( s ) H ( s )  plane. 

Orthogonality of Root Loci and Constant-Gain Loci. Consider the system 
whose open-loop transfer function is G ( s ) H ( s ) .  In the G ( s ) H ( s )  plane, the loci of 
IG(s)H(s)l  = constant are circles centered at the origin, and the loci corresponding to 
/ G ( s ) H ( s )  = &180°(2k + 1 )  (k = 0, 1, 2, ...) lie on the negative real axis of the 
G ( s ) H ( s )  plane, as shown in Figure 6-25. [Note that the complex plane employed here 
is not the s  plane, but the G ( s ) H ( s )  plane.] 

The root loci and constant-gain loci in the s  plane are conformal mappings of the loci 
of / G ( s )  H ( s )  = +180°(2k + 1 )  and of IG(s)H(s)l  = constant in the ,G ( s )H(s )  plane. 

Since the constant-phase and constant-gain loci in the G ( s ) H ( s )  plane are orthog- 
onal, the root loci and constant-gain loci in the s plane are orthogonal. Figure 6-26(a) 
shows the root loci and constant-gain loci for the following system: 

Root-Locus Plot and 5 = 0.5 Line 

G(s) H(s) Plane 

2 

1.5 

1 

0.5 

j 0 :  
i4' 
w 

-0.5 

-1 

-1.5 

- 

IG(s) H(s)j = constant 

- 

- 

- 

- 

- 

- 

- 

Irn t G(s) H(s) Plane 

2-3 -i.5 L2 -is 
Real Axis 
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(a) (b) 

Figure 6-26 
Plots of' root loci and constant-gain loci. (a) System with G ( s )  = K ( s  + 2 ) / ( s 2  + 2s + 3) ,  
H ( s )  =: 1; (b)  system with G ( s )  = ~ / [ s ( s  + l ) ( s  + 2 ) ] ,  H ( s )  = 1. 

Notice that since the pole-zero configuration is symmetrical about the real axis the con- 
stant-gain loci are also symmetrical about the real axis. 

Figure 6-26(b) shows the root loci and constant-gain loci for the system: 

Notice that since the configuration of the poles in the s plane is symmetrical about the 
real axis and the line parallel to'the imaginary axis passing through point (a = -1, 
w = O), the constant-gain loci are symmetrical about the w = 0 line (real axis) and the 
a = -1 line. 

From Figures 6-26(a) and (b), notice that every point in the s plane has the corre- 
sponding K value. If we use a command rlocfind (presented next), MATLAB will give 
the K value of the specified point as well as the nearest closed-loop poles corresponding 
to this K value. 

Finding the Gain Value K a t  an Arbitrary Point on the Root Loci. In MAT- 
LAB analysis of closed-loop systems, it is frequently desired to find the gain value K at 
an arbitrary point on the root 1ocus.This can be accomplished by using the following 
rlocfind command: 

[K, rl = rlocfind(num, den) 

The rlocfind command, which must follow an rlocus command, overlays movable x-y co- 
ordinates on the screen. Using the mouse, we position the origin of the x-y coordinates 
over the desired point on the root locus and press the mouse button. Then MATLAB 

Section 6-4 / Root-Locus Plots with MATLAB 369 



displays on the screen the coordinates of that point, the gain value at that point, and the 
closed-loop poles corresponding to this gain value. 

If the selected point is not on the root locus, the rlocfind command gives the coor- 
dinates of this selected point, the gain value of this point, and the locations of the closed- 
loop poles corresponding to this K value. [Note that every point on the s plane has a gain 
value. See, for example, Figures 6-26 (a) and (b).] 

EXAMPLE 6-6 Consider the unity-feedback control system with the following feedforward transfer function: 

Plot the root loci with MATLAB. Determine closed-loop poles that have the damping ratio of 0.5. 
Find the gain value K at this point. 

We first plot a root-locus diagram as shown in Figure 6-27.Then enter the rlocfind command 
as shown in MATLAB Program 6-8. Position the origin of the x-y coordinates over the intersec- 
tion of the upper root-locus branch and the 5 = 0.5 1ine.Then press the button of the mouse.The 
screen shows the coordinates of this point, the gain value at this point, and the closed-loop poles 
corresponding to this gain value. 

The plot shows the closed-loop poles by a plus sign (+).The three closed-loop poles obtained 
are 

Note that the three closed-loop poles are slightly off the exact locations obtained by the analytic 
method. The reason is that we cannot position the origin of the movable x-y coordinates exactly 
at the intersection of the upper root-locus branch and the 5 = 0.5 line. 

MATLAB Program 6-8 

num= [O 0 0 I]; 
den = [ I  4 5 01; 
rlocus(num, den); 
v = [-3 1 -2 21; axis(v); axis('squarel) 
sgrid(0.5, [ I )  
[K,r] = rlocfind(num, den) 
Select a point in the graphics window 

selected-poi nt = 

-0.6246 + 1.07921 

K = 

4.2823 

r = 

-2.7474 
-0.6263 + 1.0800i 
-0.6263 - 1.0800i 
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Figure 6-27 
Root-locus plot with 

1 5 = 0.5 line. Real Axis 

Figure 6-28 
(a) Nonminimum- 
phase system; 
(b) root-locus plot. 

Nonminimum-Phase Systems. If all the poles and zeros of a system lie in the left- 
half s plane, then the system is called minimum phase. If a system has at least one pole 
or zero in the right-half s plane, then the system is called nonminimumphase. The term 
nonminimum phase comes from the phase-shift characteristics of such a system when 
subjected to sinusoidal inputs. 

Consider the system shown in Figure 6-28(a). For this system 

This is a nonminimum-phase system since there is one zero in the right-half s plane. For 
this system, the angle condition becomes 
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The root loci can be obtained from Equation (6-16). Figure 6-28(b) shows a root-locus 
plot for this system. From the diagram, we see that the system is stable if the gain K is 
less than l / T a .  

To obtain a root-locus plot with MATLAB, enter the numerator and denominator 
as usual. For example, if T  = 1 sec and Ta = 0.5 sec, enter the following num and den 
in the program: 

num = [O -0.5 1 I 
den = [ I  1 01 

MATLAB Program 6-9 gives the plot of the root loci shown in Figure 6-29. 

MATLAB Program 6-9 

num = [O -0.5 I ] ;  
den = [ I  1 01; 
k l  = 0:0.01:30; 
k2 = 30:l :I 00; 
K3 = 100:5:500; 
K = [k l  k2 k3]; 
rlocus(num,den,K) 
v = [-2 6 -4 41; axis(v); axis('squaret) 
grid 
title('Root-Locus Plot of C(s) = K ( l  - O.Ss)/[s(s + 1 ) I 1 )  

Root-Locus Plot of G(s) = K(l  - 0.5s)i[s(s + I)]  

Figure 6-29 
Root-locus plot of 

Real Axis 
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6-5 POSITIVE-FEEDBACK SYSTEMS 

Figure 6-30 
Control system. 

Root Loci for Positive-Feedback Systems.* In a complex control system, there 
may be a positive-feedback inner loop as shown in Figure 6-30. Such a loop is usually 
stabilized by the outer loop. In what follows, we shall be concerned only with the positive- 
feedback inner loop. The closed-loop transfer function of the inner loop is 

The characteristic equation is 

This equation can be solved in a manner similar to the development of the root-locus 
method in Section 6-2. The angle condition, however, must be altered. 

Equation (6-17) can be rewritten as 

which is equivalent to the following two equations: 

The total sum of all angles from the open-loop poles and zeros must be equal to 
0" f k360°. Thus the root locus follows a 0" locus in contrast to the 180" locus consid- 
ered previously. The magnitude condition remains unaltered. 

To illustrate the root-locus plot for the positive-feedback system, we shall use the fol- 
lowing transfer functions G ( s )  and H ( s )  as an example. 

The gain K is assumed to be positive. 

* Reference W-4 
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The general rules for constructing root loci given in Section 6-3 must be modified in 
the following way: 

Rule 2 is Modified as Follows: If the total number of real poles and real zeros to the right 
of a test point on the real axis is even, then this test point lies on the root locus. 

Rule 3 is Modified as Follows: 

f k360° 
Angles of asymptotes = --- (k = 0,1,2, ... 

n - m 

where n = number of finite poles of G ( s ) H ( s )  
m = number of finite zeros of G ( s ) H ( s )  

Rule 5 is Modified as Follows: When calculating the angle of departure (or angle of ar- 
rival) from a complex open-loop pole (or at a complex zero), subtract from 0" the sum 
of all angles of the vectors from all the other poles and zeros to the complex pole (or com- 
plex zero) in question, with appropriate signs included. 

Other rules for constructing the root-locus plot remain the same. We shall now apply 
the modified rules to construct the root-locus plot. 

1. Plot the open-loop poles ( s  = -1 + j, s = -1 - j, s = -3) and zero ( s  = -2) in 
the complex p1ane.A~ K is increased from 0 to oo, the closed-loop poles start at the 
open-loop poles and terminate at the open-loop zeros (finite or infinite), just as in 
the case of negative-feedback systems. 

2. Determine the root loci on the real axis. Root loci exist on the real axis between 
-2 and +oo and between -3 and -GO. 

3. Determine the asymptotes of the root loci. For the present system, 

*k360° - *1*00 Angles of asymptote = - - 
3 - 1 

This simply means that asymptotes are on the real axis. 
4. Determine the breakaway and break-in points. Since the characteristic equation is 

we obtain 

By differentiating K with respect to s, we obtain 
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Note that 

Figure 6-31 
Root-locus plot for the 
positive-feedback 
system with 
G ( s )  = K ( s  + 2 ) /  
[ ( s  + 3)(s2 + 2s t- 2) ] ,  
H ( s )  = 1. 

Point s = -0.8 is on the root locus. Since this point lies between two zeros (a finite 
zero and an infinite zero), it is an actual break-in point. Points s = -2.35 rt j0.77 
do not satisfy the angle condition and, therefore, they are neither breakaway nor 
break-in points. 

5. Find the angle of departure of the root locus from a complex pole. For the com- 
plex pole at s = -1 + j, the angle of departure 8 is 

(The angle of departure from the complex pole at s = -1 - j is 72O.) 
6. Choose a test point in the broad neighborhood of the jw axis and the origin and 

apply the angle condition. Locate a sufficient number of points that satisfy the 
angle condition. 

Figure 6-31 shows the root loci for the given positive-feedback system.The root loci 
are shown with dashed lines and a curve. 

Note that if 

one real root enters the right-half s plane. Hence, for values of K greater than 3, the 
systein becomes unstable. (For K > 3, the system must be stabilized with an outer 
loop.) 
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Figure 6-32 
Root-locus plot for the 
negative-feedback 
system with 
G ( s )  = K ( s  + 2 ) /  
[ ( s  + 3) (s2  + 2s + 2 ) ] ,  
H ( s )  = 1. 

Note that the closed-loop transfer function for the positive-feedback system is 
given by 

To compare this root-locus plot with that of the corresponding negative-feedback sys- 
tem, we show in Figure 6-32 the root loci for the negative-feedback system whose closed- 
loop transfer function is 

Table 6-2 shows various root-locus plots of negative-feedback and positive-feedback 
systems. The closed-loop transfer functions are given by 

for negative-feedback systems 

L - - - G 

R 1 - G H '  
for positive-feedback systems 

where GH is the open-loop transfer function. In Table 6-2, the root loci for negative- 
feedback systems are drawn with heavy lines and curves, and those for positive-feedback 
systems are drawn with dashed lines and curves. 
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Table 6-2 Root-Locus Plots of Negative-Feedback and Positive- 
Feedback Systems 

Heavy lines and curves correspond to negative-feedback systems; dashed lines and 
curves correspond to positive-feedback systems. 

Section 6-5 / Positive-Feedback Systems 



6-6 CONDITIONALLY STABLE SYSTEMS 

Figure 6-33 
Control system. 

Figure 6-34 
Root-locus plot of 
conditionally stable 
system. 

Consider the system shown in Figure 6-33. We can plot the root loci for this system by 
applying the general rules and procedure for constructing root loci, or use MATLAB to 
get root-locus plots. MATLAB Program 6-10 will plot the root-locus diagram for the sys- 
tem. The plot is shown in Figure 6-34. 

It can be seen from the root-locus plot of Figure 6-34 that this system is stable only 
for limited ranges of the value of K-that is, 0 < K < 12 and 73 < K < 154. The sys- 
tem becomes unstable for 12 < K < 73 and 154 < K. (If K assumes a value corre- 

MATLAB Program 6-1 0 

num = [O 0 0 1 2 41; 
den = conv(conv([l 4 01,[1 611, [ I  1.4 11); 
rlocus(num, den) 
v = [-7 3 -5 51; axis(v); axis('squarel) 
grid 
title('Root-Locus Plot of C(s) = K(sA2 + 2s t. 4)/[s(s + 4)(s + 6)(sA2 + 1.4s + I ) ] ' )  
text(1 .O, 0.55,'K = 12') 
text(1 .0,3.0t1K = 73') 
text(1.0,4.15,'K = 154') 

Root-Locus Plot of G(s) = K(S' + 2s + ~ ) / [ s ( s  + 4)(s + 6)(s2 + 1.4s + l)] 

Real Axis 
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sponding to unstable operation, the system may break down or may become nonlinear 
due to a saturation nonlinearity that may exist.) Such a system is called conditionally 
stable. 

In practice, conditionally stable systems are not desirable. Conditional stability is 
dangerous but does occur in certain systems, in particular, a system that has an unsta- 
ble feedforward path. Such an unstable feedforward path may occur if the system has a 
minor loop. It is advisable to avoid such conditional stability since, if the gain drops be- 
yond the critical value for any reason, the system becomes unstable. Note that the ad- 
dition of a proper compensating network will eliminate conditional stability. [An addition 
of a zero will cause the root loci to bend to the left.(See Section 7-2.) Hence conditional 
stability may be eliminated by adding proper compensation.] 

6-7 ROOT LCICI FOR SYSTEMS WITH TRANSPORT LAG 

Figure 6-35 shows a thermal system in which hot air is circulated to keep the tempera- 
ture of a chamber constant. In this system, the measuring element is placed downstream 
a distance L ft from the furnace, the air velocity is v ftlsec, and T = L/v sec would elapse 
before any change in the furnace temperature is sensed by the thermometer. Such a 
delay in measuring, delay in controller action, or delay in actuator operation, and the like, 
is called transport lag or dead time. Dead time is present in most process control systems. 

The input x ( t )  and the output y ( t )  of a transport-lag or dead-time element are 
related by 

where T is dead time. The transfer function of transport lag or dead time is given by 

2?[x(t - T ) l ( t  - T ) ]  
Transfer function of transport lag or dead time = 

Z [ x ( t > l ( t > l  

Figure 6-35 
Thermal system. 

I .k A 4 I Thermometer 

Fuel 

Blower 
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Figure 6-36 
Block diagram of the 
system shown in 
Figure 6-35. 

Suppose that the feedforward transfer function of this thermal system can be 
approximated by 

as shown in Figure 6-36. Let us construct a root-locus plot for this system. The charac- 
teristic equation for this closed-loop system is 

It is noted that for systems with transport lag the rules of construction presented 
earlier need to be modified. For example, the number of the root-locus branches is in- 
finite, since the characteristic equation has an infinite number of roots. The number of 
asymptotes is infinite. They are all parallel to the real axis of the s plane, as will be seen 
later. 

From Equation (6-18), we obtain 

Thus, the angle condition becomes 

To find the angle of e-T< substitute s = a + jw.Then we obtain 
e-Ts = e-Tu-jwT 

Since e-T" is a real quantity, the angle of e-T" is zero. Hence 

/e-Ts = /e-jwT = /COS wT - j sinwT 

= -wT (radians) 

= -57.3wT (degrees) 

Since T is a given constant, the angle of ePT"s a function of w only.The angle condition, 
Equation (6-19), then becomes 

We shall next determine the angle contribution due to e-T%s given by Equation 
(6-19). For k = 0, the angle condition may be written 
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Figure 6-37 
(a) Construction of 
the root locus; 
(b) root-locus plot. 

Since the angle contribution of e-T3s zero for w = 0, the real axis from -1 to -03 forms 
a part of the root loci. Now assume a value wl for w and compute 57.3"o1T. At point -1 
on the negative real axis, draw a line that makes an angle of 180" - 57.3"wIT with the 
real axis. Find the intersection of this line and the horizontal line w = w, . This intersec- 
tion, point P in Figure 6-37(a), is a point satisfying Equation (6-20) and hence is on a 
root locus. Continuing the same process, we obtain the root-locus plot as shown in Fig- 
ure 6-37(b). 

Note that as s  approaches minus infinity, the open-loop transfer function 

approaches minus infinity since 

Therefore, s = -03 is a pole of the open-loop transfer function. Thus, root loci start from 
s  = -1 or s  = -m and terminate at s  = m, as K  increases from zero to infinity. Since 
the right-hand side of the angle condition given by Equation (6-19) has an infinite num- 
ber of values, there are an infinite number of root loci, as the value of k (k = 0,1,2,. . .) 
goes from zero to infinity. For example, if k = 1, the angle condition becomes 

d 
- ( ~ e - ~ ' )  

~ e - ~ v s  
- lim - - 

s=-w s + 1 d 
- (S + 1) 
ds 

/ s  + 1 = f 540" - 57.3"wT (degrees) 

s=-03 

= f 35- - wT (radians) 
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Figure 6-38 
Root-locus plot for 
the system shown in 
Figure 6-36 
(T = 1 sec). 

The construction of the root loci for k = 1 is the same as that for k = 0. A plot of root 
loci for k = 0,1, and 2 when T = 1 sec is shown in Figure 6-38. 

The magnitude condition states that 

Since the magnitude of e-TS is equal to that of e-'" or 

the magnitude condition becomes 

The root loci shown in Figure 6-38 are graduated in terms of K when T = 1 sec. 
Although there are an infinite number of root-locus branches, the primary branch 

that lies between -jn- and jn is most important. Referring to Figure 6-38, the critical 
value of K at the primary branch is equal to 2, while the critical values of K at other 
branches are much higher (8,14,. . .).Therefore, the critical value K = 2 on the primary 
branch is most significant from the stability viewpoint. The transient response of the 
system is determined by the roots located closest to the jw axis and lie on the primary 
branch. In summary, the root-locus branch corresponding to k = 0 is the dominant one; 
other branches corresponding to k = 1, 2, 3, . . . are not so important and may be 
neglected. 
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This example illustrates the fact that dead time can cause instability even in the first- 
order system because the root loci enter the right-half s plane for large values of K. 
Therefore, although the gain K of the first-order system can be set at a high value in the 
absence of dead time, it cannot be set too high if dead time is present. (For the system 
considered here, the value of gain K must be considerably less than 2 for a satisfactory 
operation.) 

Approximation of Transport Lag or Dead Time. If the dead time T is very small, 
then evT?s frequently approximated by 

Such approximations are good if the dead time is very small and, in addition, the input 
time function f ( t )  to the dead-time element is smooth and continuous. [This means that 
the second- and higher-order derivatives off ( t )  are small.] 

A more elaborate expression to approximate e-Ts is available and is 

If only the first two terms in the numerator and denominator are taken, then 

This approximation is also used frequently. 

MATLAB Approximation of Dead Time. To handle dead time e-", MATLAB 
uses the pade approximation. For example, if T = 0.1 sec, then using the third-order 
transfer function as an approximation to e-sT, enter the following MATLAB program 
into the computer. 

[num,den] = pade(0.1, 3); 
printsys(num, den, ' s t )  

nurnlden = 
-1 sA3 + 120s" - 6000s + 120000 

sA3 + 1 20sA2 + 6000s + 120000 
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Similarly, t h e  program for  the  fourth-order transfer function approximation with 
T = 0.1 sec is 

[num,den] = pade(0.1, 4); 
printsys(num, den, ' s ' )  

Notice that the pade approximation depends on  the dead time T and the  desired order 
for the approximating transfer function. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-6-1. Sketch the root loci for the system shown in Figure 6-39(a). (The gain K is assumed to be posi- 
tive.) Observe that for small or large values of K the system is overdamped and for medium val- 
ues of K it is underdamped. 

Solution. The procedure for plotting the root loci is as follows: 

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative 
real axis between 0 and -1 and between -2 and -3. 

2. The number of open-loop poles and that of finite zeros are the same. This means that there 
are no asymptotes in the complex region of the s plane. 

(a) 

Figure 6-39 
(a) Control system; (b) root-locus plot. 
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3, Determine the breakaway and break-in points. The characteristic equation for the system is 

The breakaway and break-in points are determined from 

as follows: 

Notice that both points are on root loci. Therefore, they are actual breakaway or break-in 
points. At point s = -0.634, the value of K is 

Similarly, at s = -2.366, 

(Because point s = -0.634 lies between two poles, it is a breakaway point, and because point 
s = -2.366 lies between two zeros, it is a break-in point.) 

4. Determine a sufficient number of points that satisfy the angle condition. (It can be found 
that the root loci involve a circle with center at -1.5 that passes through the breakaway and 
break-in points.) The root-locus plot for this system is shown in Figure 6-39(b). 

Note that this system is stable for any positive value of K since all the root loci lie in the left- 
half s plane. 

Small values of K (0 < K < 0.0718) correspond to an overdamped system. Medium values 
of K (0.0718 < K < 14) correspond to an underdamped system. Finally, large values of 
K (14 < K) correspond to an overdamped system. With a large value of K, the steady state can 
be reached in much shorter time than with a small value of K. 

The value of K should be adjusted so that system performance is optimum according to a 
given performance index. 
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A-6-2. Sketch the root loci of the control system shown in Figure 6-40(a). 

Solution. The open-loop poles are located at s = 0, s = -3 + j4, and s = -3 - j4. A root locus 
branch exists on the real axis between the origin and -oo.There are three asymptotes for the root 
loci. The angles of asymptotes are 

&18Oo(2k + 1) 
Angles of asymptotes = = 60°, -60°, 180" 

3 

Referring to Equation (6-13), the intersection of the asymptotes and the real axis is obtained as 

Next we check the breakaway and break-in points. For this system we have 

Now we set 

which yields 

s = -2 + j2.0817, s = -2 - j2.0817 

Figure 6-40 
(a) Control system; (b) root-locus plot. 
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Notice that at points s = -2 f j2.0817 the angle condition is not satisfied. Hence, they are nei- 
ther breakaway nor break-in points. In fact, if we calculate the value of K, we obtain 

(To be an actual breakaway or break-in point, the corresponding value of K must be real and 
positive.) 

The angle of departure from the complex pole in the upper half s plane is 

The points where root-locus branches cross the imaginary axis may be found by substituting 
s = jw into the characteristic equation and solving the equation for w and K as follows: Noting 
that the characteristic equation is 

s3 + 6s' + 25s + K = 0 

we have 

( j ~ ) ~  + 6(jw)' + 25(jw) + K = (-6w2 + K) + jw(25 - w2) = 0 

which yields 

Root-locus branches cross the imaginary axis at w = 5 and w = -5.The value of gain K at the 
crossing points is 150. Also, the root-locus branch on the real axis touches the imaginary axis at 
w = 0. Figure 640(b) shows a root-locus plot for the system. 

It is noted that if the order of the numerator of G(s)H(s) is lower than that of the denomi- 
nator by two or more, and if some of the closed-loop poles move on the root locus toward the right 
as gain K is increased, then other closed-loop poles must move toward the left as gain K is in- 
creased. This fact can be seen clearly in this problem. If the gain K is increased from K = 34 to 
K = 68, the complex-conjugate closed-loop poles are moved from s = -2 + j3.65 to s = -1 + j4; 
the third pole is moved from s = -2 (which corresponds to K = 34) to s = -4 (which corre- 
sponds to K = 68).Thus, the movements of two complex-conjugate closed-loop poles to the right 
by one unit cause the remaining closed-loop pole (real pole in this case) to move to the left by two 
units. 

A-16-3. Consider the system shown in Figure 6-41(a). Sketch the root loci for the system. Observe that 
for small or large values of K the system is underdamped and for medium values of K it is 
overdamped. 

Solution. A root locus exists on the real axis between the origin and -03. The angles of asymp- 
totes of the root-locus branches are obtained as 

&180°(2k + 1) 
Angles of asymptotes = 

3 
= 60°, -60°, -180" 

The intersection of the asymptotes and the real axis is located on the real axis at 
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Figure 6-41 
(a) Control system; 
(b) root-locus plot. 

The breakaway and break-in points are found from dK/ds = 0. Since the characteristic equation is 

we have 

Now we set 

which yields 
s = -1, s = -1.6667 

Since these points are on root loci, they are actual breakaway or break-in points. (At points = -1, 
the value of K is 2, and at point s = -1.6667, the value of K is 1.852.) 

The angle of departure from a complex pole in the upper half s plane is obtained from 

The root-locus branch from the complex pole in the upper half s plane breaks into the real axis 
at s = -1.6667. 

Next we determine the points where root-locus branches cross the imaginary axis. By substi- 
tuting s = jo into the characteristic equation, we have 

( j ~ ) ~  + 4(jo)' + 5 ( j o )  + K = 0 
or 

( K  - 40') + jo(5 - 02) = 0 

from which we obtain 
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Root-locus branches cross the imaginary axis at w = fi and w = -fi. The root-locus branch 
on the real axis touches the jw axis at w = 0. A sketch of the root loci for the system is shown in 
Figure 6-41(b). 

Note that since this system is of third order, there are three closed-loop poles. The nature of 
the system response to a given input depends on the locations of the closed-loop poles. 

For 0 < K < 1.g52, there are a set of complex-conjugate closed-loop poles and a real closed- 
loop pole. For 1.852 5 K 5 2, there are three real closed-loop poles. For example, the closed- 
loop poles are located at 

s = -1.667, s = -1.667, s = -0.667, for K = 1.852 

For 2 < K, there are a set of complex-conjugate closed-loop poles and a real closed-loop pole. 
Thus, small values of K ( 0  < K < 1.852) correspond to an underdamped system. (Since the real 
closed-loop pole dominates, only a small ripple may show up in the transient response.) Medium 
values of K (1.852 ': K ': 2 )  correspond to an overdamped system. Large values of K ( 2  < K )  
correspond to an underdamped system. With a large value of K ,  the system responds much faster 
than with a smaller value of K. 

A-(5-4. Sketch the root loci for the system shown in Figure 6-42(a). 

Solution. The open-loop poles are located at s = 0, s = -1, s = -2 + j3, and s = -2 - j3. A root 
locus exists on the real axis between points s = 0 and s = -1. The angles of the asymptotes are 
found as follows: 

&180°(2k + 1 )  
Angles of asymptotes = = 4S0, -45", 135", -135" 

4 

Figure 6-42 
(a) Control system; (b) root-locus plot. 
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The intersection of the asymptotes and the real axis is found from 

The breakaway and break-in points are found from dK/ds  = 0. Noting that 

we have 

from which we get 

Point s = -0.467 is on a root locus. Therefore, it is an actual breakaway point. The gain values K 
corresponding to points s = -1.642 f j2.067 are complex quantities. Since the gain values are 
not real positive, these points are neither breakaway nor break-in points. 

The angle of departure from the complex pole in the upper half s plane is 

Next we shall find the points where root loci may cross the j o  axis. Since the characteristic 
equation is 

by substituting s = jw into it we obtain 

from which we obtain 

w = rt 1.6125, K = 37.44 or w = 0, K = 0 

The root-locus branches that extend to the right-half s plane cross the imaginary axis at 
w = ~t1.6125. Also, the root-locus branch on the real axis touches the imaginary axis at o = 0. Fig- 
ure 6-42(b) shows a sketch of the root loci for the system. Notice that each root-locus branch that 
extends to the right half s plane crosses its own asymptote. 
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A-6-5. Sketch the root loci for the system shown in Figure 6-43(a). 

Solution. A root locus exists on the real axis between points s = -1 and s = -3.6. The asymp- 
totes can be determined as follows: 

~t180"(2k + 1)  
Angles of asymptotes = = 90°, -90' 

3 - 1  

The intersection of the asymptotes and the real axis is found from 

Since the characteristic equation is 

we have 

The breakaway and break-in points are found from 

d~ (3s' + 7.2s)(s + 1) - (s3 + 3.6s') - = - = 0 
ds (s + 1)' 

(a) 

Figure 6-43 
(a) Control system; (b) root-locus plot. 
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from which we get 

Point s = 0 corresponds to the actual breakaway point. But points s = 1.65 + j0.9367 are neither 
breakaway nor break-in points, because the corresponding gain values K become complex 
quantities. 

To check the points where root-locus branches may cross the imaginary axis, substitutes = j w  
into the characteristic equation, yielding. 

( j ~ ) ~  + 3.6(jw)' + Kjw + K = 0 

Notice that this equation can be satisfied only if w = 0, K = 0. Because of the presence of a dou- 
ble pole at the origin, the root locus is tangent to the jw axis at w = 0. The root-locus branches do 
not cross the jw axis. Figure 6-43(b) is a sketch of the root loci for this system. 

A-6-6. Sketch the root loci for the system shown in Figure 6-44(a). 

Solution. A root locus exists on the real axis between points = -0.4 and s = -3.6. The angles of 
asymptotes can be found as follows: 

+180°(2k + 1) 
Angles of asymptotes = = 90°, -90" 

3 - 1  

Figure 6-44 
(a) Control system; (b) root-locus plot. 
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The intersection of the asymptotes and the real axis is obtained from 

s = -  0 + 0 + 3.6 - 0.4 
= -1.6 

3 - 1  

Next we shall find the breakaway points. Since the characteristic equation is 

s3 + 3.6s' + Ks  + 0.4K = 0 

we have 

The breakaway and break-in points are found from 

from which we get 

or 

Thus, the breakaway or break-in points are at s = 0 and s = -1.2. Note that s = -1.2 is a double 
root. When a double root occurs in dK/ds = 0 at points = -1.2, d 2 ~ / ( d s 2 )  = 0 at this point.The 
value of gain K at point s = -1.2 is 

This means that with K = 4.32 the characteristic equation has a triple root at points = -1.2.This 
can be easily verified as follows: 

Hence, three root-locus branches meet at point s = -1.2. The angles of departures at point 
s = -1.2 of the root locus branches that approach the asymptotes are +180°/3, that is, 60" and 
-60". (See Problem A-6-7.) 

Finally, we shall examine if root-locus branches cross the imaginary axis. By substituting s = jo 
into the characteristic equation, we have 

This equation can be satisfied only if o = 0, K = 0. At point o = 0, the root locus is tangent to 
the jw axis because of the presence of a double pole at the origin. There are no points that root- 
locus branches cross the imaginary axis. 

A sketch of the root loci for this system is shown in Figure 6-44(b). 
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A-6-7. Referring to Problem A-6-6, obtain the equations for the root-locus branches for the system 
shown in Figure 6-44(a). Show that the root-locus branches cross the real axis at the breakaway 
point at angles +60°. 

Solution. The equations for the root-locus branches can be obtained from the angle condition 

which can be rewritten as 

By substituting s = a + jw, we obtain 

By rearranging, we have 

tan-' (%) - tan-' (:) = tan-' (:) + tan-' (&) +180°(2k + 1) 

Taking tangents of both sides of this last equation, and noting that 

we obtain 

which can be simplified to 

which can be further simplified to 

For a f -1.6, we may write this last equation as 
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which gives the equations for the root-locus as follows: 

0 = 0 

The equation w = 0 represents the real axis. The root locus for 0 5 K 5 co is between points 
s = -0.4 and s = -3.6. (The real axis other than this line segment and the origin s = 0 corre- 
sponds to the root locus for -cu 5 K < 0.) 

The equations 

represent the complex branches for 0 5 K 5 oo. These two branches lie between a = -1.6 and 
a = 0. [See Figure 6-44(b).] The slopes of the complex root-locus branches at the breakaway 
point ( a  = -1.2) can be found by evaluating dw/da of Equation (6-21) at point a = -1.2. 

Since tan-' fl = 60°, the root-locus branches intersect the real axis with angles f 60". 

A-6-8. Consider the system shown in Figure 6-45(a), which has an unstable feedforward transfer func- 
tion. Sketch the root-locus plot and locate the closed-loop poles. Show that, although the closed- 
loop poles lie on the negative real axis and the system is not oscillatory, the unit-step response curve 
will exhibit overshoot. 

Solution. The root-locus plot for this system is shown in Figure 6-45(b).The closed-loop poles are 
located at s = -2 and s = -5. 

The closed-loop transfer function becomes 

Figure 6-45 
(a) 

(a) Control system; (b) root-locus plot. 
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Figure 6-46 
Unit-step response 
curve for the system 
shown in Figure 
6-45 (a). 

The unit-step response of this system is 

The inverse Laplace transform of C(s) gives 

c(t) = 1 + 1.666e-2' - 2.666e-5', fort  2 0 

The unit-step response curve is shown in Figure 6 4 6 .  Although the system is not oscillatory, the 
unit-step response curve exhibits overshoot. (This is due to the presence of a zero at s  = -1.) 

A-6-9. Sketch the root loci of the control system shown in Figure 6-47(a). Determine the range of gain 
K for stability. 

Solution. Open-loop poles are located at s = 1, s = -2 + j ~ ,  and s  = -2 - j f l .  A root locus 
exists on the real axis between points s = 1 and s = -oo. The asymptotes of the root-locus 
branches are found as follows: 

&180°(2k + 1) 
Angles of asymptotes = 

3 
= 60°, -60°, 180" 

The intersection of the asymptotes and the real axis is obtained as 

The breakaway and break-in points can be located from dK/ds  = 0. Since 

K = -(s - l)(s2 + 4s + 7) = -(s3 + 3s2 + 3s - 7) 

we have 

which yields 

(s  + 1)2 = 0 
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(a) 

Figure 6-47 
(a) Control system; (b) root-locus plot. 

Thus the equation dK/ds  = 0 has a double root at s = -1. (This means that the characteristic 
equation has a triple root at s = -1.) The breakaway point is located at s  = -1. Three root-locus 
branches meet at this breakaway point.The angles of departure of the branches at the breakaway 
point are 1180°/3, that is, 60" and -60". 

We shall next determine the points where root-locus branches may cross the imaginary axis. 
Noting that the characteristic equation is 

or 

s 3 + 3 s 2 + 3 s - 7 + K = O  

we substitute s  = jw into it and obtain 

By rewriting this last equation, we have 

This equation is satisfied when 

Example Problems and Solutions 397, 



The root-locus branches cross the imaginary axis at w = f f l  (where K = 16) and o = 0 (where 
K = 7). Since the value of gain K at the origin is 7 ,  the range of gain value K for stability is 

Figure 6-47(b) shows a sketch of the root loci for the system. Notice that all branches consist of 
parts of straight lines. 

The fact that the root-locus branches consist of straight lines can be verified as follows: Since 
the angle condition is 

we have 

-1s - 1 - / s  + 2 + j f l  - fs + 2 - j f l  = *180°(2k + 1 )  

By substituting s = u + jw into this last equation, 

/ u + 2  + j(w + d)+ /o + 2 +  j(w - f l ) = - l u  - 1 + jw f 180°(2k+ 1 )  

which can be rewritten as 

w + f l  0 - f i  
tan-' (=) + tan-' (-) = -tan-' (A) i 180°(2k + 1) 

Taking tangents of both sides of this last equation, we obtain 

2 w ( u  + 2 )  w = -- 
u 2 + 4 u + 4 - w 2 + 3  a - 1  

which can be simplified to 

2 w ( u  + 2 ) ( u  - 1 )  = -w(u2 + 4 u  + 7 - w2) 

or 

w(3u2 + 60- + 3 - w2) = 0 

Further simplification of this last equation yields 

w a +  I + -  ( f l w  u + l - ~ ) = o  f l w  

which defines three lines: 
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Thus the root-locus branches consist of three lines. Note that the root loci for K > 0 consist of 
portions of the straight lines as shown in Figure 6-47(b). (Note that each straight line starts from 
an open-loop pole and extends to infinity in the direction of 180°, 60°, or -60" measured from the 
real axis.) The remaining portion of each straight line corresponds to K < 0. 

A-6-10. Consider the system shown in Figure 6-48(a). Sketch the root loci. 

Solution. The open-loop zeros of the system are located at s = rtj. The open-loop poles are lo- 
cated at s = 0 and s = -2. This system involves two poles and two zeros. Hence, there is a possi- 
bility that a circular root-locus branch exists. In fact, such a circular root locus exists in this case, 
as shown in the following. The angle condition is 

/ S  + j + / S  - j - - [ S  + 2 = f 180°(2k + 1) 

By substituting s = a + jw into this last equation, we obtain 

(+) + tan-' (e) = tan-' (:) + tan-' (L) * 180°(2k + 1) 
a + 2  

Taking tangents of both sides of this equation and noting that 

(a) 

Figure 6-48 
(a) Control system; (b) root-locus plot. 
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we obtain 

which is equivalent to 

These two equations are equations for the root 1oci.The first equation corresponds to the root locus 
on the real axis. (The segment between s = 0 and s = -2 corresponds to the root locus for 
0 5 K < oo. The remaining parts of the real axis correspond to the root locus for K < 0.) The 
second equation is an equation for a circle. Thus, there exists a circular root locus with center at 
u = &, o = 0 and the radius equal to f i / 2 .  The root loci are sketched in Figure 6-48(b). [That 
part of the circular locus to the left of the imaginary zeros corresponds to K > 0. The portion of 
the circular locus not shown in Figure 6-48(b) corresponds to K < 0.1 

A-6-11. Consider the control system shown in Figure 6-49. Plot the root loci with MATLAB. 

Solution. MATLAB Program 6-11 generates a root-locus plot as shown in Figure 6-50.The root 
loci must be symmetric about the real axis. However, Figure 6-50 shows otherwise. 

MATLAB supplies its own set of gain values that are used to calculate a root-locus plot. It does 
so by an internal adaptive step-size routine. However, in certain systems, very small changes in the 
gain cause drastic changes in root locations within a certain range of gains.Thus, MATLAB takes too 
big a jump in its gain values when calculating the roots, and root locations change by a relatively large 
amount. When plotting, MATLAB connects these points and causes a strange-looking graph at the 
location of sensitive gains. Such erroneous root-locus plots typically occur when the loci approach a 
double pole (or triple or higher pole), since the locus is very sensitive to small gain changes. 

MATLAB Program 6-1 1 

ol0 - - - -- - - - - - Root-IOCUS plot ---------- 

num = [O 0 1 0.41; 
den = [I 3.6 0 01; 
rlocus(num,den); 
v = [-5 1 -3 31; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K(s + 0.4)/[sA2(s + 3.6)]') 

Figure 6-49 , 

Control system. 

- K(s+O.4) 
s2(s + 3.6) 

- 
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Root-Locus Plot of G(s) = K(s+0.4)l[s2(s+3.6)] 

Figure 6-50 
Root-locus plot. Real Axis 

In the problem considered here, the critical region of gain K is between 4.2 and 4.4.Thus we 
need to set the step size small enough in this region. We may divide the region for K as follows: 

Entering MATLAB Program 6-12 into the computer, we obtain the plot as shown in Figure 6-51. 
If we change the plot command plot(r,'o') in MATLAB Program 6-12 to plot(r,'-'1, we obtain Fig- 
ure 6-52. Figures 6-51 and 6-52 respectively, show satisfactory root-locus plots. 

MATLAB Program 6-1 2 

% - - - - - - - - - - Root-locus plot ---------- 

num = [O 0 1 0.41; 
den = [I 3.6 O 01; 
K1 = [0:0.2:4.2]; 
K2 = [4.2:0.002:4.4]; 
K3 = [4.4:0.2:10]; 
K4 = [I 0:5:200]; 
K = [KI K2 K3 K4]; 
r = rlocus(num,den,K); 
plot(r,'ol) 
v = [-5 1 -5 51; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K(s + 0.4)/[sA2(s + 3.6))') 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Root-Locus Plot of G(s) = K(s+0.4)l[s2(s+3.6)] 

Figure 6-51 
Root-locus plot. 

Figure 6-52 
Root-locus plot. 

0 
-5 1 I I , 

-5 4 -3 -2 -1 0 1 
Real Axis 

A-6-12. Consider the system whose open-loop transfer function G ( s ) H ( s )  is given by 

Root-Locus Plot of G(J) = K(s+O 4)1[~~(s+3 6) ]  

G ( s ) H ( s )  = 
K 

S ( S  + 1 ) ( s  + 2 )  

Using MATLAB, plot root loci and their asymptotes. 

5 

4 

3 

2 

1 

0 r - -1 

-2 

-3 

-4 

-5 
-5 

Solution. We shall plot the root loci and asymptotes on one diagram. Since the open-loop trans- 
fer function is given by 

- - K 
s3 + 3s2 + 2s 

the equation for the asymptotes may be obtained as follows: Notinj that 

Real AXIS 

- 

- 

- 

- 

- 
- 

K 
= lim 

K - K 
lim -- 

S-'m s3 + 3s2 + 2s 5-m s3 + 3s' + 3s + 1 (S  + 

- 

- 

- 
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the equation for the asymptotes may be given by 

K 
Gn(s)Hn(s)  = 

Hence, for the system we have 
num=[O 0 0 I ]  
den = [ I  3 2 01 

and for the asymptotes, 
numa = [O 0 0 I ]  
dena= [ I  3 3 I ]  

In using the following root-locus and plot commands 

the number of rows of r and that of a must be the same. To ensure this, we include the gain con- 
stant K in the commands. For example, 

MATLAB Program 6-1 3 

% ---------- Root-Locus Plots ---------- 

num = [O 0 0 I ] ;  
den = [I 3 2 01; 
numa = [O 0 0 11; 
dena = [ I  3 3 I ] ;  
K1 = 0:0.1:0.3; 
K2 = 0.3:0.005:0.5; 
K3 = 0.5:0.5:10; 
K4 = 10:5:100; 
K = [KI K2 K3 K4]; 
r = rlocus(num,den,K); 
a = rlocus(numa,dena,K); 
y = [r a]; 
plot(y,'-') 
v = [-4 4 -4 41; axis(v) 
grid 
title('Root-Locus Plot of G(s) = K/[s(s -t I )(s + 211 and Asymptotes') 
xlabel('Real Axis') 
ylabel('lmag Axis') 
% ***** Manually draw open-loop poles in the hard copy ***** 
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Root-Locus Plot of G(s) = Kl[(s(s+l)(s+2)] and Asymptotes 

Figure 6-53 
Root-locus plot. Real Axis 

Including gain K in rlocus command ensures that the r matrix and a matrix have the same number of 
rows. MATLAB Program 6-13 will generate a plot of root loci and their asymptotes. See Figure 6-53. 

Drawing two or more plots in one diagram can also be accomplished by using the hold com- 
mand. MATLAB Program 6-14 uses the hold command. The resulting root-locus plot is shown 
in Figure 6-54. 

MATLAB Program 6-1 4 

y, - - - - - - - - - - - - Root-Locus Plots ------------ 
num=[O 0 0 I]; 
den = [ I  3 2 01; 
numa = [O 0 0 1 1; 
dena = [ I  3 3 I ] ;  
K1 = 0:0.1:0.3; 
K2 = 0.3:0.005:0.5; 
K3 = 0.5:0.5:10; 
K4 = 10:5:100; 
K = [Kl K2 K3 K41; 
r = rlocusinum,den,K); 
a = rlocus(numa,dena,K); 
plot(r,'o') 
hold 
Current plot held 
plot(a,'-') 
v = [-4 4 -4 41; axis(v) 
grid 
title('Root-Locus Plot of G(s) = W[s(s+l )is+2)1 and Asymptotes') 
xIabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Figure 6-54 
Root-locus plot. Real Axis 

Ad-13. Consider a unity-feedback system with the following feedforward transfer function G(s) :  

Plot root loci for the system with MATLAB. 
Solution. A MATLAB program to plot the root loci is given as MATLAB Program 6-15. The 
resulting root-locus plot is shown in Figure 6-55. 

Notice that this is a special case where no root locus exists on the real axis. This means that 
for any value of K > 0 the closed-loop poles of the system are two sets of complex-conjugate 
poles. (No real closed-loop poles exist.) For example, with K = 25, the characteristic equation 
for the system becomes 

MATLAB Program 6-1 5 

o/~ - - - - - - - - - - -- Root-LOCUS Plot ------------ 
num = [O 0 1 4 41; 
den = [ I  10 29 40 1001; 
r = rlocus(num,den); 
plot(r,'o') 
hold 
current plot held 
plot(r,'-'1 
v = [-8 4 -6 61; axis(v); axis('square') 
grid 
title('Root-Locus Plot of G(s) = (S + 2)A2/[(~A2 + 4)(s + 5)"211) 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 
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Root-Locus Plot of G(s) = ( ~ + 2 ) ~ / [ ( ~ ~ + 4 ) ( . ~ + 5 ) ~ ]  

Figure 6-55 
Root-locus plot. Real Axis 

Since no closed-loop poles exist in the right-half s plane, the system is stable for all values of 
K > 0. 

Ad-14. Consider a unity-feedback control system with the following feedforward transfer function: 

Plot a root-locus diagram with MATLAB. Superimpose on the s plane constant 5 lines and con- 
stant w ,  circles. 

Solution. MATLAB Program 6-16 produces the desired plot as shown in Figure 6-56. 

MATLAB Program 6-1 6 

num = [O 0 1 21; 
den = [I 9 8 01; 
K = 0:0.2:200; 
rlocus(num,den,K) 
v = [ -1 0 2 -6 61; axis(v); axis('squarei) 
sgrid 
title('Root-Locus Plot with Constant \zeta Lines and Constant \omega-n Circles') 
gtext('\zeta = 0.9') 
gtext('0.7') 
gtext('0.5') 
gtext('0.3') 
gtext('\omega-n = 10') 
gtext('8') 
gtext('6') 
gtext('4') 
gtext('2') 
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Root-Locus Plot with Constant Lines and Constant a, Circles 

Figure 6 5 6  
Root-locus plot with 
constant 5 lines and 
constant w, circles. Real Axis 

A-6-15. Consider a unity-feedback control system with the following feedforward transfer function: 

Plot root loci for the system with MATLAB. Show that the system is stable for all values of K > 0. 

Solution. MATLAB Program 6-17 gives a plot of root loci as shown in Figure 6-57. Since the root 
loci are entirely in the left-half s plane, the system is stable for all K > 0. 

MATLAB Program 6-1 7 

num = [O 1 0 25 01; 
den = [ I  0 404 0 16001; 
K = 0:0.4:1000; 
rlocus(num,den,K) 
v = [-30 20 -25 251; axis(v); axis('squarel) 
grid 
title('Root-Locus Plot of G(s) = K(sA2 + 25)s/(sA4 + 404sA2 + 1600)') 

A-6-16. A simplified form of the open-loop transfer function of an airplane with an autopilot in the lon- 
gitudinal mode is 

Such a system involving an open-loop pole in the right-half s plane may be conditionally stable. 
Sketch the root loci when a = b = I,{ = 0.5, and w, = 4. Find the range of gain K for stability. 
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Root-Locus Plot of G(s) = K ( S ~  + 25)s/(s4 + 404s2 + 1600) 

Figure 6-57 
Root-locus plot. Real Axis 

SoIution. The open-loop transfer function for the system is 

To sketch the root loci, we follow this procedure: 

1. Locate the open-loop poles and zero in the complex plane. Root loci exist on the real axis 
between 1 and 0 and between -1 and -co. 

2. Determine the asymptotes of the root 1oci.There are three asymptotes whose angles can be 
determined as 

18Oo(2k + 1)  
Angles of asymptotes = = 60°, -60°, 180" 

4 - 1  

Referring to Equation (6-13), the abscissa of the intersection of the asymptotes and the real 
axis is 

3. Determine the breakaway and break-in points. Since the characteristic equation is 

we obtain 

By differentiating K with respect to s, we get 
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The numerator can be factored as follows: 

3s4 + 10s3 + 21s2 + 24s - 16 

Points s = 0.45 and s = -2.26 are on root loci on the real axis. Hence, these points are actu- 
al breakaway and break-in points, respectively. Points s = -0.76 f j2.16 do not satisfy the 
angle condition. Hence, they are neither breakaway nor break-in points. 

4. Using Routh's stability criterion, determine the value of K at which the root loci cross the 
imaginary axis. Since the characteristic equation is 

the Routh array becomes 

The values of K that make the s1 term in the first column equal zero are K = 35.7 and 
K = 23.3. 

The crossing points on the imaginary axis can be found by solving the auxiliary equation 
obtained from the s2 row, that is, by solving the following equation for s: 

The results are 

s = fj2.56, for K = 35.7 

s = i j1 .56,  for K = 23.3 

The crossing points on the imaginary axis are thus s = f j2.56 and s = iLj1.56. 

5. Find the angles of departure of the root loci from the complex poles. For the open-loop pole 
at s = -2 + j2*, the angle of departure 0 is 

0 = 180" - 120" - 130.5" - 90" + 106" 

or 

0 = -54.5" 

(The angle of departure from the open-loop pole at s = -2 - j22/?; is 54.5O.) 

6. Choose a test point in the broad neighborhood of the jw axis and the origin, and apply the 
angle condition. If the test point does not satisfy the angle condition, select another test point 
until it does. Continue the same process and locate a sufficient number of points that satis@- 

*&, 

the angle condition. 
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Figure 6-58 
Root-locus plot. 

Figure 6-58 shows the root loci for this system. From step 4, the system is stable for 
23.3 < K < 35.7. Otherwise, it is unstable.Thus, the system is conditionally stable. 

A-6-17. Consider the system shown in Figure 6-59, where the dead time T is 1 sec. Suppose that we ap- 
proximate the dead time by the second-order pade approximation. The expression for this ap- 
proximation can be obtained with MATLAB as follows: 

printsys(num, den) 
num/den = 

sA2 - 6s + 12 

sA2 + 6s + 12 

Hence 

Using this approximation, determine the critical value of K (where K > 0) for stability. 

Solution. Since the characteristic equation for the system is 

s + 1 + Ke" = 0 
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Figure 6-59 
A control system 
with dead time. 

by substituting Equation (6-22) into this characteristic equation, we obtain 

Applying the Routh stability criterion, we get the Routh table as follows: 

Hence, for stability we require 

which can be written as 

Since K must be positive, the range of K for stability is 

Notice that according to the present analysis, the upper limit of K for stability is 2.2915.This 
value is greater than the exact upper limit of K. (Earlier, we obtained the exact upper limit of K 
to be 2, as shown in Figure 6-38.) This is because we approximated e-S by the second-order pade 
approximation. A higher-order pade approximation will improve the accuracy. However, the com- 
putations involved increase considerably. 

A4-18.  Consider the system shown in Figure 6-60.The plant involves the dead time of T sec. Design a suit- 
able controller G,(s) for the system. 

Solution. We shall present the Smith predictor approach to Cesign a controller.The first step to 
design the controller G,(s) is to design a suitable controller G,(s) when the system has no dead 
time. Otto J. M. Smith designed an innovative controller scheme, now called the "Smith predictor," 

Example Problems and Solutions 41 1 



Figure 6-60 
Control system with 
plant with dead time. 

Controller Plant 

to control the plant with dead time.The Smith predictor consists of G,(s), dead time e-T< and the 
plant transfer function G(s) .  It has the form 

Figure 6-61(a) shows the Smith predictor as a minor loop in the block diagram.The transfer func- 
tion between U ( s )  and E(s)  is 

Smith Predictor G,(s) 
r------------------------------------ 
I I 
I I 

R 
Figure 6-61 

(a) with Control Smith predictor; system 
- ~ ~ l - { ~ l T + ~ l - ~  

(b) equivalent block 
diagram for Smith 
predictor controlled 
system shown in (a). (b) 
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Then the closed-loop transfer function C ( s ) / R ( s )  can be given by 

Figure 6-62 
Step-response 
curves. 

Hence, the block diagram of Figure 6-61(a) can be modified to that of Figure 6-61(b).The closed- 
loop response of the system with dead time e-Ts is the same as the response of the system with- 
out dead time e-T" except that the response is delayed by T sec. 

Typical step-response curves of the system without dead time controlled by the controller 
6,(s) and of the system with dead time controlled by the Smith predictor type controller are 
shown in Figure 6-62. 

It is noted that implementing the Smith predictor in digital form is not difficult, because dead 
time can be handled easily in digital control. However, implementing the Smith predictor in an 
analog form creates some difficulty. 

PROBLEMS 

B-6-1. Plot the root loci for the closed-loop control system B-6-3. Plot the root loci for the closed-loop control system 
with with 

B-6-2. Plot the root loci for the closed-loop control system 
with B-6-4. Plot the root loci for the system with 
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B-6-5. Plot the root loci for a system with 8-6-12. Consider the system whose open-loop transfer 

K function G ( s )  H ( s )  is given by 
G ( s )  = H ( s )  = 1 

(s2 + 2s + 2)(s2 + 2s + 5) '  K ( s  + 1 )  
G ( s ) H ( s )  = 

Determine the exact points where the root loci cross the jo ( s2  + 2s + 2)(s2 + 2s + 5 )  
axis. 

B-6-6. Show that the root loci for a control system with 

are arcs of the circle centered at the origin with radius equal 
to m. 
B-6-7. Plot the root loci for a closed-loop control system 
with 

B-6-8. Plot the root loci for a closed-loop control system 
with 

B-6-9. Plot the root loci for a closed-loop control system 
with 

Plot a root-locus diagram with MATLAB. 

8-6-13. Consider the system whose open-loop transfer 
function is given by 

Show that the equation for the asymptotes is given by 

K 
Go(s)H"(s )  = s3 + 4.0068s2 + 5.3515s + 2.3825 

Using MATLAB, plot the root loci and asymptotes for 
the system. 

B-6-14. Consider the unity-feedback system whose feed- 
forward transfer function is 

K ( s  + 9) 
H ( s )  = 1 

The constant-gain locus for the system for a given value of 
G ( s )  = 

s(s2 + 4,s + 11)' K is defined by the following equation: 

Locate the closed-loop poles on the root loci such that the 
dominant closed-loop poles have a damping ratio equal to 
0.5. Determine the corresponding value of gain K.  

B-6-10. Plot the root loci for the system shown in Figure Show that the constant-gain loci for 0 5 K 5 may be 
6-63. Determine the range of gain K for stability. given by 

B-6-15. Consider the system shown in Figure 6-64. Plot the 
root loci with MATLAB. Locate the closed-loop poles when 
the gain K is set equal to 2. 

Figure 6-63 ', 
Control system. 

84-11.  Consider a unity-feedback control system with the 
following feedforward transfer function: 

Plot the root loci for the system. If the value of gain K is set Figure 6-64 
equal to 2, where are the closed-loop poles located? Control system. 
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B-6-16. Plot root-locus diagrams for the nonminimum- 
phase systems shown in Figures 6-65(a) and (b), respectively. 

B-6-17. Consider the closed-loop system with transport lag 
shown in Figure 6-66. Determine the stability range for 
gain K. 

Figure 6i-65 
(a) and (b) Nonminimum-phase systems. 

Figure 6-66 
Control system. 

Problems 



Control Systems Design 
by the Root-Locus Method 

7-1 INTRODUCTION 

The primary objective of this chapter is to present procedures for the design and com- 
pensation of single-input-single-output linear time-invariant control systems. Compen- 
sation is the modification of the system dynamics to satisfy the given specifications.The 
approach to the control system design and compensation used in this chapter is the root- 
locus approach. (The frequency-response approach and the state-space approach to the 
control systems design and compensation will be presented in Chapters 9 and 12, 
respectively.) The PID-based computational approach to control systems design is given 
in Chapter 10. 

Performance Specifications. Control systems are designed to perform specific 
tasks. The requirements imposed on the control system are usually spelled out as 
performance specifications. The specifications may be given in terms of transient 
response requirements (such as the maximum overshoot and settling time in step re- 
sponse) and of steady-state requirements (such as steady-state error in following 
ramp input). The specifications of a control system must be given before the design 
process begins. 

For routine design problems, the performance specifications (which relate to accu- 
racy, relative stability, and speed of response) may be given in terms of precise numer- 
ical values. In other cases they may be given partially in terms of precise numerical 
values and partially in terms of qualitative statements. In the latter case the specifica- 
tions may have to be modified during the course of design, since the given specifications 



may never be satisfied (because of conflicting requirements) or may lead to a very 
expensive system. 

Generally, the performance specifications should not be more stringent than neces- 
sary to perform the given task. If the accuracy at steady-state operation is of prime im- 
portance in a given control system, then we should not require unnecessarily rigid 
performance specifications on the transient response since such specifications will require 
expensive components. Remember that the most important part of control system de- 
sign is to state the performance specifications precisely so that they will yield an opti- 
mal control system for the given purpose. 

Design by Root-Locus Method. The design by the root-locus method is based on 
reshaping the root locus of the system by adding poles and zeros to the system's open- 
loop transfer function and forcing the root loci to pass through desired closed-loop poles 
in the s plane. The characteristic of the root-locus design is its being based on the as- 
sumption that the closed-loop system has a pair of dominant closed-loop poles. (Zeros 
and additional poles affect the response characteristics.) 

System Compensation. Setting the gain is the first step in adjusting the system 
for satisfactory performance. In many practical cases, however, the adjustment of the 
gain alone may not provide sufficient alteration of the system behavior to meet the 
given specifications. As is frequently the case, increasing the gain value will improve 
the steady-state behavior but will result in poor stability or even instability. It is then nec- 
essary to redesign the system (by modifying the structure or by incorporating addition- 
al devices or components) to alter the overall behavior so that the system will behave 
as desired. Such a redesign or addition of a suitable device is called compensation. A 
device inserted into the system for the purpose of satisfying the specifications is called 
a compensator. The compensator compensates for deficit performance of the original 
system. 

Commonly used compensators and controllers are lead, lag, and lag-lead compen- 
sators and PID controllers.This chapter discusses the root-locus approach to the design 
of lead, lag, and lag-lead compensators. PID controllers will be discussed in Chapter 10. 

Series Compensation and Parallel (or Feedback) Compensation. Figures 
7-l(a) and (b) show compensation schemes commonly used for feedback control sys- 
tems. Figure 7-l(a) shows the configuration where the compensator G,(s) is placed in 
series with the plant. This scheme is called series compensation. 

An alternative to series compensation is to feed back the signal(s) from some ele- 
ment(~) and place a compensator in the resulting inner feedback path, as shown in Fig- 
ure 7-l(b). Such compensation is calledparallel compensation or feedback compensation. 

In compensating control systems, we see that the problem usually boils down to a suit- 
able design of a series or parallel compensator. The choice between series compensation 
and parallel compensation depends on the nature of the signals in the system, the power 
levels at various points, available components, the designer's experience, economic con- 
siderations, and so on. 

In general, series compensation may be simpler than parallel compensation; however, 
series compensation frequently requires additional amplifiers to increase the gain and/or 
to provide isolation. (To avoid power dissipation, the series compensator is inserted at 
the lowest energy point in the feedforward path.) Note that, in general, the number of 
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Figure 7-1 
(a) Series 
compensation; 
(b) parallel or feed- 
back compensation. 

components required in parallel compensation will be less than the number of compo- 
nents in series compensation, provided a suitable signal is available, because-the ener- 
gy transfer is from a higher power level to a lower level. (This means that additional 
amplifiers may not be necessary.) 

In this chapter we discuss series compensation in detail. As for parallel compensa- 
tion, we shall discuss the design of a velocity-feedback control system in Section 7-6. 

Compensators. If a compensator is needed to meet the performance specifications, 
the designer must realize a physical device that has the prescribed transfer function of 
the compensator. 

Numerous physical devices have been used for such purposes. In fact, many noble and 
useful ideas for physically constructing compensators may be found in the literature. 

If a sinusoidal input is applied to the input of a network, and the steady-state output 
(which is also sinusoidal) has a phase lead, then the network is called a lead network. 
(The amount of phase lead angle is a function of the input frequency.) If the steady-state 
output has a phase lag, then the network is called a lag network. In a lag-lead network, 
both phase lag and phase lead occur in the output but in different frequency regions; 
phase lag occurs in the low-frequency region and phase lead occurs in the high-frequency 
region. A compensator having a characteristic of a lead network, lag network, or lag-lead 
network is called a lead compensator, lag compensator, or lag-lead compensator. 

Among the many kinds of compensators, widely employed compensators are the 
lead compensators, lag compensators, lag-lead compensators, and velocity-feedback 
(tachometer) compensators. In this chapter we shall limit our discussions mostly to these 
types. Lead, lag, and lag-lead compensators may be electronic devices (such as circuits 
using operational amplifiers) or RC networks (electrical, mechanical, pneumatic, 
hydraulic, or combinations thereof) and amplifiers. 

In the actual design of a control system, whether to use an electronic, pneumatic, or 
hydraulic compensator is a matter that must be decided partially based on the nature of 
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the controlled plant. For example, if the controlled plant involves flammable fluid, then 
we have to choose pneumatic components (both a compensator and an actuator) to 
avoid the possibility of sparks. If, however, no fire hazard exists, then electronic com- 
pensators are most commonly used. (In fact, we often transform nonelectrical signals into 
electrical signals because of the simplicity of transmission, increased accuracy, increased 
reliability, ease of compensation, and the like.) 

Design Procedures. In the trial-and-error approach to system design, we set up 
a mathematical model of the control system and adjust the parameters of a compen- 
sator. The most time-consuming part of such work is the checking of the system per- 
formance by analysis with each adjustment of the parameters.The designer should make 
use of a computer package such as MATLAB to avoid much of the numerical drudgery 
necessary for this checking. 

Once a satisfactory mathematical model has been obtained, the designer must 
construct a prototype and test the open-loop system. If absolute stability of the closed 
loop is assured, the designer closes the loop and tests the performance of the resulting 
closed-loop system. Because of the neglected loading effects among the components, 
nonlinearities, distributed parameters, and so on, which were not taken into considera- 
tion in the original design work, the actual performance of the prototype system will 
probably differ from the theoretical predictions.Thus the first design may not satisfy all 
the requirements on performance. By trial and error, the designer must make changes 
in the prototype until the system meets the specifications. In doing this, he or she must 
analyze each trial, and the results of the analysis must be incorporated into the next 
trial. The designer must see that the final system meets the performance specifications 
and, at the same time, is reliable and economical. 

It is noted that in designing control systems by the root-locus or frequency-response 
methods the final result is not unique, because the best or optimal solution may not be 
precisely defined if the time-domain specifications or frequency-domain specifications 
are given. 

Outline of the Chapter. Section 7-1 has presented an introduction to the 
compensation of control systems. Section 7-2 discusses preliminary considerations for 
the root-locus approach to the control systems design. Section 7-3 treats details of the 
lead compensation techniques based on the root-locus method. Section 7-4 deals with 
the lag compensation techniques by the root-locus method. Section 7-5 presents lag-lead 
compensation techniques. Finally, Section 7-6 discusses the parallel compensation tech- 
nique using an example. 

7-2 PRELIMINARY DESIGN CONSIDERATIONS 

In building a control system, we know that proper modification of the plant dynam- 
ics may be a simple way to meet the performance specifications. This, however, may 
not be possible in many practical situations because the plant may be fixed and may 
not be modified.Then we must adjust parameters other than those in the fixed plant. 
In this book, we assume that the plant is given and unalterable. 

The design problems, therefore, become those of improving system performance by 
insertion of a compensator. Compensation of a control system is reduced to the design 
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Figure 7-2 
(a) Root-locus plot 
of a singie-pole 
system; 
(b) root-locus plot of 
a two-pole system; 
(c) root-locus plot of 
a three-pole system. 

of a filter whose characteristics tend to compensate for the undesirable and unalterable 
characteristics of the plant. Our discussions are limited to continuous-time compensators. 

In Sections 7-3 through 7-5, we shall specifically consider the design of lead com- 
pensators, lag compensators, and lag-lead compensators. In such design problems, we 
place a compensator in series with the unalterable transfer function G(s) to obtain de- 
sirable behavior. The main problem then involves the judicious choice of the pole(s) 
and zero(s) of the compensator G,(s) to alter the root loci so that the performance spec- 
ifications will be met. The parallel compensation technique is treated in Section 7-6. 

Root-Locus Approach to Control System Design. The root-locus method is a 
graphical method for determining the locations of all closed-loop poles from knowl- 
edge of the locations of the open-loop poles and zeros as some parameter (usually the 
gain) is varied from zero to infinity. The method yields a clear indication of the effects 
of parameter adjustment. 

In practice, the root-locus plot of a system may indicate that the desired performance 
cannot be achieved just by the adjustment of gain. In fact, in some cases, the system may 
not be stable for all values of gain. Then it is necessary to reshape the root loci to meet 
the performance specifications. 

In designing a control system, if other than a gain adjustment is required, we must 
modify the original root loci by inserting a suitable compensator. Once the effects on the 
root locus of the addition of poles and/or zeros are fully understood, we can readily de- 
termine the locations of the pole(s) and zero(s) of the compensator that will reshape the 
root locus as desired. In essence, in the design by the root-locus method, the root loci of 
the system are reshaped through the use of a compensator so that a pair of dominant 
closed-loop poles can be placed at the desired location. (Often, the damping ratio and 
undamped natural frequency of a pair of dominant closed-loop poles are specified.) 

Effects of the Addition of Poles. The addition of a pole to the open-loop transfer 
function has the effect of pulling the root locus to the right, tending to lower the system's 
relative stability and to slow down the settling of the response. (Remember that the ad- 
dition of integral control adds a pole at the origin, thus making the system less stable.) 
Figure 7-2 shows examples of root loci illustrating the effects of the addition of a pole 
to a single-pole system and the addition of two poles to a single-pole system. 

Effects of the Addition of Zeros. The addition of a zero to the open-loop trans- 
fer function has the effect of pulling the root locus to the left, tending to make the system 
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Figure 7-3 
(a) Root-locus plot 
of a three-pole 
system; (b), (c), and 
(d) root-locus plots 
showing effects of 
addition of a zero 1:o 
the three-pole 
system. 

more stable and to speed up the settling of the response. (Physically, the addition of a 
zero in the feedforward transfer function means the addition of derivative control to 
the system.The effect of such control is to introduce a degree of anticipation into the sys- 
tem and speed up the transient response.) Figure 7-3(a) shows the root loci for a sys- 
tem that is stable for small gain but unstable for large gain. Figures 7-3(b), (c), and (d) 
show root-locus plots for the system when a zero is added to the open-loop transfer 
function. Notice that when a zero is added to the system of Figure 7-3(a), it becomes 
stable for all values of gain. 

7-3 LEAD COMPENSATION 

Lead Compensators. There are many ways to realize continuous-time (or analog) 
lead compensators, such as electronic networks using operational amplifiers, electrical 
RC networks, and mechanical spring-dashpot systems. 

Figure 7-4 shows an electronic circuit using operational amplifiers. The transfer func- 
tion for this circuit was obtained in Chapter 3 as follows: 

Figure 7-4 
Electronic circuit 
that is a lead network 
if RIG, 5 R,C, and a 
lag network if 
R,C1 < R2C2. 
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Figure 7-5 
Pole-zero 
configurations: 
(a) lead network; 
(b) lag network. 

where 

1 
s + -  

E,,(s) R2R4 R I C l s  + 1 R4CI RIC1 - - - 
E,(s )  RlR3  R2C2s + 1 R3C2 1 

s f -  
R2C2 

s + -  
T s  + 1 T 

= Kcu = Kc ----- 
aTs 3. 1 1 

s + -  
CYT 

~ 6 t i c e  that 

This network has a dc gain of K,a = R ? R ~ / ( R ,  R?). 
From Equation (7-I), we see that this network is a lead network if R,C1 > R2C2, 

or a < 1. It is a lag network if R,CI < R2C2. The pole-zero configurations of this net- 
work when R,C, > R2C2 and R,C, < R2C2 are shown in Figure 7-5(a) and (b), 
respectively. 

Lead Compensation Techniques Based on the Root-Locus Approach. The 
root-locus approach to design is very powerful when the specifications are given in 
terms of time-domain quantities, such as the damping ratio and undamped natural 
frequency of the desired dominant closed-loop poles, maximum overshoot, rise time, 
and settling time. 

Consider a design problem in which the original system either is unstable for all val- 
ues of gain or is stable but has undesirable transient-response characteristics. In such a 
case, the reshaping of the root locus is necessary in the broad neighborhood of the jw 
axis and the origin in order that the dominant closed-loop poles be at desired locations 
in the complex plane.This problem may be solved by inserting an appropriate lead com- 
pensator in cascade with the feedforward transfer function. 
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Figure 7-6 
Control system. 

The procedures for designing a lead compensator for the system shown in Figure 
7-6 by the root-locus method may be stated as follows: 

1. From the performance specifications, determine the desired location for the dom- 
inant closed-loop poles. 

2. By drawing the root-locus plot of the uncompensated system (original system), 
ascertain whether or not the gain adjustment alone can yield the desired closed- 
loop poles. If not, calculate the angle deficiency 4.This angle must be contributed 
by the lead compensator if the new root locus is to pass through the desired loca- 
tions for the dominant closed-loop poles. 

3. Assume the lead compensator G,(s) to be 

I 
F A -  

where a and T are determined from the angle deficiency. Kc is determined from 
the requirement of the open-loop gain. 

4. If static error constants are not specified, determine the location of the pole and 
zero of the lead compensator so that the lead compensator will contribute the nec- 
essary angle 4. If no other requirements are imposed on the system, try to make 
the value of a as large as possible. A larger value of a generally results in a larger 
value of K,, which is desirable. (If a particular static error constant is specified, it 
is generally simpler to use the frequency-response approach.) 

5. Determine the open-loop gain of the compensated system from the magnitude 
condition. 

Once a compensator has been designed, check to see whether all performance spec- 
ifications have been met. If the compensated system does not meet the performance 
specifications, then repeat the design procedure by adjusting the compensator pole and 
zero until all such specifications are met. If a large static error constant is required, cas- 
cade a lag network or alter the lead compensator to a lag-lead compensator. 

Note that if the selected dominant closed-loop poles are not really dominant, it will 
be necessary to modify the location of the pair of such selected dominant closed-loop 
poles. (The closed-loop poles other than dominant ones modify the response obtained 
from the dominant closed-loop poles alone. The amount of modification depends on 
the location of these remaining closed-loop poles.) Also, the closed-loop zeros affect 
the response if they are located near the origin. 
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I EXAMPLE 7-1 Consider the system shown in Figure 7-7(a).The feedforward transfer function is 

; The root-locus plot for this system is shown in Figure 7-7(b). The closed-loop transfer function 
becomes 

The closed-loop poles are located at 

The damping ratio of the closed-loop poles is O.5.The undamped natural frequency of the closed- 
loop poles is 2 rad/sec.The static velocity error constant is 2 sec-'. 

It is desired to modify the closed-loop poles so that an undamped natural frequency 
w, = 4 rad/sec is obtained, without changing the value of the damping ratio, 5 = 0.5. 

The damping ratio of 0.5 requires that the complex-conjugate poles lie on the lines drawn 
through the origin making angles of 160" with the negative real axis. 

Since the damping ratio determines the angular location of the complex-conjugate closed- 
loop poles, while the distance of the pole from the origin is determined by the undamped natural 
frequency w,, the desired locations of the closed-loop poles of this example problem are 

In some cases, after the root loci of the original system have been obtained, the dominant closed- 
loop poles may be moved to the desired location by simple gain adjustment.This is, however, not 
the case for the present system.Therefore, we shall insert a lead compensator in the feedforward path. 

A general procedure for determining the lead compensator is as follows: First, find the sum 
of the angles at the desired location of one of the dominant closed-loop poles with the open-loop 
poles and zeros of the original system, and determine the necessary angle C$ to be added so that 
the total sum of the angles is equal to f 180°(2k + 1). The lead compensator must contribute this 
angle 4.  (If the angle C$ is quite large, then two or more lead networks may be needed rather than 
a single one.) 

Figure 7-7 
(a) Control system; 

1 (b) root-locus plot. (a) 
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If the original system has the open-loop transfer function G(s), then the compensated system 
will have the open-loop transfer function 

where 

Notice that there are many possible values for T and a that will yield the necessary angle contri- 
bution at the desired closed-loop poles. 

The next step is to determine the locations of the zero and pole of the lead compensator. 
There are many possibilities for the choice of such locations. (See the comments at the end of this 
example problem.) In what follows, we shall introduce a procedure to obtain the largest possible 
value for a. (Note that a larger value of a will produce a larger value of K,. In most cases, the larg- 
er the K, is, the better the system performance.) First, draw a horizontal line passing through 
point P, the desired location for one of the dominant closed-loop poles.This is shown as line PA 
in Figure 7-8. Draw also a line connecting point P and the origin. Bisect the angle between the 
lines PA and PO, as shown in Figure 7-8. Draw two lines PC and P D  that make angles &4/2 
with the bisector PB.The intersections of PC and P D  with the negative real axis give the neces- 
sary locations for the pole and zero of the lead network.The compensator thus designed will make 
point P a point on the root locus of the compensated system. The open-loop gain is determined 
by use of the magnitude condition. 

In the present system, the angle of G(s) at the desired closed-loop pole is 

Thus, if we need to force the root locus to go through the desired closed-loop pole, the lead com- 
pensator must contribute 4 = 30" at this point. By following the foregoing design procedure, we 
determine the zero and pole of the lead compensator, as shown in Figure 7-9, to be 

Zero at s = -2.9, Pole at s = -5.4 
or 

Figure 7-8 
Determination of the 
pole and zero of' a 
lead network. 
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Figure 7-9 
Root-locus plot of 
the compensated 
system. 

Thus a = 0.537. The open-loop transfer functib;n of the compensated system becomes 

where K = 4K,. The root-locus plot for the compensated system is shown in Figure 7-9.The gain 
K is evaluated from the magnitude condition as follows: Referring to the root-locus plot for the 
compensated system shown in Figure 7-9, the gain K is evaluated from the magnitude condition 

It follows that 

The constant Kc of the lead compensator is 

Hence, Kca = 2.51. The lead compensator, therefore, has the transfer function 

If the electronic circuit using operational amplifiers as shown in Figure 7-4 is used as the lead 
compensator just designed, then the parameter values of the lead compensator are determined 
from 
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Figure 7-10 
Lead compensator. 

as shown in Figure 7-10, where we have arbitrarily chosen C,  = C, = 10 pF and R, = 10 kSZ. 
The static velocity error constant K, is obtained from the expression 

s18.7(s + 2.9) 
= lim 

s+o s(s + 2) (s  + 5.4) 

Note that the third closed-loop pole of the designed system is found by dividing the characteris- 
tic equation by the known factors as follows: 

S(S + 2) (s  + 5.4) + 18.7(s + 2.9) = (s + 2 + j 2 f l ) ( s  + 2 - j 2 f l ) ( s  + 3.4) 

The foregoing compensation method enables us to place the dominant closed-loop poles at 
the desired points in the complex plane. The third pole at s = -3.4 is close to the added zero 
at s = -2.9. Therefore, the effect of this pole on the transient response is relatively small. Since 
no restriction has been imposed on the nondominant pole and no specification has been given con- 
cerning the value of the static velocity error coefficient, we conclude that the present design is sat- 
isfactory. 

Comments. We may place the zero of the compensator at s = -2 and pole at s = -4 so that 
the angle contribution of the lead compensator is 30". (In this case the zero of the lead compen- 
sator will cancel a pole of the plant, resulting in the second-order system, rather than the third- 
order system as we designed.) It can be seen that the K, value in this case is 4 sec-'. Other 
combinations can be selected that will yield 30" phase lead. (For different combinations of a zero 
and pole of the compensator that contribute 30°, the value of a will be different and the value of 
Kv will also be different.) Although a certain change in the value of Kv can be made by altering 
the pole-zero location of the lead compensator, if a large increase in the value of K, is desired, then 
we must alter the lead compensator to a lag-lead compensator. (See Section 7-5 for lag-lead 
compensation.) 

Comparison of step responses of the compensated and uncompensated systems. In what 
follows we shall examine the unit-step responses of the ~om~ensa tedand  uncompensated systems 
with MATLAB. 
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The closed-loop transfer function of the compensated system is 

Hence. 

numc = [O 0 18.7 54.231 
denc = [ I  7.4 29.5 54.231 

For the uncompensated system, the closed-loop transfer function is 

Hence, 

num = [O O 41 
den = [I 2 41 

MATLAB Program 7-1 produces the unit-step response curves for the two systems.The result- 
ing plot is shown in Figure 7-11. Notice that the compensated system exhibits slightly larger max- 
imum overshoot. The settling time of the compensated system is one-half that of the original 
system, as expected. 

- -- --- 

MATLAB Program 7-1 

"/o - - - - - - - - - - U n it-step response --------- 

% ***** Unit-step responses of compensated and uncompensated 
% systems ***** 
numc = [O 0 18.7 54.231; 
denc = [I 7.4 29.5 54.231; 
num = [O 0 41; 
den = [ I  2 41; 
t = 0:0.05:5; 
[c l  ,XI $1 = step(numc,denc,t); 
[c2,~2,t] = step(num,den,t); 
plot(t,cl ,t,cl ,'o',t,c2,t,c2,'x') 
grid 
title('Unit-Step Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('0utputs c l  and c2') 
text(0.6,1.32,'Compensated system') 
text(l.3,0.68,'Uncompensated system') 
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7-4 LAG COPSPENSATION 

Electronic Lag Compensator Using Operational Amplifiers. The configuration of 
the electronic lag compensator using operational amplifiers is the same as that for the 
lead compensator shown in Figure 7-4. If we choose R2C2 > RIC1 in the circuit shown 
in Figure 7-4, it becomes a lag compensator. Referring to Figure 7-4, the transfer function 
of the lag compensator is given by 

where 

Note that we use p instead of a in the above expressions. [In the lead compensator we 
used a to indicate the ratio R ~ C ~ / ( R , C ~ ) ,  which was less than 1, or 0 < a < 1.1 In this 
chapter we always assume that 0 < a < 1 and p > 1. 

Lag Compensation Techniques Based on the Root-Locus Approach. Consider 
the problem of finding a suitable compensation network for the case where the system 
exhibits satisfactory transient-response characteristics but unsatisfactory steady-state 
characteristics. Compensation in this case essentially consists of increasing the open- 
loop gain without appreciably changing the transient-response characteristics. This means 
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that the root locus in the neighborhood of the dominant closed-loop poles should not 
be changed appreciably, but the open-loop gain should be increased as much as needed. 
This can be accomplished if a lag compensator is put in cascade with the given. 
feedforward transfer function. 

To avoid an appreciable change in the root loci, the angle contribution of the lag net- 
work should be limited to a small amount, say 5O.To assure this, we place the pole and zero 
of the lag network relatively close together and near the origin of the s  plane. Then the 
closed-loop poles of the compensated system will be shifted only slightly from their orig- 
inal locations. Hence, the transient-response characteristics will be changed only slightly. 

Consider a lag compensator G,(s), where 

If we place the zero and pole of the lag compensator very close to each other, then at 
s = s, , where s, is one of the dominant closed-loop poles, the magnitudes sl + ( 1 /T )  and 
s, + [ ~ / ( P T ) ]  are almost equal, or 

To make the angle contribution of the lag portion of the compensator to be small, we 
require 

This implies that if gain K, of the lag compensator is set equal to 1, then the transient- 
response characteristics will not be altered. (This means that the overall gain of the 
open-loop transfer function can be increased by a factor of P where P > 1.) If the pole 
and zero are placed very close to the origin, then the value of P can be made large. (A 
large value of /? may be used, provided physical realization of the lag compensator is pos- 
sible.) It is noted that the value of T must be large, but its exact value is not critical. 
However, it should not be too large in order to avoid difficulties in realizing the phase 
lag compensator by physical components. 

An increase in the gain means an increase in the static error constants. If the open- 
loop transfer function of the uncompensated system is G(s ) ,  then the static velocity 
error constant K, of the uncompensated system is 
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Figure 7-12 
Control system. 

If the compensator is chosen as given by Equation (7-2), then for the compensated 
system with the open-loop transfer function G,(s)G(s) the static velocity error constant 
k, becomes 

K, = lim sG,(s)G(s) 
s+O 

Thus if the compensator is given_by Equation (7-2), then the static velocity error con- 
stant is increased by a factor of K c  @, where 2, is approximately unity. 

The main negative effect of the lag compensation is that the compensator zero that 
will be generated near the origin creates a closed-loop pole near the origin.This closed- 
loop pole and compensator zero will generate a long tail of small amplitude in the step 
response, thus increasing the settling time. 

Design Procedures for Lag Compensation by the Root-Locus Method. The 
procedure for designing lag compensators for the system shown in Figure 7-12 by the 
root-locus method may be stated as follows (we assume that the uncompensated system 
meets the transient-response specifications by simple gain adjustment; if this is not the 
case, refer to Section 7-5): 

1. Draw the root-locus plot for the uncompensated system whose open-loop trans- 
fer function is G(s). Based on the transient-response specifications, locate the 
dominant closed-loop poles on the root locus. 

2. Assume the transfer function of the lag compensator to be 

Then the open-loop transfer function of the compensated system becomes 
Gc(s)G(s). 

3. Evaluate the particular static error constant specified in the problem. 
4. Determine the amount of increase in the static error constant necessary to satis- 

fy the specifications. 
5. Determine the pole and zero of the lag compensator that produce the necessary 

increase in the particular static error constant without appreciably altering the 
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original root loci. (Note that the ratio of the value of gain required in the spec- 
ifications and the gain found in the uncompensated system is the required ratio 
between the distance of the zero from the origin and that of the pole from the 
origin.) 

6. Draw a new root-locus plot for the compensated system. Locate the desired dom- 
inant closed-loop poles on the root locus. (If the angle contribution of the lag net- 
work is very small, that is, a few degrees, then the original and new root loci are 
almost identical. Otherwise, there will be a slight discrepancy between them.Then 
locate, on the new root locus, the desired dominant closed-loop poles based on 
the transient-response specifications.) 

7. Adjust gain K, of the compensator from the magnituge condition so that the dom- 
inant closed-loop poles lie at the desired location. (K, will be approximately 1.) 

EXAMPLE 7-2 Consider the system shown in Figure 7-13(a).The feedforward transfer function is 

The root-locus plot for the system is shown in Figure 7-13(b). The closed-loop transfer function 
becomes 

Figure 7-13 
(a) Control system; 
(b) root-locus plot. 
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Figure 7-14 
Compensated 
system. 

The dominant closed-loop poles are 

The damping ratio of the dominant closed-loop poles is (' = 0.491. The undamped natural 
frequency of the dominant closed-loop poles is 0.673 rad/sec.The static velocity error constant is 
0.53 sec-'. 

It is desired to increase the static velocity error constant K, to about 5 sec-' without appreciably 
changing the location of the dominant closed-loop poles. 

To meet this specification, let us insert a lag compensator as given by Equation (7-2) in 
cascade with the given feedforward transfer function.To increase the static velocity error con- 
stant by a factor of about 10, let us choose P = 10 and place the zero and pole of the lag com- 
pensator at s = -0.05 and s = -0.005, respective1y.The transfer function of the lag compensator 
becomes 

The angle contribution of this lag network near a dominant closed-loop pole is about 4". Because 
this angle contribution is not very small, there is a small change in the new root locus near the 
desired dominant closed-loop poles. 

The open-loop transfer function of the compensated system then becomes 

where 

The block diagram of the compensated system is shown in Figure 7-14.The root-locus plot for the 
compensated system near the dominant closed-loop poles is shown in Figure 7-15(a), together with 
the original root-locus plot. Figure 7-15(b) shows the root-locus plot of the compensated system 
near the origin.The MATLAB program to generate the root-locus plots shown in Figures 7-15(a) 
and (b) is given in MATLAB Program 7-2. 
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Root-Locus Plots of Compensated and Uncompensated Systems 

Figure 7-15 
(a) Root-locus plots 
of the compensated 
system and 
uncompensated 
system; (b) root- 
locus plot of 
compensated system 
near the origin. 

Real Axis 

(a) 
Root-Locus Plot of Compensated System near the Origin 

Real Axis 

(b) 

If the damping ratio of the new dominant closed-loop poles is kept the same, then the poles 
are obtained from the new root-locus plot as follows: 

The open-loop gain K is 
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MATLAB Program 7-2 

% - - - - - - - - - - Root LOCUS Plot ---------- 

% ***** Root locus plots of the compensated system and 
% uncompensated system ***** 

% ***** Enter the numerators and denominators of the 
% compensated and uncompensated systems ***** 

numc = [O 0 0 1 0.051; 
denc = [ l  3.005 2.01 5 0.01 01; 
num = [O 0 0 1.061; 
den = [I 3 2 01; 
o/o ***** Enter rlocus command. Plot the root loci of both 

% systems ***** 
rlocus(numc,denc) 
hold 
Current plot held 
rlocus(num,den) 
v = [-3 1 -2 21; axis(v1; axis('squarel) 
grid 
text(-2.8,0.2,'Compensated system') 
text(-2.8,1.2,'Uncompensated system') 
text(-2.8,0.58,'Original closed-loop pole') 
text(-0.1,0.85,'New closed-') 
text(-0.If0.62,'loop pole') 
title('Ro0t-Locus Plots of Compensated and Uncompensated Systems') 

hold 
Current plot released 

% ***** Plot root loci of the compensated system near the origin ***** 
rlocus(numc,denc) 
v = [-0.6 0.6 -0.6 0.61; axis(v); axis('squarel) 
grid 
title('Root-Locus Plot of Compensated System near the Origin') 

Then the lag compensator gain kc is determined as 

Thus the transfer function of the lag compensator designed is 
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Then the compensated system has the following open-loop transfer function: 

The static velocity error constant KO is 

K, = lim sC,(s) = 5.12 sec-' 
s-0 

In the compensated system, the static velocity error constant has increased to 5.12 sec-', or 
5.12/0.53 = 9.66 times the original value. (The steady-state error with ramp inputs has decreased 
to about 10% of that of the original system.) We have essentially accomplished the design objective 
of increasing the static velocity error constant to about 5 sec-'. 

Note that, since the pole and zero of the lag compensator are placed close together and are 
located very near the origin, their effect on the shape of the original root loci has been small. 
Except for the presence of a small closed root locus near the origin, the root loci of the compen- 
sated and the uncompensated systems are very similar to each other. However, the value of the 
static velocity error constant of the compensated system is 9.66 times greater than that of the un- 
compensated system. 

The two other closed-loop poles for the compensated system are found as follows: 

The addition of the lag compensator increases the order of the system from 3 to 4, adding one ad- 
ditional closed-loop pole close to the zero of the lag compensator. (The added closed-loop pole 
at s = -0.0549 is close to the zero at s = -0.05.) Such a pair of a zero and pole creates a long tail 
of small amplitude in the transient response, as we will see later in the unit-step response. Since 
the pole at s = -2.326 is very far from the j w  axis compared with the dominant closed-loop poles, 
the effect of this pole on the transient response is also small. Therefore, we may consider the 
closed-loop poles at s = -0.31 k j0.55 to be the dominant closed-loop poles. 

The undamped natural frequency of the dominant closed-loop poles of the compensated 
system is 0.631 rad/sec.This value is about 6% less than the original value, 0.673 rad/sec. This 
implies that the transient response of the compensated system is slower than that of the orig- 
inal system. The response will take a longer time to settle down. The maximum overshoot in 
the step response will increase in the compensated system. If such adverse effects can be tol- 
erated, the lag compensation as discussed here presents a satisfactory solution to the given 
design problem. 

Next, we shall compare the unit-ramp responses of the compensated system against the 
uncompensated system and verify that the steady-state performance is much better in the 
compensated system than the uncompensated system. 

To obtain the unit-ramp response with MATLAB, we use the step command for the system 
c(s)/[sR(s)]. Since c(s)/[sR(s)] for the compensated system is 
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we have 

numc = [O 0 0 0 1.0235 0.05121 
denc = [ I  3.005 2.015 1.0335 0.0512 01 

Also, c(s)/[sR(s)] for the uncompensated system is 

Hence, 

num = [O 0 0 0 1.061 
den = [ I  3 2 1.06 01 

MATLAB Program 7-3 produces the plot of the unit-ramp response curves. Figure 7-16 shows 
the result. Clearly, the compensated system shows much smaller steady-state error (one-tenth of 
the original steady-state error) in following the unit-ramp input. 

MATLAB Program 7-3 

% - - - - - - - - - - Unit ramp response ---------- 

% ***** Unit-ramp responses of compensated system and 
% uncompensated system ***** 
% ***** Unit-ramp response will be obtained as the unit-step 
% response of C(s)/[sR(s)l ***** 
O/O ***** Enter the numerators and denominators of C l  (s)/[sR(s)] 
% and C2(s)/[sR(s)], where C l  (s) and C2(s) are Laplace 
% transforms of the outputs of the compensated and un- 
% compensated systems, respectively. ***** 
numc = [O 0 0 0 1.0235 0.051 21; 
denc = [ I  3.005 2.01 5 1.0335 0.051 2 01; 
num = [O 0 0 0 1.061; 
den = [ I  3 2 1.06 01; 

% ***** Specify the time range (such as t= 0:0.1:50) and enter 
% step command and plot command. ***** 

t = 0:0.1:50; 
[c l  ,XI ,tl = step(numc,denc,t); 
[c2,x2,tl = step(num,den,t); 
plot(t,cl ,I-',t,c2,'.',t,t,'--I) 
grid 
te~t(2.2~27,'Compensated system'); 
text(26,21.3,'Uncompensated system'); 
title('Unit-Ramp Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec'); 
ylabel('0utputs c l  and c2') 
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I Unit-Ramp Responses of Compensated and Uncompensated Systems 

Figure 7-16 
Unit-ramp responses 
of compensated and 
uncompensated 
systems. [The 
compensator is given 
by Equation (7-3).] t Sec 

MATLAB Program 7-4 gives the unit-step response curves of the compensated and un- 
compensated systems.The unit-step response curves are shown in Figure 7-17. Notice that the 
lag-compensated system exhibits a larger maximum overshoot and slower response than the 
original uncompensated system. Notice that a pair of the pole at s = -0.0549 and zero at 

MATLAB Program 7-4 

Unit-step response ---------- I 
7% ***** Unit-step responses of compensated system and 
% uncompensated system ***** 
% ***** Enter the numerators and denominators of the 
% compensated and uncompensated systems ***** 

numc = [0 0 0 1.0235 0.051 21; 
denc = [ I  3.005 2.01 5 1.0335 0.051 21; 
num = [0 0 0 1.061; 
den = [ I  3 2 1.061; 

% ***** Specify the time range (such as t = 0:0.1:40) and enter 
% step command and plot command. ***** 
t = 0:0.1:40; 
[c l  ,xl ,t] = step(numc,denc,t); 
[c2,x2,tl = step(num,den,t); 
plot(t,cl ,I-',t,c2,'.') 
grid 
text(l3,l .I 2,'Compensated system') 
text(l3.6,0.88,'Uncompensated system') 
title('Unit-Step Responses of Compensated and Uncompensated Systems') 
xlabel('t Sect) 
ylabel('0utputs c l  and c2') 
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Figure 7-17 
Unit-step responses 
of compensated and 
uncompensated 
systems. [The 
compensator is given 
by Equation (7-3).] 

Unit-Step Responses of Compensated and Uncompensated Systems 
1.4 

Uncompensated system 

2b 2'5 3b 3; 40 
t Sec 

s = -0.05 generates a long tail of small amplitude in the transient response. If a larger maximum 
overshoot and a slower response are not desired, we need to use a lag-lead compensator as 
presented in Section 7-5. 

Comments. It is noted that under certain circumstances, however, both lead com- 
pensator and lag compensator may satisfy the given specifications (both transient- 
response specifications and steady-state specifications.) Then either compensation may 
be used. 

7-5 LAG-LEAD COMPENSATION 

Lead compensation basically speeds up the response and increases the stability of the 
system. Lag compensation improves the steady-state accuracy of the system, but reduces 
the speed of the response. 

If improvements in both transient response and steady-state response are desired, 
then both a lead compensator and a lag compensator may be used simultaneously. Rather 
than introducing both a lead compensator and a lag compensator as separate elements, 
however, it is economical to use a single lag-lead compensator. 

Lag-lead compensation combines the advantages of lag and lead compensations. 
Since the lag-lead compensator possesses two poles and two zeros, such a compensation 
increases the order of the system by 2, unless cancellation of pole(s) and zero(s) occurs 
in the compensated system. 

Electronic Lag-Lead Compensator Using Operational Amplifiers. Figure 7-18 
shows an electronic lag-lead compensator using operational amplifiers. The transfer 
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Figure 7-18 
Lag-lead 
compensator. Lag-lead network Sign inveiter 

function for this compensator may be obtained as follows: The complex impedance Z1 
.is given by 

Similarly, complex impedance Zz is given by 

Hence, we have 

The sign inverter has the transfer function 

Thus the transfer function of the compensator shown in Figure 7-18 is 
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Let us define 

Figure 7-19 
Control system. 

Then Equation (7-4) becomes 

where 

Note that y is often chosen to be equal to P. 

Lag-lead Compensation Techniques Based on the Root-Locus Approach. 
Consider the system shown in Figure 7-19. Assume that we use the lag-lead compensator: 

where p > 1 and y > 1. (Consider Kc to belong to the lead portion of the lag-lead 
compensator.) 

In designing lag-lead compensators, we consider two cases where y # P and y = P. 
Case 1. y # p. In this case, the design process is a combination of the design of the 

lead compensator and that of the lag compensator.The design procedure for the lag-lead 
compensator follows: 

1. From the given performance specifications, determine the desired location for the 
dominant closed-loop poles. 

2. Using the uncompensated open-loop transfer function G(s), determine the angle 
deficiency 4 if the dominant closed-loop poles are to be at the desired 1ocation.The 
phase-lead portion of the lag-lead compensator must contribute this angle 4. 

3. Assuming that we later choose T2 sufficiently large so that the magnitude of the lag 
portion 
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is approximately unity, where s = s, is one of the dominant closed-loop poles, 
choose the values of T, and y from the requirement that 

The choice of TI and y is not unique. (Infinitely many sets of TI and y are possible.) 
Then determine the value of Kc from the magnitude condition: 

4. If the static velocity error constant K, is specified, determine the value of P to 
satisfy the requirement for K,. The static velocity error constant K, is given by 

Kv = lim sGc(s)G(s) 
s-to 

s-to G(s) 

where Kc and y are aleady determined in step 3. Hence, given the value of Kv, the value 
of /3 can be determined from this last equation. Then, using the value of thus deter- 
mined, choose the value of T, such that 

(The preceding design procedure is illustrated in Example 7-3.) 

Case 2. y = p. If y = p is required in Equation (7-6), then the preceeding design 
procedure for the lag-lead compensator may be modified as follows: 

1. From the given performance specifications, determine the desired location for the 
dominant closed-loop poles. . 

Chapter 7 / Control Systems Design by the Root-Locus Method 



2. The lag-lead compensator given by Equation (7-6) is modified to 

where p > 1. The open-loop transfer function of the compensated system is 
G,(s)G(s). If the static velocity error constant Kc is specified, determine the value 
of constant Kc from the following equation: 

K, = lim sG,(s)G(s) 
s - t o  

= lim sKcG(s) 
s - t o  

3. To have the dominant closed-loop poles at the desired location, calculate the angle 
contribution 4 needed from the phase lead portion of the lag-lead compensator. 

4. For the lag-lead compensator, we later choose T2 sufficiently large so that 

is approximately unity, where s = s, is one of the dominant closed-loop poles. De- 
termine the values of TI and p from the magnitude and angle conditions: 

5. Using the value of P just determined, choose T2 SO that 

The value of PT,, the largest time constant of the lag-lead compensator, should not be 
too large to be physically realized. (An example of the design of the lag-lead compen- 
sator when y = /3 is given in Example 7-4.) 
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I EXAMPLE 7-3 Consider the control system shown in Figure 7-20. The feedforward transfer function is 

This system has closed-loop poles at 

s = -0.2500 k j1.9843 

The damping ratio is 0.125, the undamped natural frequency is 2 radlsec, and the static velocity 
error constant is 8 sec-'. 

It is desired to make the damping ratio of the dominant closed-loop poles equal to 0.5 and to 
increase the undamped natural frequency to 5 rad/sec and the static velocity error constant to 
80 sec-'. Design an appropriate compensator to meet all the performance specifications. 

Let us assume that we use a lag-lead compensator having the transfer function 

I where y is not equal to P.  Then the compensated system will have the transfer function 

I From the performance specifications, the dominant closed-loop poles must be at 

Since 

the phase lead portion of the lag-lead compensator must contribute 55" so that the root locus 
passes through the desired location of the dominant closed-loop poles. 

To design the phase lead portion of the compensator, we first determine the location of the 
zero and pole that will give 55' contribution. There are many possible choices, but we shall here 
choose the zero at s = -0.5 so that this zero will cancel the pole at s = -0.5 of the plant. Once 
the zero is chosen, the pole can be located such that the angle contribution is 5.5". By simple 
calcu1atiotl or graphical analysis, the pole must be located at s = -5.021. Thus, the phase lead 
portion of the lag-lead compensator becomes 

S(S + 0.5) 

Figure 7-20 
Control system. 

\. 
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Thus 

Next we determine the value of Kc from the magnitude condition: 

Hence, 

The phase lag portion of the compensator can be designed as follows: First the value of P is 
determined to satisfy the requirement on the static velocity error constant: 

P 4 
= lim s(6.26) -- 

s+o 
= 4.9888 = 80 

10.04 s(s  + 0.5) 

Hence, /3 is determined as 

P = 16.04 

Finally, we choose the value of T2 large enough so that 

and 

Since T2 = 5 (or any number greater than 5 )  satisfies the above two requirements, we may choose 

T2 = 5 

Now the transfer function of the designed lag-lead compensator is given by 
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Figure 7-21 
(a) Root-locus plot 
of the compensated 
system; (b) root- 
locus plot near the 
origin. 

The compensated system will have the open-loop transfer function 

Because of the cancellation of the (s + 0.5) terms, the compensated system is a third-order system. 
(Mathematically, this cancellation is exact, but practically such cancellation will not be exact be- 
cause some approximations are usually involved in deriving the mathematical model of the sys- 
tem and, as a result, the time constants are not precise.) The root-locus plot of the compensated 
system is shown in Figure 7-21(a).An enlarged view of the root-locus plot near the origin is shown 
in Figure 7-21(b). Because the angle contribution of the phase lag portion of the lag-lead 

Root-Locus Plot of Compensated System 

Real Axis 
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Figure 7-22 
Transient response 
curves for the 
compensated system 
and uncompensated 
system. (a) Unit-step 
response curves; 
(b) unit-ramp 
response curves. 

compensator is quite small, there is only a small change in the location of the dominant closed- 
loop poles from the desired location, s = -2.5 f j4.33. In fact, the new closed-loop poles are lo- 
cated at s = -2.4123 f j4.2756. (The new damping ratio is 5 = 0.491.) Therefore, the 
compensated system meets all the required performance specifications.The third closed-loop pole 
of the compensated system is located at s = -0.2078. Since this closed-loop pole is very close to 
the zero at s = -0.2, the effect of this pole on the response is small. (Note that, in general, if a pole 
and a zero lie close to each other on the negative real axis near the origin, then such a pole-zero 
combination will yield a long tail of small amplitude in the transient response.) 

The unit-step response curves and unit-ramp response curves before and after compensation 
are shown in Figure 7-22. 
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EXAMPLE 7-4 Consider the control system of Example 7-3. Suppose that we use a lag-lead compensator of the 
form given by Equation (7-7), or 

Assuming the specifications are the same as those given in Example 7-3, design a compensator 
Gc(s). 

The desired locations for the dominant closed-loop poles are at 

s = -2.50 rt 14.33 

I The open-loop transfer function of the compensated system is 

Since the requirement on the static velocity error constant K, is 80 sec-', we have 

4 
K, = lim sG,(s)G(s) = lim Kc - = 8Kc = 80 

s - t o  s - t o  0.5 

I Thus 

Kc = 10 

The time constant TI and the value of p are determined from 

(The angle deficiency of 55" was obtained in Example 7-3.) Referring to Figure 7-23, we can 
easily locate points A and B such that 

(Use a graphical approach or a trigonometric approach.) The result is 
- - 
A 0  = 2.38, BO = 8.34 
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Figure 7-23 
Determination of the 
desired pole-zero 
location. 

The phase lead portion of the lag-lead network thus becomes 

For the phase lag portion, we may choose 

T2 = 10 

Then 

Thus, the lag-lead compensator becomes 

The compensated system will have the open-loop transfer function 

No cancellation occurs in this case, and the compensated system is of fourth order. Because the 
angle contribution of the phase lag portion of the lag-lead network is quite small, the dominant 
closed-loop poles are located very near the desired location. In fact, the dominant closed-loop 
poles are located at s = -2.4539 + j4.3099. The two other closed-loop poles are located at 

Since the closed-loop pole at s = -0.1003 is very close to a zero at s = -0.1, they almost cancel 
each other.Thus, the effect of this closed-loop pole is very small.The remaining closed-loop pole 
( s  = -3.8604) does not quite cancel the zero at s = -2.4. The effect of this zero is to cause a 
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larger overshoot in the step response than a similar system without such a zero. The unit-step 
response curves of the compensated and uncompensated systems are shown in Figure 7-24(a).The 
unit-ramp response curves for both systems are depicted in Figure 7-24(b). 

The maximum overshoot in the step response of the compensated system is approximately 
38%. (This is much larger than the maximum overshoot of 21% in the design presented in Exam- 
ple 7-3.) It is possible to decrease the maximum overshoot by a small amount from 38%, but not 
to 20% if y = @ is required, as in this example. Note that by not requiring y = P ,  we have an ad- 
ditional parameter to play with and thus can reduce the maximum overshoot. 

I Unit-Ramp Responses of Compensated and Uncompensated Systems 

Un~t-Step Responses of Compensated and Uncompensated Systems 
1 8  
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7-6 PARALLEL COMPENSATION 

Figure 7-25 
(a) Series 
compensation; 
(b) parallel or 

Thus far we have presented series compensation techniques using lead, lag, or lag-lead 
compensators. In this section we discuss parallel compensation technique. Because in the 
parallel compensation design the controller (or compensator) is in a minor loop, the de- 
sign may seem to be more complicated than in the series compensation case. It is, how- 
ever, not complicated if we rewrite the characteristic equation to be of the same form 
as the characteristic equation for the series compensated system. In this sectioh we pres-J 
ent a simple design problem involving parallel compensation. 

Basic Principle for Designing Parallel Compensated System. Referring to 
Figure 7-25(a), the closed-loop transfer function for the system with series compensa- 
tion is 

The characteristic equation is 

Given G and H ,  the design problem becomes that of determining the compensator G, 
that satisfies the given specification. 

The closed-loop transfer function for the system with parallel compensation 
[Figure 7-25(b)] is 

C - - - GI (32 
R 1 +G2G,+GlG2H 

The characteristic equation is 

feedback 
compensation. 
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By dividing this characteristic equation by the sum of the terms that do not involve G,, 
we obtain 

If we define 

then Equation (7-8) becomes 

1 + GcGf = 0 

Since Gf is a fixed transfer function, the design of G, becomes the same as the case of 
series compensation. Hence the same design approach applies to the parallel compen- 
sated system. 

Velocity Feedback Systems. A velocity feedback system (tachometer feedback 
system) is an example of parallel compensated systems.The controller (or compensator) 
in such a system is a gain element.The gain of the feedback element in a minor loop must 
be determined properly so that the entire system satisfies the given design specifica- 
tions. The characteristic of such a velocity-feedback system is that the variable param- 
eter does not appear as a multiplying factor in the open-loop transfer function, so that 
direct application of the root-locus design technique is not possible. However, by rewrit- 
ing the characteristic equation such that the variable parameter appears as a multiply- 
ing factor, then the root-locus approach to the design is possible. 

An example of control system design using parallel compensation technique is pre- 
sented in Example 7-5. 

EXAMPLE 7-5 Consider the system shown in Figure 7-26. Draw a root-locus diagram.Then determine the value 
of k such that the damping ratio of the dominant closed-loop poles is 0.4. 

Here the system involves velocity feedback.The open-loop transfer function is 

Open-loop transfer function = 
20 

s ( s  + l ) ( s  + 4 )  + 20ks 

Notice that the adjustable variable k does not appear as a multiplying factor. The characteristic 
equation for the system is 

s3 + 5s' + 4s + 20ks + 20 = 0 (7-9) 

I Define 

Figure 7-26 
Control system. 
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Then Equation (7-9) becomes 

s3 + 5s' + 4s + KS + 20 = 0 

Dividing both sides of Equation (7-10) by the sum of the terms that do not contain K, we get 

Equation (7-11) is of the form of Equation (6-11). 
We shall now sketch the root loci of the system given by Equation (7-11). Notice that the 

open-loop poles are located at s  = j2, s = -j2, s = -5, and the open-loop zero is located at s = 0. 
The root locus exists on the real axis between 0 and -5. Since 

Ks 
lim 

K 
= lim - 

s - m  (s + j2)(s - j2) (s + 5) s - ) ~  s2 

we have 

&180"(2k + 1) 
Angles of asymptote = 

2 
= * 90" 

The intersection of the asymptotes with the real axis can be found from 

Ks 
lim = lim 

K 
= lim 

K 
s - t ~  s3 + 5s' + 4s + 20 s+m s2 + 5s + ... S+W (S + 2.5)' 

The angle of departure (angle 8) from the pole at s = j2 is obtained as follows: 

8 = 180" - 90" - 21.8" + 90" = 158.2" 

Thus, the angle of departure from the pole s = j2 is 158.2". Figure 7-27 shows a root-locus plot 
for the system. Notice that two branches of the root locus originate from the poles at s = rtj2 and 
terminate on the zeros at infinity. The remaining one branch originates from the pole at s = -5 
and terminates on the zero at s = 0: 

Note that the closed-loop poles with 6 = 0.4 must lie on straight lines passing through the 
origin and making the angles +66.42" with the negative real axis. In the present case, there are two 
intersections of the root-locus branch in the upper half s plane and the straight line of angle 66.42". 
Thus, two values of K will give the damping ratio 5 of the closed-loop poles equal to 0.4. At point P, 
the value of K is 

Hence 

K 
k = - = 0.4490 at point P 

20 

At point Q, the value of K is 
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Figure 7-27 
Root-locus plot for 
the system shown in 
Figure 7-26. 

Hence 

K 
k = - = 1.4130 at point Q 

20 

Thus, we have two solutions for this problem. For k = 0.4490, the three closed-loop poles are 
located at 

For k = 1.4130, the three closed-loop poles are located at 

It is important to point out that the zero at the origin is the open-loop zero, but not the 
closed-loop zero. This is evident, because the original system shown in Figure 7-26 does not 
have a closed-loop zero, since 

G ( s )  - - 20 

R(s )  s(s + l ) ( s  + 4 )  + 20(1 + ks )  

The open-loop zero at s = 0 was introduced in the process of modifying the characteristic'equa- 
tion such that the adjustable variable K = 20k was to appear as a multiplying factor. 
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We have obtained two different values of k to satisfy the requirement that the damping ratio 
of the dominant closed-loop poles be equal to 0.4. The closed-loop transfer function with 
k = 0.4490 is given by 

The closed-loop transfer function with k = 1.4130 is given by 

Notice that the system with k = 0.4490 has a pair of dominant complex-conjugate closed-loop 
poles, while in the system with k = 1.4130 the real closed-loop pole at s = -4.6823 is dominant, 
and the complex-conjugate closed-loop poles are not dominant. In this case, the response char- 
acteristic is primarily determined by the real closed-loop pole. 

Let us compare the unit-step responses of both systems. MATLAB Program 7-5 may be used 
for plotting the unit-step response curves in one diagram.The resulting unit-step response curves 
[c , ( t )  for k = 0.4490 and c,( t )  for k = 1.41301 are shown in Figure 7-28. 

From Figure 7-28 we notice that the response of the system with k = 0.4490 is oscillatory. 
(The effect of the closed-loop pole at s = -2.9021 on the unit-step response is small.) For the 

MATLAB Program 7-5 

% ---------- Unit-step response ---- ------ 
% ***** Enter numerators and denominators of systems with 
O/O k = 0.4490 and k = 1.41 30, respectively. ***** 
numl = [O 0 0 201; 
den1 = [ I  5 12.98 201; 
num2 = [O 0 0 201; 
den2 = [ I  5 32.26 201; 
t = 0:O.l :lo; 
[c l  ,xl ,t] = step(num1 ,den1 ,t); 
[c2,x2,t] = step(num2,den2,t); 
plot(t,cl ,t,c2) 
te~t(2.5~1 .I 2,'k = 0.4490') 
text(3.7,0.85,'k = 1.41 30') 
grid 
title('Unit-step Responses of Two Systems') 
xlabel('t Sec') 
ylabel('0utputs c l  and c2') 
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Unit-Step Responses of Two Systems 

Figure 7-28 
Unit-step response 
curves for the system 
shown in Figure 7-26 
when the damping 
ratio % of the 
dominant closed- 
loop poles is set 
equal to 0.4. (Two 
possible values of k 
give the damping 
ratio 6 equal to 0.4.) t Sec 

system with k = 1.4130, the oscillations due to the closed-loop poles at s = -2.1589 & j4.9652 
damp out much faster than purely exponential response due to the closed-loop pole at s = --0.6823. 

The system with k = 0.4490 (which exhibits a faster response with relatively small overshoot) 
has a much better response characteristic than the system with k = 1.4130 (which exhibits a slow 
overdamped response).Therefore, we should choose k = 0.4490 for the present system. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-7-1. Obtain the transfer function of the mechanical system shown in Figure 7-29. Assume that the 
displacement x, is the input and displacement x, is the output of the system. 

Solution. From the diagram we obtain the following equations of motion: 

Figure 7-29 
Mechanical system. 

b2( i ,  - x,) = b,(i,  - y )  

b,(x, - j i )  = k y  

Taking the Laplace transforms of these two equations, assuming zero initial conditions, and then 
eliminating Y ( s ) ,  we obtain 

This is the transfer function between X,(s) and X,(s ) .  By defining 
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we obtain 

1 
s f -  

Xo(s) T s  + 1 -- T - a p = -  
Xi(s) aTs + 1 1 

s + -  
aT 

This mechanical system is a mechanical lead network. 

A-7-2. Obtain the transfer function of the mechanical system shown in Figure 7-30.Assume that the dis- 
placement x, is the input and displacement x, is the output. 

Solution. The equations of motion for this system are 

b2(ii - 2,) + k2(x, - x,) = b,(k0 - y) 

By taking the Laplace transforms of these two equations, assuming zero initial conditions, we 
obtain 

If we eliminate Y ( s )  from the last two equations, the transfer function X,(s)/X,(s)  can be 
obtained as 

Define 

Figure 7-30 
Mechanical system. 
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Then Xo(s)/Xi(s) can be simplified as 

From this transfer function we see that this mechanical system is a mechanical lag-lead network. 

A-7-3. Consider the electrical network shown in Figure 7-31. Derive the transfer function of the network. 
(As usual in the derivation of the transfer function of any four-terminal network, we assume 
that the source impedance that the network sees is zero and that the output load impedance is 
infinite.) 

Solution. Using the symbols defined in Figure 7-31, we find that the complex impedances Z1 and 
Z2 are 

The transfer function between the output Eo(s) and the input Ei(s) is 

Define 

R2 - a  < 1 R I C = T ,  ------ 
Rl + R2 

Then the transfer function becomes 

Since a is less than 1, this network is a lead network. 

Figure 7-31 
Electrical network. 
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Figure 7-32 
Electrical network. 

A-7-4. Obtain the transfer function of the network shown in Figure 7-32. 

Solution. The complex impedances Z1 and Z2 are 

The transfer function between Eo(s) and Ei(s) is 

The denominator of this transfer function can be factored into two real terms. Let us define 

Then Eo(s)/Ei(s)  can be simplified to 

This is a lag-lead network, 

A-7-5. A control system with 

is unstable for all positive values of gain K. 
Plot the root loci of the system. By using this plot, show that this system can be stabilized by 

adding a zero on the negative real axis or by modifying G ( s )  to Gl(s ) ,  where 

Solution. A root-locus plot for the system with 
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Figure 7-33 
(a) Root-locus plot 
of the system with 
G ( s )  = K /  
[s2(s  + l ) ]  and 
H ( s )  = 1; (b) root- 
locus plot of the 
system with 
G,(s) = K ( s  + a) /  
[s2(s  + I)] and 
H ( s )  = 1, where 
a = 0.5. 

Real Axis 

(a) 

Root-Locus Plot of G(s) = K(s+0.5)l[s2(s+1)], H(s) = 1 

Root-Locus Plot of G(s) = Kl[s2(s+l)], H(s) = 1 

Real Axis 

(b) 

2 

1 5  

1 

0.5 

B 0 

E - 
-05 

-1 

-1 5 

is shown in Figure 7-33(a). Since two branches lie in the right half-plane, the system is unstable 
for any value of K > 0. 

Addition of a zero to the transfer function G(s) bends the right half-plane branches to the left 
and brings all root-locus branches to the left half-plane, as shown in the root-locus plot in Figure 
7-33(b). Thus, the system with 

- 

- 

- 

- 

- 

- 

is stable for all K > 0. 

-2-2 -i 5 -'I -d 5 
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A-'7-6. Consider a system with an unstable plant as shown in Figure 7-34(a). Using the root-locus 
approach, design a proportional-plus-derivative controller (that is, determine the values of K,  
and T ~ )  such that the damping ratio of the closed-loop system is 0.7 and the undamped natural 
frequency w ,  is 0.5 radlsec. 

Solution. Note that the open-loop transfer function involves two poles at s = 1.085 and s = -1.085 .. 
and one zero at s = -l/Td, which is unknown at this point. 

Since the desired closed-loop poles must have w, = 0.5 rad/sec and f = 0.7, they must be 
located at 

s = 0.5/180° f. 45.573" 

(6 = 0.7 corresponds to a line having an angle of 45.573" with the negative real axis.) Hence, the 
desired closed-loop poles are at 

The open-loop poles and the desired closed-loop pole in the upper half-plane are located in the 
diagram shown in Figure 7-34(b). The angle deficiency at point s = -0.35 f j0.357 is 

Figure 7-34 
(a) PD control of an 
unstable plant; 
(b) root-locus 
diagram for the 
system. 
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Figure 7-35 
Control system. 

This means that the zero at s = - l /Td must contribute 11.939", which, in turn, determines the 
location of the zero as follows: 

Hence, we have 

The value of T, is 

The value of gain Kp can be determined from the magnitude condition as follows: 

or 

Hence, 

By substituting the numerical values of Td and Kp into Equation (7-12), we obtain 

which gives the transfer function of the desired proportional-plus-derivative controller. 

A-7-7. Consider the control system shown in Figure 7-35. Design a lag compensator G,(s) such that the 
static velocity error constant K,  is 50 sec-' without appreciably changing the location of the orig- 
inal closed-loop poles, which are at s = -2 d~ j f i .  
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Solution. Assume that the transfer function of the lag compensator is 

Since K ,  is specified as 50 sec-', we have 

Thus 

Now choose K,  = 1. Then 

Choose T = 10. Then the lag compensator can be given by 

The angle contribution of the lag compensator at the closed-loop pole s = -2 + jV6' is 

v'6 v% 
/Gc(s) I = tan-' - - tan-' - 

s=-2+jG -1.9 -1.995 

which is small.Thus the change in the location of the dominant closed-loop poles is very small. 
The open-loop transfer function of the system becomes 

The closed-loop transfer function is 

To compare the transient-response characteristics before and after the compensation, the unit-step 
and unit-ramp responses of the compensated and uncompensated systems are shown in Figures 
7-36(a) and (b), respectively.The steady-state error in the unit-ramp response is shown in Figure 
7-36(~). 
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Figure 7-36 
(a) Unit-step 
responses of the 
compensated and 
uncompensated 
systems; (b) unit- 
ramp responses of 
both systems; (c) 
unit-ramp responses 
showing steady-state 
errors. 

Unit-Ramp Responses of Compensated and Uncompensated Systems 

9 - 

Uncompensated system has 
steady-state error of 0.4 

Un~t-Step Responses of Compensated and Uncompensated Systems 
1 2 . , , , , , , , , , -  

J Compensated system 

7----------- 
Uncompensated system 

t Sec 

(b) 

0 

0 4  

0 2  

Unit-Rarno Resoonse (35 < t < 40) 

- 

- 
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40 
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39 
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4 
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w 
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A-7-44. Consider a unity-feedback control system whose feedforward transfer function is given by 

Design a compensator such that the dominant closed-loop poles are located at s = -2 f @V"3 
and the static velocity error constant K, is equal to 80 sec-'. 

Solution. The static velocity error constant of the uncompensated system is K, = # = 0.625. 
Since K, = 80 is required, we need to increase the open-loop gain by 128. (This implies that we 
need a lag compensator.) The root-locus plot of the uncompensated system reveals that it is not 
possible to bring the dominant closed-loop poles to -2 -+ j 2 s  by just a gain adjustment alone. 
See Figure 7-37. (This means that we also need a lead compensator.) Therefore, we shall employ 
a lag-lead compensator. 

Let us assume that the transfer function of the lag-lead compensator to be 

where Kc = 128. This is because 

Root-Locus Plot of G(s) = 10/[s(s+2)(s+8)] 

Figure 7-37 
Root-locus plot of 
G ( s )  = 101 
[ S ( S  + 2 ) ( s  + 8)). Real Axis 

10 

8 

6 

4 

v, 2 -  

4 
Do 0 z - -2 

-4 

-6 

-8 
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Figure 7-38 
Graphical 
determination of the 
zero and pole of 
the lead portion 
of the compensator. 

and we obtain Kc = 128. The angle deficiency at the desired closed-loop pole s = -2 + j 2 f l  is 

Angle deficiency = 120" + 90" + 30" - 180" = 60" 

The lead portion of the lag-lead compensator must contribute this angle.To choose Tl we may use 
the graphical method presented in Section 7-5. 

The lead portion must satisfy the following conditions: 

and 

The first condition can be simplified as 

By using the same approach as used in Section 7-5, the zero ( s  = 1 1 ~ ~ )  and pole ( s  = PIT,) can 
be determined as follows: 

See Figure 7-38. The value of P is thus determined as 

/3 = 14.419 
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For the lag portion of the compensator, we may choose 

Figure 7-39 
(a) Root-locus plot 
of compensated 
system; (b) root- 
locus plot near the 
origin. 

Then 

Noting that 

the angle contribution of the lag portion is -1.697" and the magnitude contribution is 0.9837.This 
means that the dominant closed-loop poles lie close to the desired location s = -2 & j 2 G .  Thus 
the compensator designed, 

is acceptable. The feedforward transfer function of the compensated system becomes 

A root-locus plot of the compensated system is shown in Figure 7-39(a).An enlarged root-locus 
plot near the origin is shown in Figure 7-39(b). 

Real Axis 

(a) 

Root-Locus Plot of Compensated System 
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Figure 7-39 
(Continued) 

Figure 7-40 
(a) Unit step 
responses of 
compensated and 
uncompensated 
systems; (b) unit- 
ramp responses of 
both systems. 

To verify the improved system performance of the compensated system, see the unit-step 
responses and unit-ramp responses of the compensated and uncompensated systems shown in 
Figures 7-40 (a) and (b), respectively. 

Root-Locus Plot of Cqmpensated System near the Origin 

Unit-Step Responses of Compensated and Uncompensated Systems 
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Figure 7-40 
(Continued) 

Un~t-Ramp Responses of Compensated and Uncompensated Systems 

9 - 
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6 - 

Uncompensated system - 

t Sec 

('J) 

Figure 7-41 
Control system. 

A-7-9. Consider the system shown in Figure 7-41. Design a lag-lead compensator such that the static 
velocity error constant K, is 50 sec-' and the damping ratio 5 of the dominant closed-loop poles 
is 0.5. (Choose the zero of the lead portion of the lag-lead compensator to cancel the pole at 
s = -1 of the plant.) Determine all closed-loop poles of the compensated system. 

Solution. Let us employ the lag-lead compensator given by 

where p > 1. Then 

K, = lim sG,(s)G(s) 
s-0 

K,(T,S + 1)(T2s + 1) 
= lims 

1 

'-' (5,  + 1)(pT2s + 1) S ( S  + 1) ( s  + 5) 

- Kc - - 
5 

The specification that K, = 50 sec-' determines the value of Kc, or 

Kc = 250 
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We now choose Tl = 1 so that s + ( 1 1 ~ ~ )  will cancel the (s + 1 )  term of the plant. The lead 
portion then becomes 

For the lag portion of the lag-lead compensator we require 

where s = s1 is one of the dominant closed-loop poles. For s = sl , the open-loop transfer func- 
tion becomes 

Noting that at s = sl the magnitude and angle conditions are satisfied, we have 

where k = 0,1,2,. . . . In Equations (7-13) and (7-14), P and s, are unknowns. Since the damping 
ratio 5 of the dominant closed-loop poles is specified as 0.5, the closed-loop pole s = s1 can be writ- 
ten as 

where x is as yet undetermined. 
Notice that the magnitude condition, Equation (7-13), can be rewritten as 

Noting that Kc = 250, we have 

The angle condition, Equation (7-14), can be rewritten as 
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We need to solve Equations (7-15) and (7-16) for P and x. By several trial-and-error calculations, 
it can be found that 

Thus 

The lag portion of the lag-lead compensator can be determined as follows: Noting that the pole 
and zero of the lag portion of the compensator must be located near the origin, we may choose 

That is, 

With the choice of T2 = 6.25, we find 

and 

( 3.3002 ) ( 3.3002 ) = tan-' --- - tan-' ----- = -1.937" (7-18) 
-1.74515 -1.89054 

Since 

our choice of T2 = 6.25 is acceptable. Then the lag-lead compensator just designed can be writ- 
ten as 

Therefore, the compensated system has the following open-loop transfer function: 

A root-locus plot of the compensatedsystem is shown in Figure 7-42(a). An enlarged root-locus 
plot near the origin is shown in Figure 7-42(b). 
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Real Axis 

(a) 

Figure 7-42 
(a) Root-locus plot 
of compensated 
system; (b) root- 
locus plot near the 
origin. 

The closed loop transfer function becomes 

Root-Locus Plot of Compensated System near the Origin 
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Unit-Step Response of Compensated System 
1.4 

Figure 7-43 
(a) Unit-step 
response of the 
compensated system; 
(b) unit-ramp 
response of the 
compensated system. 

t Sec 

(a) 

Unit-Ramp Response of Compensated System 

t Sec 

(b) 

Notice that the dominant closed-loop poles s = -1.8308 f j3.2359 differ from the dominant 
closed-loop poles s = hs, assumed in the computation of P and T,. Small deviations of the dom- 
inant closed-loop poles s = -1.8308 h j3.2359 from s = f s, = -1.9054 + j3.3002 are due to the 
approximations involved in determining the lag portion of the compensator [See Equations (7-17) 
and (7-18)]. 

Figures 7-43(a) and (b) show the unit-step response and unit-ramp response of the de- 
signed system, respectively. Note that the closed-loop pole at s = -0.1684 almost cancels the 
zero at s = -0.16025. However, this pair of closed-loop pole and zero located near the origin 
produces a long tail of small amplitude. Since the closed-loop pole at s = -17.205 is located 
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very much farther to the left compared to the closed-loop poles at s = -1.8308 + j3.2359, the 
effect of this real pole on the system response is very small. Therefore, the closed-loop poles 
at s = -1.8308 f j3.2359 are indeed dominant closed-loop poles that determine the response 
characteristics of the closed-loop system. In the unit-ramp response, the steady-state error in 
following the unit-ramp input eventually becomes 1/K, = $ = 0.02. 

A-7-10. Figure 7-44(a) is a block diagram of a model for an attitude-rate control system.The closed-loop 
transfer function for this system is 

The unit-step response of this system is shown in Figure 7-44(b). The response shows high- 
frequency oscillations at the beginning of the response due to the poles at s = -0.0417 & j2.4489. 
The response is dominated by the pole at s = -0.0167. The settling time is approximately 240 sec. 

It is desired to speed up the response and also eliminate the oscillatory mode at the beginning 
of the response. Design a suitable compensator such that the dominant closed-loop poles are at 
s = -2 + j 2 a .  

t Hydraulic servo Aircraft I 
- 

Rate gyro 

(a) 

Unit-Steo Res~onse of Uncom~ensated System 

Figure 7-44 
(a) Attitude-rate 
control system; 
(b) unit-step 
response. 

b I t 

50 100 150 200 250 300 
Time (sec) 

(b) 
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Figure 7-45 
Compensated 
attitude-rate control 
system. 

t Hydraulic servo Aircraft I 

u 
Rate gyro 

Solution. Figure 7-45 shows a block diagram for the compensated system. Note that the open-loop 
zero at s = -0.05 and the open-loop pole at s = 0 generate a closed-loop pole between s = 0 
and s - -0.05. Such a closed-loop pole becomes a dominant closed-loop pole and make the re- 
sponse quite slow. Hence, it is necessary to replace this zero by a zero that is located far away 
from the jo axis, for example, a zero at s = -4. 

We now choose the compensator in the following form: 

Then the open-loop transfer function of the compensated system becomes 

To determine &,(s) by the root-locus method, we need to find the angle deficiency at the desired 
closed-loop pole s = -2 + j 2 a .  The angle deficiency can be found as follows: 

Angle deficiency = -143.088" - 120" - 109.642' + 60" + 180" 

Hence, the lead compensator &,(s) must provide 132.73". Since the angle deficiency is 132.73", we 
need two lead compensators, each providing 66.365O.Thus G,(s )  will have the following form: 

Suppose that we choose two zeros at s = -2. Then the two poles of the lead compensators can be 
obtained from 

or 

Hence, 
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The entire compensator Gc(s) for the system becomes 

Figure 7-46 
Root-locus plot of 
the compensated 
system. 

The value of K, can be determined from the magnitude condition. Since the open-loop transfer 
function is 

the magnitude condition becomes 

Hence, 

Thus the compensator G,(s) becomes 

The open-loop transfer function is given by 

A root-locus plot for the compensated system is shown in Figure 7-46.The closed-loop poles for 
the compensated system are indicated in the plot. The closed-loop poles, the roots of the charac- 
teristic equation 

( s  + 9.9158)~s(s' + 0.1s + 4 )  + 88.0227(s + 2)'(s + 4 )  = 0 

Real Axis 
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Figure 7-47 
(a) Unit-step 
response of the 
compensated syste:m; 
(b) unit-ramp 
response of the 
compensated syste:m. 
(Problem A-7-10.) 

are as follows: 
s = -2.0000 f j3.4641 

s = -7.5224 * j6.5326 
s = -0.8868 L 

Now that the compensator has been designed, we shall examine the transient response charac- 
teristics with MATLAB. The closed-loop transfer function is given by 

C ( s )  -- - 
88.0227(s + 2)2(s + 4 )  

R ( s )  ( s  + 9.9158)~s(s~ + 0.1s + 4)  + 88.0227(s + 2)2(s + 4 )  
Figures 7-47(a) and (b) show the plots of the unit-step response and unit-ramp response of the 
compensated system. These response curves show that the designed system is acceptable. 

Unit-Step Response of Compensated System 

t Sec 

(a) 

Example Problems and Solutions 

t Sec 

('J) 



Figure 7-48 
Space vehicle control 

t . Lead Space I 

I compensator vehicle I 
system. . Sensor 

A-7-11. Consider the model for a space vehicle control system shown in Figure 7-48. Design a lead 
compensator G,(s) such that the damping ratio 5 and the undamped natural frequency w, of the 
dominant closed-loop poles are 0.5 and 2 rad/sec, respectively. 

Solution. 
First Attempt: Assume the lead compensator G,(s) to be 

Figure 7-49 
Determination of the 
pole of the lead 
network. 

From the given specifications, 5 = 0.5 and w, = 2 radlsec, the dominant closed-loop poles must 
be located at 

We first calculate the angle deficiency at this closed-loop pole. 

Angle deficiency = -120" - 120" - 10.8934" + 180" 

This angle deficiency must be compensated by the lead compensator. There are many ways to 
determine the locations of the pole and zero of the lead network. Let us choose the zero of the 
compensator at s = -1. Then, referring to Figure 7-49, we have the following equation: 

tan (90" 
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Figure 7-50 
Root-locus plot of 
the compensated 
system. 

or 

Hence, 

The value of Kc can be determined from the magnitude condition 

s + l l  1 
= 1 

as follows: 

(s + 6)s2(0.1s + 1)  1 
= 11.2000 

~=- l+~t /5  

Thus 

Since the open-loop transfer function becomes 

a root-locus plot of the compensated system can be obtained easily with MATLAB by entering 
num and den and using rlocus command. The result is shown in Figure 7-50. 

Root-Locus Plot of Compensated System 
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Figure 7-51 
Unit-step response of 
the compensated 
system. t Sec 

The closed-loop transfer function for the compensated system becomes 

Figure 7-51 shows the unit-step response curve. Even though the damping ratio of the 
dominant closed-loop poles is 0.5, the amount of overshoot is very much higher than expected.A 
closer look at the root-locus plot reveals that the presence of the zero at s = -1 is increasing the 
amount of the maximum overshoot. [In general, if a closed-loop zero or zeros (compensator zero 
or zeros) lie to the right of the dominant pair of the complex poles, then the dominant poles are 
no longer dominant.] If large maximum overshoot cannot be tolerated, the compensator zero(s) 
should be shifted so that the zero(s) will almost cancel the real closed-loop pole(s). 

In the current design, it is desirable to modify the compensator and make the maximum 
overshoot smaller. This can be done by modifying the lead compensator, as presented in the 
following second attempt. 

Second Attempt: To modify the shape of the root loci, we may use two lead networks, each 
contributing half the necessary lead angle, which is 70.8934"/2 = 35.4467'. Let us choose the 
location of the zeros at s = -3. (This is an arbitrary choice. Other choices such as s = -2.5 and 
s = -4 may be made.) 

Once we choose two zeros at s = -3, the necessary location of the poles can be determined 
as shown in Figure 7-52, or 

1.73205 -- - tan (40.89334' - 
Y - 1  

which yields 
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Figure 7-52 
Determination of 1 he 
pole of the lead 
network. 

Hence, the lead compensator will have the following transfer function: 

The value of Kc can be determined from the magnitude condition as follows: 

Then the lead compensator just designed is 

Then the open-loop transfer function becomes 

A root-locus plot for the compensated system is shown in Figure 7-53(a). Notice that there is no 
closed-loop zero near the origin. An expanded view of the root-locus plot near the origin is shown 
in Figure 7-53(b). 

The closed-loop transfer function becomes 

The closed-loop poles are found as follows: 

Example Problems and Solutions 



Root-Locus Plot of Compensated System 

Real Axis 

(a) 

Root-Locus Plot of Compensated System near Origin 

Real Axis 

('J) 

Figure 7-53 
(a) Root-locus plot of compensated system; (b) root-locus plot near the origin. 

Figures 7-54(a) and (b) show the unit-step response and unit-ramp response of the compensated 
system. The unit-step response curve is reasonable and the unit-ramp response looks acceptable. 
Notice that in the unit-ramp response the output leads the input by a small amount.'Ihis is because 
the system has a feedback transfer function l/(O.ls + 1). If the feedback signal versus t is plotted, 
together with the unit-ramp input, the former will not lead the input ramp at steady state. See 
Figure 7-54(c). 
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t Sec 

(b) 

t Sec 

(c) 

A-7-12. Consider the system shown in Figure 7-55(a). Determine the value of a such that the damping ratio 
t of the dominant closed poles is 0.5. 

Solution. The characteristic equation is 

The variable a is not a multiplying factor. Hence, we need to modify the characteristic equation. 
Since the characteristic equation can be written as 

s3 + 9s' + 18s + 10a = 0 

Example Problems and Solutions 



(a) 

Figure 7-55 
(a) Control system; (b) root-locus plot, where K = 10a. 

we rewrite this equation such that a appears as a multiplying factor as follows: 

1 + 10a 
= 0 

s(s2 + 9s + 18) 
Define 

10a = K 

Then the characteristic equation becomes 

Notice that the characteristic equation is in a suitable form for the construction of the root loci. 
This system involves three poles and no zero.The three poles are at s = 0,  s = -3, and s = -6. 

A root-locus branch exists on the real axis between points s = 0 and s = -3. Also, another branch 
exists between points s = -6 and s = -00. 

The asymptotes for the root loci are found as follows: 

rt180°(2k + 1 )  
Angles of asymptotes = 

3 
= 60°, -60°, 180" 

The intersection of the asymptotes and the real axis is obtained from 

Chapter 7 / Control Systems Design by the Root-Locus Method 



The breakaway and break-in points can be determined from dK/ds  = 0, where 

K = -(s3 + 9s' + 18s) 

Now we set 

which yields 

Points = -1.268 is on a root-locus branch. Hence, points = -1.268 is an actual breakaway point. 
But point s = -4.732 is not on the root locus and therefore is neither a breakaway nor break-in 
point. 

Next we shall find points where root-locus branches cross the imaginary axis. We substitute 
s = jw in the characteristic equation, which is 

as follows: 

from which we get 

The crossing points are at w = 1 3 a  and the corresponding value of gain K is 162.Als0, a root- 
locus branch touches the imaginary axis at w = 0. Figure 7-55(b) shows a sketch of the root loci 
for the system. 

Since the damping ratio of the dominant closed-loop poles is specified as 0.5, the desired 
closed-loop pole in the upper-half s plane is located at the intersection of the root-locus branch 
in the upper-half s plane and a straight line having an angle of 60" with the negative real axis.The 
desired dominant closed-loop poles are located at 

At these points, the value of gain K is 28. Hence, 

Since the system involves two or more poles than zeros (in fact, three poles and no zero), the 
third pole can be located on the negative real axis from the fact that the sum of the three closed- 
loop poles is -9. Hence, the third pole is found to be at 
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A-7-13. Consider the system shown in Figure 7-56(a). Sketch the root loci of the system as the velocity 
feedback gain k varies from zero to infinity. Determine the value of k such that the closed-loop 
poles have the damping ratio 5 of 0.7. 

Solution. The open-loop transfer function is 

Open-loop transfer function = 
10 

( s  + 1 + 10k)s 

Since k is not a multilying factor, we modify the equation such that k appears as a multiplying 
factor. Since the characteristic equation is 

we rewrite this equation as follows: 

Define 

Then Equation (7-19) becomes 

Figure 7-56 
(a) Control system; (b) root-locus plot, where K = 10k. 
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Notice that the system has a zero at s = 0 and two poles at s = -0.5 f j3.1225. Since this system 
involves two poles and one zero, there is a possibility that a circular root locus exists. In fact, this 
system has a circular root locus, as will be shown. Since the angle condition is 

we have 

By substituting s = u + jo into this last equation and rearranging, we obtain 

which can be rewritten as 

o + 3.1225 w - 3.1225 
a ( + t a n  ( ) = tan-' (:) -t 180°(2k + 1)  

u + 0.5 a + 0.5 

Taking tangents of both sides of this last equation, we obtain 

which can be simplified to 

which yields 

w = 0 or u2 + w2 = 10 

Notice that w = 0 corresponds to the real axis.The negative real axis (between s = 0 and s = -m) 
corresponds to K 2 0, and the positive real axis corresponds to K < 0. The equation 

is an equation of a circle with center at u = 0, o = 0 with the radius equal to m. A portion of 
this circle that lies to the left of the complex poles corresponds to the root locus for K > 0. The 
portion of the circle which lies to the right of the complex poles corresponds to the root locus for 
K < 0. Figure 7-56(b) shows a sketch of the root loci. 

Since we require = 0.7 for the closed-loop poles, we find the intersection of the circular 
root locus and a line having an angle of 45.57" (note that cos45.57" = 0.7) with the negative real 
axis. The intersection is at s = -2.214 + j2.258. The gain K corresponding to this point is 3.427. 
Hence, the desired value of the velocity feedback gain k is 

Example Problems and Solutions 



PROBLEMS 

B-7-1. Consider the mechanical system shown in Figure where a, 6, and K are positive real numbers. What is the 
7-57. It consists of a spring and two dashpots. Obtain the condition for a and b for G,(s) to be a lead network? 
transfer function of the system. The displacement x, is the 
input and displacement x, is the output. Is this system a B-7-5. Design an op-amp controller to realize the following 
mechanical lead network or lag network? phase-lead transfer function: 

Figure 7-57 
Mechanical system. 

B-7-6. Consider the system shown in Figure 7-59. Plot the 
root loci for the system. Determine the value of K such that 
the damping ratio 5 of the dominant closed-loop poles is 0.5. 
Then determine all closed-loop poles. Plot the unit-step 
response curve with MATLAB. 

Figure 7-59 
Control system. 

B-7-7. Determine the values of K, TI ,  and T2 of the system 
shown in Figure 7-60 so that the dominant closed-loop poles 

B-7-2. Obtain the transfer function of the electrical net- have the ratio 5 = 0.5 and the undamped natural 
work shown in Figure 7-58. Show that it is a lag network. frequency w,, = 3 rad/sec. 

I I 

Figure 7-60 
Control system. 

B-7-8. Consider the control system shown in Figure 7-61. 
Determine the gain K and time constant T of the controller 
G,(s)  such that the closed-loop poles are located at 

Figure 7-58 s = -2 f j2. 
Electrical network. 

B-7-3. Is the following G,(s) a lead network or lag 
network? 

3.5s + 1.4 
Gc(s) = s + 2  

B-7-4. Consider the following G,(s): 

Figure 7-61 
Control system. 
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B-7-9. Consider the system shown in Figure 7-62. Design is 4.1 sec-', which means that for a ramp input of 36O0/sec 
a lead compensator such that the dominant closed-loop the steady-state error in following the ramp input is 
poles are located at s = -2 It j 2 G .  Plot the unit-step re- 
sponse curve of the designed system with MATLAB. 8, 360°/sec 

e , = - = - - - - - -  - 87.8" 
K, 4.1 sec-' 

820 - 
B-7-10. Consider the system shown in Figure 7-63. Design s(s + 10) (S + 20) - 
a compensator such that the dominant closed-loop poles are 
located at s = -1 f j l .  

Lead Space 
compensator vehicle 

Gc(s) 

Figure 7-63 
Control system. 

constant K, to 41 sec-'. It is also desired to keep the damp- 
ing ratio of the dominant closed-loop poles at 0.6.A small 
change in the undamped natural frequency on of the domi- 
nant closed-loop poles is permissible. Design a suitable lag 

Figure 7-612 compensator to increase the static velocity error constant 

Control system. as desired. 

5 
~ ( 0 . 5 ~  + 1) 

- 

B-7-11. 1Xefferring to the system shown in Figure 7-64, de- 
sign a compensator such that the static velocity error con- 
stant K, is 20 sec-' without appreciably changing the original 
location ( s  = -2 & j 2 G )  of a pair of the complex-conju- 
gate closecl-loop poles. 

It is desired to decrease e, to one-tenth of the present 
F- value, or to increase the value of the static velocity error 

Figure 7-65 
Angular-positional system. 

B-7-13. Consider the control system shown in Figure 7-66. 
Design a compensator such that the dominant closed-loop 
poles are located at s = -2 rt j 2 G  and the static velocity 
error constant K, is 50 sec-'. 

Figure 7-66 
Control system. 

B-7-14. Consider the control system shown in Figure 7-67. 
The plant is critically stable in the sense that oscillations will 

s(s + 4) continue indefinitely. Design a suitable compensator such 
that the unit-step response will exhibit maximum overshoot 
of less than 40% and settling time of 5 sec or less. 
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Figure 7-64 
Control system. 

l i  

B-7-12. Consider the angular-positional system shown in 
Figure 7-65.The dominant closed-loop poles are located at 
s = -3.60 f j4.80. The damping ratio 5 of the dominant Figure 7-67 
closed-loop poles is 0.6.The static velocity error constant KO Control system. 

Gc(s) - - 10 
s2 + 2 

L 



B-7-15. Consider the control system shown in Figure 7-68. B-7-18. Consider the system shown in Figure 7-71. Deter- 
Design a compensator such that the unit-step response curve mine the values of the gain K and the velocity feedback co- 
will exhibit maximum overshoot of 30% or less and settling efficient Kh SO that the closed-loop poles are at 
time of 3 sec or less. s = -1 i j f l .  Then, using the determined value of Kh, 

plot the root loci. 

Gc(s) Trkm[Tt c(s)- 

Figure 7-68 
Control system. r 

Figure 7-71 
cdn t ro~  system. 

B-7-16. Consider the control system shown in Figure 7-69. 
Design a compensator such that the unit-step response curve 
will exhibit maximum overshoot of 25% or less and settling 
time of 5 sec or less. 

Figure 7-69 
Control system. 

B-7-17. Consider the system shown in Figure 7-70, which 
involves velocity feedback. Determine the values of the am- 
plifier gain K and the velocity feedback gain Kh SO that the 
following specifications are satisfied: 

B-7-19. Consider the system shown in Figure 7-72.The sys- 
tem involves velocity feedback. Determine the value of gain 
K such that the dominant closed-loop poles have a damping 
ratio of 0.5. Using the gain K thus determined, obtain the 
unit-step response of the system. 

Figure-7-72 
Control system. 

1. Damping ratio of the closed-loop poles is 0.5 
2. Settling time 5 2 sec B-7-20. Consider the system shown in Figure 7-73. Plot the 
3. Static velocity error constant K, r 50 sec-' root loci as a varies from 0 to co. Determine the value of a 
4 . O <  K h < l  such that the damping ratio of the dominant closed-loop 

poles is 0.5. 

Figure 7-70 
Control system. 

Figure 7-73 
Control system. 
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B-7-21. Consider the system shown in Figure 7-74. Plot the Compare unit-step responses of the system for the 
root loci as the value of k varies from 0 to oo. What value of following three cases: 
k will give a damping ratio of the dominant closed-loop 
poles equal to 0.5? Find the static velocity error constant of (1) K = 10, Kh = 0.1 

the system with this value of k. (2) K = 10, Kh = 0.3 

B-7-22. Consider the system shown in Figure 7-75. As- (3) K = 10, Kh = 0.5 
suming that the value of gain K varies from 0 to oo, plot the 
root loci when Kh = (1.1,0.3, and 0.5. 

Figure 7--74 
Control system. 

Figure 7--'75 
Control system. 

Problems 



Frequency-Response 
Analysis 

8-1 INTRODUCTION 

By the term frequency response, we mean the steady-state response of a system to a 
sinusoidal input. In frequency-response methods, we vary the frequency of the input 
signal over a certain range and study the resulting response. 

In this and the next chapter we present frequency-response approaches to the analy- 
sis and design of control systems.The information we get from such analysis is different 
from what we get from root-locus analysis. In fact, the frequency response and root- 
locus approaches complement each other. One advantage of the frequency-response 
approach is that we can use the data obtained from measurements on the physical system 
without deriving its mathematical model. In many practical designs of control systems 
both approaches are employed. Control engineers must be familiar with both. 

Frequency-response methods were developed in 1930s and 1940s by Nyquist, Bode, 
Nichols, and many others. The frequency-response methods are most powerful in con- 
ventional control theory. They are also indispensable to robust control theory. 

The Nyquist stability criterion enables us to investigate both the absolute and relative 
stabilities of linear closed-loop systems from a knowledge of their open-loop frequency- 
response characteristics. An advantage of the frequency-response approach is that 
frequency-response tests are, in general, sirnple and can be made accurately by use of 
readily available sinusoidal signal generators and precise measurement equipment. Often 
the transfer functions of complicated components can be determined experimentally by 
frequency-response tests. In addition, the frequency-response approach has the advan- 
tages that a system may be designed so that the effects of undesirable noise are negligible 
and that such analysis and design can be extended to certain nonlinear control systems. 



Although the frequency response of a control system presents a qualitative picture 
of the transient response, the correlation between frequency and transient responses is 
indirect, except for the case of second-order systems. In designing a closed-loop system, 
we adjust the frequency-response characteristic of the open-loop transfer function by 
using several design criteria in order to obtain acceptable transient-response charac- 
teristics for the system. 

Obtaining Steady-State Outputs to Sinusoidal Inputs. We shall show that the 
steady-state output of a transfer function system can be obtained directly from the si- 
nusoidal transfer function, that is, the transfer function in which s  is replaced by jw, 
where w  is frequency. 

Consider the stable, linear, time-invariant system shown in Figure 8-1.The input and out- 
put of the system, whose transfer function is G ( s ) ,  are denoted by x(t) and y ( t ) ,  respectively. 
If the input x ( t )  is a sinusoidal signal, the steady-state output will also be a sinusoidal sig- 
nal of the same frequency, but with possibly different magnitude and phase angle. 

Let us assume that the input signal is given by 

x ( t )  = X sin wt 

Suppose that the transfer function G ( s )  can be written as a ratio of two polynomials in 
s; that is, 

The Laplace-transformed output Y ( s )  is then 

where X ( s )  is the Laplace transform of the input x ( t ) .  
It will be shown that, after waiting until steady-state conditions are reached, the fre- 

quency response can be calculated by replacing s  in the transfer function by jw. It will 
also be shown that the steady-state response can be given by 

G ( j w )  = = M h  

where M is the amplitude ratio of the output and input sinusoids and + is the phase 
shift between the input sinusoid and the output sinusoid. In the frequency-response test. 
the input frequency w  is varied until the entire frequency range of interest is covered. 

The steady-state response of a stable, linear, time-invariant system to a sinusoidal 
input does not depend on the initial conditions. (Thus, we can assume the zero initial con- 
dition.) If Y ( s )  has only distinct poles, then the partial fraction expansion of Equation 
(8-1) yields 

- 
CI -- a 

- + --- bl 62 bn + -+- + .. .  +---- 
s + j w  s - j w  s + s l  s + s 2  s + S,  

(8-2) 

Figure 8-1 
Stable, linear, time- 
invariant system. 
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where a and the b, (where i = 1,2, . . . , n) are constants and 5 is the complex conjugate 
of a. The inverse Laplace transform of Equation (8-2) gives 

For a stable system, -sl, -s,, . . . , -s, have negative real parts. Therefore, as t approaches 
infinity, the terms e-q", e-ht, . . . , and e-sn' approach zero.Thus, all the terms on the right- 
hand side of Equation (8-3), except the first two, drop out at steady state. 

If Y (s) involves multiple poles s, of multiplicity m,, then y ( t )  will involve terms such 
as th~e-s~t(h, = 0,1,2, . . . , m, - 1). For a stable system, the terms th~e-'lt approach zero as 
t approaches infinity. 

Thus, regardless of whether the system is of the distinct-pole type, the steady-state 
response becomes 

where the constant a can be evaluated from Equation (8-2) as follows: 

Note that 

Since G(jw) is a complex quantity, it can be written in the following form: 

where I~( jw)l  represents the magnitude and 4 represents the angle of G(jw); that is, 

imaginary part of G(jw) 
4 = /G(jw) = tan-' 

real part of G(jw) 1 
The angle 4 may be negative, positive, or zero. Similarly, we obtain the following 
expression for G(-jw): 

Then, noting that 

Equation (8-4) can be written 
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Input x(t) = X sin wt 
/ 

Figure 8-2 
Input and output 
sinusoidal signals. Output y(t) = Y sin (wt  + 4) 

where Y = ~ I ~ ( j w ) l .  We see that a stable, linear, time-invariant system subjected to a 
sinusoidal input will, at steady state, have a sinusoidal output of the same frequency as 
the input. But the amplitude and phase of the output will, in general, be different from 
those of the input. In fact, the amplitude of the output is given by the product of that of 
the input and I ~ ( j w ) / ,  while the phase angle differs from that of the input by the amount 
C$ = / G ( j w ) .  An example of input and output sinusoidal signals is shown in Figure 8-2. 

On the basis of this, we obtain this important result: For sinusoidal inputs, 

~ ( j w ) I  = IY('")I = amplitude ratio of the output sinuisoid to the 
X ( j w )  input sinusoid 

Y ( j w )  phase shift of the output sinusoid with respect 
/ G ( j w )  = 1- = 

X ( j w )  to the input sinusoid 

Hence, the steady-state response characteristics of a system to a sinusoidal input can be 
obtained directly from 

The function G ( j o )  is called the sinusoidal transfer function. It is rhe ratio of Y ( j w )  
to X ( j o ) ,  is a complex quantity, and can be represented by the magnitude and phase 
angle with frequency as a parameter.The sinusoidal transfer function of any linear system 
is obtained by substituting jw for s in the transfer function of the system. 

A positive phase angle is called phase lead, and a negative phase angle is called phase 
lag. A network that has phase-lead characteristics is called a lead network, while a net- 
work that has phase-lag characteristics is called a lag network. 

Consider the system shown in Figure 8-3.The transfer function G(s) is 

For the sinusoidal input x ( t )  = X sinot, the steady-state output y,,(t) can be found as follows: 
Substituting jw for s in G(s) yields 

Figure 8-3 
First-order system. 
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The amplitude ratio of the output to the input is 

while the phase angle I& is 

Thus, for the input x(t) = X sin wt, the steady-state output y,,(t) can be obtained from Equation 
(8-5) as follows: 

From Equation (8-6), it can be seen that for small U ,  the amplitude of the steady-state output 
yss(t) is almost equal to K times the amplitude of the input.The phase shift of the output is small 
for small w. For large w, the amplitude of the output is small and almost inversely proportional to 
w.The phase shift approaches -90" as w approaches infinity. This is a phase-lag network. 

EXAMPLE 8-2 Consider the network given by 

Determine whether this network is a lead network or lag network. 
For the sinusoidal input x(t) = X sin wt, the steady-state output ys,(t) can be found as follows: 

Since 

we have 

and 

(#I = /G(jw) = tan-'Tlw - tan-'T2w 

Thus the steady-state output is 

From this expression, we find that if TI > T2, then tan-'Tlw - tan-'T2w > 0. Thus, if TI > Tz, 
then the network is a lead network. If TI < T,, then the network is a lag network. 

Presenting Frequency-Response Characteristics in Graphical Forms. The 
sinusoidal transfer function, a complex function of the frequency w,  is characterized by 
its magnitude and phase angle, with frequency as the parameter. There are three 
commonly used representations of sinusoidal transfer functions: 
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1. Bode diagram or logarithmic plot 
2. Nyquist plot or polar plot 
3. Log-magnitude-versus-phase plot (Nichols plots) 

We shall discuss these representations in detail in this chapter. We shall also discuss the 
MATLAB approach to obtain Bode diagrams, Nyquist plots, and Nichols plots. 

Outline of the Chapter. Section 8-1 has presented introductory material on the 
frequency response. Section 8-2 presents Bode diagrams of various transfer-function 
systems. Section 8-3 discusses a computational approach to obtain Bode diagrams with 
MATLAB, Section 8-4 treats polar plots of sinusoidal transfer functions, and Section 8-5 
discusses drawing Nyquist plots with MATLAB. Section 8-6 briefly presents log- 
magnitude-versus-phase plots. Section 8-7 gives a detailed account of the Nyquist sta- 
bility criterion, Section 8-8 discusses the stability analysis of closed-loop systems using 
the Nyquist stability criterion, and Section 8-9 treats the relative stability analysis of 
closed-loop systems. Measures of relative stability such as phase margin and gain mar- 
gin are introduced here. The correlation between the transient response and frequency 
response is also discussed. Section 8-10 presents a method for obtaining the closed-loop 
frequency response from the open-loop frequency response by use of the M and N 
circles. Use of the Nichols chart is also discussed for obtaining the closed-loop frequency 
response. Finally, Section 8-11 deals with the determination of the transfer function 
based on an experimental Bode diagram. 

8-2 BODE DIAGRAMS 

Bode Diagrams or Logarithmic Plots. A Bode diagram consists of two graphs: 
One is a plot of the logarithm of the magnitude of a sinusoidal transfer function; the 
other is a plot of the phase angle; both are plotted against the frequency on a logarithmic 
scale. 

The standard representation of the logarithmic magnitude of G(jw) is 20 logl~( jw)) ,  
where the base of the logarithm is 10. The unit used in this representation of the mag- 
nitude is the decibel, usually abbreviated dB. In the logarithmic representation, the 
curves are drawn on semilog paper, using the log scale for frequency and the linear stale 
for either magnitude (but in decibels) or phase angle (in degrees). (The frequency range 
of interest determines the number of logarithmic cycles required on the abscissa.) 

The main advantage of using the Bode diagram is that multiplication of magnitudes 
can be converted into addition. Furthermore, a simple method for sketching an ap- 
proximate log-magnitude curve is available. It is based on asymptotic approximations. 
Such approximation by straight-line asymptotes is sufficient if only rough information 
on the frequency-response characteristics is needed. Should the exact curve be desired, 
corrections can be made easily to these basic asymptotic plots. Expanding the low- 
frequency range by use of a logarithmic scale for the frequency is highly advantageous 
since characteristics at low frequencies are most important in practical systems.Although 
it is not possible to plot the curves right down to zero frequency because of the 
logarithmic frequency (log0 = -m), this does not create a serious problem. 

Note that the experimental determination of a transfer function can be made simple 
if frequency-response data are presented in the form of a Bode diagram. 
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Figure 8-4 
Number-decibel 
conversion line. 

Basic Factors of G( jco)H(jco). As stated earlier, the main advantage in using the 
logarithmic plot is the relative ease of plotting frequency-response curves. The basic 
factors that very frequently occur in an arbitrary transfer function G ( j w ) H ( j w )  are 

1. Gain K 
2. Integral and derivative factors ( j ~ ) ~ '  
3. First-order factors ( 1  + j w ~ ) "  
4. Quadratic factors [I + 2[(jw/w,) + ( j w / ~ , ) ~ ] "  

Once we become familiar with the logarithmic plots of these basic factors, it is 
possible to utilize them in constructing a composite logarithmic plot for any general 
form of G ( j w ) H ( j w )  by sketching the curves for each factor and adding individual curves 
graphically, because adding the logarithms of the gains corresponds to multiplying them 
together. 

The Gain K. A number greater than unity has a positive value in decibels, while a 
number smaller than unity has a negative value.The log-magnitude curve for a constant 
gain K is a horizontal straight line at the magnitude of 20 logK decibels.The phase angle 
of the gain K is zero. The effect of varying the gain K in the transfer function is that it 
raises or lowers the log-magnitude curve of the transfer function by the corresponding 
constant amount, but it has no effect on the phase curve. 

A number-decibel conversion line is given in Figure 8-4. The decibel value of any 
number can be obtained from this line. As a number increases by a factor of 10, the 
corresponding decibel value increases by a factor of 20. This may be seen from the 
following: 

20log(K x 10)  = 20 log K + 20 

Similarly, 

20 log(K x 10") = 20 log K + 20n 

-40 
0.01 0.020.04 0.1 0.2 0.40.6 1 2 3 4 5 6 8 1 0  

Numbers 
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Note that, when expressed in decibels, the reciprocal of a number differs from its value 
only in sign; that is, for the number K, 

1 
20 log K = -20 log - 

K 

Integral and Derivative Factors (j~)~'. The logarithmic magnitude of l / j w  in 
decibels is 

The phase angle of l / j w  is constant and equal to -90". 
In Bode diagrams, frequency ratios are expressed in terms of octaves or decades. An 

octave is a frequency band from w1 to 2w1, where w1 is any frequency value. A decade is 
a frequency band from w, to low,, where again w, is any frequency. (On the logarithmic 
scale of semilog paper, any given frequency ratio can be represented by the same hori- 
zontal distance. For example, the horizontal distance from w = 1 to w = 10 is equal to 
that from w = 3 to w = 30.) 

If the log magnitude -20 log w dB is plotted against w on a logarithmic scale, it is a 
straight line.To draw this straight line, we need to locate one point ( 0  dB, w = 1 )  on it. Since 

(-20 log l o w )  dB = (-20 log w - 20)  dB 

the slope of the line is -20 dB/decade (or -6 dB/octave). 
Similarly, the log magnitude of jw in decibels is 

20 log 1 jol = 20 log w dB 

The phase angle of jw is constant and equal to 90°.The log-magnitude curve is a straight 
line with a slope of 20 dB/decade. Figures 8-5(a) and (b) show frequency-response 
curves for l / j w  and jw, respectively. We can clearly see that the differences in the 
frequency responses of the factors l / j w  and j o  lie in the signs of the slopes of the log- 
magnitude curves and in the signs of the phase angles. Both log magnitudes become 
equal to 0 dB at w = 1. 

If the transfer function contains the factor ( l l j w ) "  or ( jw)" ,  the log magnitude 
becomes, respectively, 

20 log -- l (jb1.I = 
-n X 20 log 1 jwl = -20n log w dB 

20 log 1 (jw)"l = n X 20 log 1 jwl = 20n log w dB 

The slopes of the log-magnitude curves for the factors ( l / j w ) "  and ( jw)"  are thus 
-20n dB/decade and 20n dB/decade, respectively. The phase angle of ( l l j w ) "  is equal 
to -90" X n over the entire frequency range, while that of (jw)" is equal to 90' X n over 
the entire frequency range. The magnitude curves will pass through the point 
(0 dB, w = 1 ) .  
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Figure 8-5 
-180" 1- 
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la) Bode diagram of 
\ ,  u 

G( jo )  = l l j w ;  
(b) Bode diagram of 

Bode diagram of 
GO'w) = I l jw 

Bode diagram of 
Gcw) = jw  

. . 
G(jw) = jo. (a) (b) 

First-Order Factors ( 1  + juT)". The log magnitude of the first-order factor 
1/(1 + joT) is 

1 
2010gil + jwTl 

= -20 log v'ixw dB 

For low frequencies, such that w < 1/T, the log magnitude may be approximated by 

Thus, the log-magnitude curve at low frequencies is the constant 0-dB line. For high 
frequencies, such that w B 1 /T, 

-20 log v m  = -20 log wT dB 

This is an approximate expression for the high-frequency range. At w = 1/T, the log 
magnitude equals 0 dB; at w = 10/T, the log magnitude is -20 dB. Thus, the value of 
-20 log wT dB decreases by 20 dB for every decade of o. For w S 1/T, the log-magnitude 
curve is thus a straight line with a slope of -20 dB/decade (or -6 dB/octave). 

Our analysis shows that the logarithmic representation of the frequency-response 
curve of the factor 1/(1 + jwT) can be approximated by two straight-line asymptotes, 
one a straight line at 0 dB for the frequency range 0 < o < 1/T and the other a straight 
line with slope -20 dBIdecade (or -6 dB/octave) for the frequency range 1/T < w < co. 
The exact log-magnitude curve, the asymptotes, and the exact phase-angle curve are 
shown in Figure 8-6. 

The frequency at which the two asymptotes meet is called the corner frequency or 
break frequency. For the factor 1/(1 + jwT), the frequency w = 1/T is the corner fre- 
quency since at w = 1/T the two asymptotes have the same value. (The low-frequency 
asymptotic expression at w = 1/T is 20 log 1 dB = 0 dB, and the high-frequency 
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Figure 8-6 
Log-magnitude 
curve, together with 
the asymptotes, and 
phase-angle curve of 
l/(l + jcoT). 

-YO0 
1 1 1  1 1 2  - - -  5 10 2_0 - - 

5 7  2 T  T T T T T  
W 

asymptotic expression at w = 1/T is also 20 log 1 dB = 0 dB.) The corner frequency 
divides the frequency-response curve into two regions: a curve for the low-frequency re- 
gion and a curve for the high-frequency region. The corner frequency is very important 
in sketching logarithmic frequency-response curves. 

The exact phase angle 6 of the factor 1/(1 -k jwT) is 

4 = -tan-' wT 

At zero frequency, the phase angle is 0". At the corner frequency, the phase angle is 

T 4 = -tan-' - = -tan-' 1 = -45" 
T 

At infinity, the phase angle becomes -90". Since the phase angle is given by an inverse- 
tangent function, the phase angle is skew symmetric about the inflection point at 
6 = -45". 

The error in the magnitude curve caused by the use of asymptotes can be calculated. 
The maximum error occurs at the corner frequency and is approximately equal to -3 dB 
since 

-20 log + 20 log 1 = -10 log 2 = -3.03 dB 

The error at the frequency one octave below the corner frequency, that is, at w = 1/(2T),  
is 

v3 
-20 log d F  + 20 log 1 = -20 log - = -0.97 dB 

2 

The error at the frequency one octave above the corner frequency, that is, at w = 2/T,  
is 

.\/5 
-20 log + 20 log2 = -20 log - = -0.97 dB 

2 
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Corner frequency 

I 

Figure 8-7 
Log-magnitude error 
in the asymptotic 
expression of the 
frequency-response 
curve of 
1/(1 + joT). 

Thus, the error at one octave below or above the corner frequency is approximately 
equal to -1 dB. Similarly, the error at one decade below or above the corner frequency 
is approximately -0.04 dB. The error in decibels involved in using the asymptotic ex- 
pression for the frequency-response curve of 1/(1 + jwT) is shown in Figure 8-7. The 
error is symmetric with respect to the corner frequency. 

Since the asymptotes are quite easy to draw and are sufficiently close to the exact 
curve, the use of such approximations in drawing Bode diagrams is convenient in es- 
tablishing the general nature of the frequency-response characteristics quickly with a 
minimum amount of calculation and may be used for most preliminary design work. If 
accurate frequency-response curves are desired, corrections may easily be made by re- 
ferring to the curve given in Figure 8-7. In practice, an accurate frequency-response 
curve can be drawn by introducing a correction of 3 dB at the corner frequency and a 
correction of 1 dB at points one octave below and above the corner frequency and then 
connecting these points by a smooth curve. 

Note that varying the time constant T shifts the corner frequency to the left or to the 
right, but the shapes of the log-magnitude and the phase-angle curves remain the same. 

The transfer function 1/(1 + jwT) has the characteristics of a low-pass filter. For 
frequencies above w = 1/T, the log magnitude falls off rapidly toward -oo.This is es- 
sentially due to the presence of the time constant. In the low-pass filter, the output 
can follow a sinusoidal input faithfully at low frequencies. But as the input frequen- 
cy is increased, the output cannot follow the input because a certain amount of time 
is required for the system to build up in magnitude. Thus, at high frequencies, the 
amplitude of the output approaches zero and the phase angle of the output 
approaches -90". Therefore. it the input function contains many harmonics, then the 
low-frequency components are reproduced faithfully at the output, while the high- 
frequency components are attenuated in amplitude and shifted in phase.Thus, a first- 
order element yields exact, or almost exact, duplication only for constant or slowly 
varying phenomena. 

An advantage of the Bode diagram is that for reciprocal factors-for example, the 
factor 1 + jwT-the log-magnitude and the phase-angle curves need only be changed 
in sign, since 

1 
20 log 11 + juT I = -20 log 

11 + jwTI 
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Figure 8-8 
Log-magnitude 
curve, together with 
the asymptotes, and 
phase-angle curve 
for 1 + jwT. 

/I + jwT = tan-'wT = - 
1 + jwT L 

The corner frequency is the same for both cases. The slope of the high-frequency as- 
ymptote of 1 + jwT is 20 dB/decade, and the phase angle varies from 0" to 90" as the fre- 
quency w is increased from zero to infinity. The log-magnitude curve, together with the 
asymptotes, and the phase-angle curve for the factor 1 + jwT are shown in Figure 8-8. 

To draw a phase curve accurately, we have to locate several points on the curve.The 
phase angles of (1 + j w ~ ) "  are 

For the case where a given transfer function involves terms like (1 + joT)'", a similar 
asymptotic construction may be made.The corner frequency is still at o = 1/T, and the 
asymptotes are straight lines. The low-frequency asymptote is a horizontal straight line 
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at 0 dB, while the high-frequency asymptote has the slope of -20n dB/decade or 
20n dB/decade. The error involved in the asymptotic expressions is n times that for 
(1 + jwT)+'. The phase angle is n times that of ( 1  + j w ~ ) ~ '  at each frequency point. 

Quadratic Factors [ l  + 25(jw/w,)  + ( j ~ l w , ) ~ ] ~ ' .  Control systems often 
possess quadratic factors of the form 

If J > 1, this quadratic factor can be expressed as a product of two first-order factors 
with real poles. If 0 < J < 1, this quadratic factor is the product of two complex- 
conjugate factors. Asymptotic approximations to the frequency-response curves are not 
accurate for a factor with low values of 6. This is because the magnitude and phase of 
the quadratic factor depend on both the corner frequency and the damping ratio 6. 

The asymptotic frequency-response curve may be obtained as follows: Since 

for low frequencies such that w < w,,, the log magnitude becomes 

-20 log1 = 0 d B  

The low-frequency asymptote is thus a horizontal line at 0 dB. For high frequencies such 
that w 9 w,, the log magnitude becomes 

w2 w 
-20 log - = -40 log - dB 

0: w n 

The equation for the high-frequency asymptote is a straight line having the slop( 
-40 dB/decade since 

low w 
-40 log --- = -40 - 40 log - 

, '" n 

The high-frequency asymptote interskcts the low-frequency one at w = w, since at thl- 
frequency 

0, -40 log - = -40 log 1 = 0 dB 
w,, 

This frequency, w,, is the corner frequency for the quadratic factor considered. 
The two asymptotes just derived are independent of the value of J. Near ti) 

frequency o = w,, a resonant peak occurs, as may be expected from Equation (8-7 
The damping ratio 6 determines the magnitude of this resonant peak. Errors o b ~  
ously exist in the approximation by straight-line asymptotes. The magnitude of th  
error depends on the value of J. It is large for small values of 5. Figure 8-9 shows th 
exact log-magnitude curves, together with the straight-line asymptotes and the exal 
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Figure 8-9 
Log-magnitude 
curves, together with 
the asymptotes, and 
phase-angle curves 
of the quadratic 
transfer function 
given by 
Equation (8-7). 

phase-angle curves for the quadratic factor given by Equation (8-7) with several values 
of J. If corrections are desired in the asymptotic curves, the necessary amounts of cor- 
rection at a sufficient number of frequency points may be obtained from Figure 8-9. 

The phase angle of the quadratic factor [l f 2J(jw/w,) + (j~/o,)~]-l is 

4 = = -tan-' (8-8) 

The phase angle is a function of both o and J. At  w = 0, the phase angle equals 0". At  
the corner frequency o = w,, the phase angle is -90" regardless of J, since 

At  o = m, the phase angle becomes -180". The phase-angle curve is skew symmetric 
about the inflection point-the point where 4 = -90°.There are no simple ways to sketch 
such phase curves. We need to refer to the phase-angle curves shown in Figure 8-9. 
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The frequency-response curves for the factor 

can be obtained by merely reversing the sign of the log magnitude and that of the phase 
angle of the factor 

To obtain the frequency-response curves of a given quadratic transfer function, we must 
first determine the value of the corner frequency w, and that of the damping ratio 5. 
Then, by using the family of curves given in Figure 8-9, the frequency-response curves 
can be plotted. 

The Resonant Frequency w, and the Resonant Peak Value Mr. The magnitude of 

If I G ( j w ) /  has a peak value at some frequency, this frequency is called the resonant 
frequency. Since the numerator of IG( jw) l  is constant, a peak value of I ~ ( j w ) l  will occur 
when - 

is a minimum. Since Equation (8-10) can be written 

the minimum value of g(w) occurs at w = w,-. Thus the resonant frequency 
w, is 

w = w ,  for 0 I 5 5 0.707 (8-12) 

As the damping ratio 5 approaches zero, the resonant frequency approaches w,. For 
0 < 5 5' 0.707, the resonant frequency w, is less than the damped natural frequency 
wd = w,-, which is exhibited in the transient response. From Equation (&12), 
it can be seen that for 5 > 0.707, there is no resonant peak. The magnitude / ~ ( j w )  de- 
creases monotonically with increasing frequency w. (The magnitude is less than 0 dB 
for all values of w > 0. Recall that, for 0.7 < { < 1, the step response is oscillatory, but 
the oscillations are well damped and are hardly perceptible.) 
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Figure 8-10 
M,-versus-[ curve for 
the second-order 
system 
1/[1 + 2 j . ( j ~ / ~ ~ )  + 
( j ~ / ~ , , ) ~ l .  

The magnitude of the resonant peak, M,, can be found by substituting Equation 
(8-12) into Equation (8-9). For 0 5 5 5 0.707, 

For 5 > 0.707, 

Mr = 1 (8-14) 

As 5 approaches zero, Mr approaches infinity. This means that if the undamped system 
is excited at its natural frequency, the magnitude of G ( j o )  becomes infinity. The rela- 
tionship between Mr and 5 is shown in Figure 8-10. 

The phase angle of G ( j w )  at the frequency where the resonant peak occurs can be 
obtained by substituting Equation (8-12) into Equation (8-8). Thus, at the resonant 
frequency w,, . - 

/ ~ ( j w , )  = -tan-' 
v1 - 212 

= -90" + sin-' 5 
5 

General Procedure for Plotting Bode Diagrams. MATLAB provides an easy way 
to plot Bode diagrams. (See Section 8-3.) Here, however, we consider the case where we 
want to draw Bode diagrams manually without using MATLAB. 

First rewrite the sinusoidal transfer function G( jw)H( jw)  as a product of basic factors 
discussed above.Then identify the corner frequencies associated with these basic factors. 
Finally, draw the asymptotic log-magnitude curves with proper slopes between the corner 
frequencies. The exact curve, which lies close to the asymptotic curve, can be obtained 
by adding proper corrections. 

The phase-angle curve of G ( j w ) H ( j w )  can be drawn by adding the phase-angle 
curves of individual factors. 

The use of Bode diagrams employing asymptotic approximations requires much less 
time than other methods that may be used for computing the frequency response of a 
transfer function. The ease of plotting the frequency-response curves for a given trans- 
fer function and the ease of modification of the frequency-response curve as 
compensation is added are the main reasons why Bode diagrams are very frequently 
used in practice. 
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EXAMPLE 8-3 Draw the Bode diagram for the following transfer function: 

Make corrections so that the log-magnitude curve is accurate. 
To avoid any possible mistakes in drawing the log-magnitude curve, it is desirable to put G ( j w )  

in the following normalized form, where the low-frequency asymptotes for the first-order factors 
and the second-order factor are the 0-dB line: 

This function is composed of the following factors: 

The corner frequencies of the third, fourth, and fifth terms are w  = 3, w  = 2, and w = Z/Z, 
respectively. Note that the last term has the damping ratio of 0.3536. 

To plot the Bode diagram, the separate asymptotic curves for each of the factors are shown 
in Figure 8-11.The composite curve is then obtained by algebraically adding the individual curves, 
also shown in Figure 8-11. Note that when the individual asymptotic curves are added at each fre- 
quency, the slope of the composite curve is cumulative. Below w = @, the plot has the slope of 
-20 dB/decade. At the first corner frequency w  = Z/Z , the slope changes to -60 dB/decade and 
continues to the next corner frequency w  = 2, where the slope becomes -80 dB/decade. At the 
last corner frequency w = 3, the slope changes to -60 dB/decade. 

Once such an approximate log-magnitude curve has been drawn, the actual curve can be 
obtained by adding corrections at each corner frequency and at frequencies one octave below 
and above the corner frequencies. For first-order factors (1 + j w ~ ) " ,  the corrections are -+3 dB 
at the corner frequency and 51 dB at the frequencies one octave below and above the corner 
frequency. Corrections necessary for the quadratic factor are obtained from Figure 8-9.The exact 
log-magnitude curve for G ( j w )  is shown by a dashed curve in Figure 8-11. 

Note that any change in the slope of the magnitude curve is made only at the corner 
frequencies of the transfer function G ( j w ) .  Therefore, instead of drawing individual magnitude 
curves and adding them up, as shown, we may sketch the magnitude curve without sketching 
individual curves. We may start drawing the lowest-frequency portion of the straight line (that 
is, the straight line with the slope -20 dB/decade for w  < v?). As the frequency is increased, 
we get the effect of the complex-conjugate poles (quadratic term) at the corner frequency 
w = a. The complex-conjugate poles cause the slopes of the magnitude curve to change from 
-20 to -60 dB/decade. At the next corner frequency, w  = 2, the effect of the pole is to change 
the slope to -80 dB/decade. Finally, at the corner frequency w  = 3, the effect of the zero is to 
change the slope from -80 to -60 JB/decade. 

For plotting the complete phase-angle curve, the phase-angle curves for all factors have to be 
sketched. The algebraic sum of all phase-angle curves provides the complete phase-angle curve, 
as shown in Figure 8-11. 
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Figure 8-11 
Bode diagram of the 
system considered in 
Example 8-3. 

Minimum-Phase Systems and Nonminimum-Phase Systems. Transfer func- 
tions having neither poles nor zeros in the right-half s plane are minimum-phase trans- 
fer functions, whereas those having poles andlor zeros in the right-half s plane are 
nonminimum-phase transfer functions. Systems with minimum-phase transfer functions 
are called minimum-phase systems, whereas those with nonminimum-phase traysfer 
functions are called nonminirnum-phase systems. 8 

For systems with the same magnitude characteristic, the range in phase angle of the 
minimum-phase transfer function is minimum among all such systems, while the range in 
phase angle of any nonminimum-phase transfer function is greater than this minimum. 

It is noted that for a minimum-phase system, the transfer function can be uniquely 
determined from the magnitude curve alone. For a nonminimum-phase system, this is 
not the case. Multiplying any transfer function by all-pass filters does not alter the 
magnitude curve, but the phase curve is changed. 

Consider as an example the two systems whose sinusoidal transfer functions are, 
respectively, 
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Figure 8-12 
Pole-zero 
configurations of a 
minimum-phase 
system Gl(s) and 
nonminimum-phase 
system G,(s). 

Figure 8-13 i 

Phase-angle 
characteristics of the 
systems G,(s) and 
G,(s) shown in 
Figure 8-12. 

The pole-zero configurations of these systems are shown in Figure 8-12. The two sinu- 
soidal transfer functions have the same magnitude characteristics, but they have differ- 
ent phase-angle characteristics, as shown in Figure 8-13. These two systems differ from 
each other by the factor 

The magnitude of the factor ( I  - j w T ) / ( 1  + jwT) is always unity. But the phase 
angle equals -2 tan-' wT and varies from 0° to -180" as w is increased from zero to infinity. 

As stated earlier, for a minimum-phase system, the magnitude and phase-angle char- 
acteristics are uniquely related. This means that if the magnitude curve of a system is 
specified over the entire frequency range from zero to infinity, then the phase-angle 
curve is uniquely determined, and vice versa. This, however, does not hold for a non- 
minimum-phase system. 

Nonminimum-phase situations may arise in two different ways. One is simply when 
a system includes a nonminimum-phase element or elements. The other situation may 
arise in the case where a minor loop is unstable. 

For a minimum-phase system, the phase angle at w = cm becomes -90°(q - p ) ,  
where p  and q are the degrees of the numerator and denominator polynomials of the 
transfer function, respectively. For a nonminimum-phase system, the phase angle at 
w = oo differs from -90°(q - p). In either system, the slope of the log-magnitude curve 
at w = cm is equal to -2O(q - p )  dB/decade. It is therefore possible to detect whether 
the system is minimum phase by examining both the slope of the high-frequency 
asymptote of the log-magnitude curve and the phase angle at w = cm. If the slope of the 
log-magnitude curve as w approaches infinity is -2O(q - p )  dB/decade and the phase 
angle at w = cc is equal to -90°(q - p), then the system is minimum phase. 

W 
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Figure 8-14 
Phase-angle 
characteristic of 
transport lag. 

Nonminimum-phase systems are slow in responding because of their faulty behavior 
at the start of a response. In most practical control systems, excessive phase lag should be 
carefully avoided. In designing a system, if fast speed of response is of primary importance, 
we should not use nonminimum-phase components. (A common example of nonmini- 
mum-phase elements that may be present in control systems is transport lag or dead time.) 

It is noted that the techniques of frequency-response analysis and design to be 
presented in this and the next chapter are valid for both minimum-phase and 
nonminimum-phase systems. 

Transport Lag. Transport lag, which is also called dead time, is of nonminimum- 
phase behavior and has an excessive phase lag with no attenuation at high frequencies. 
Such transport lags normally exist in thermal, hydraulic, and pneumatic systems. 

Consider the transport lag given by 
G(jo) = e-lwT 

The magnitude is always equal to unity since 
I ~ ( j w ) l  = ~COSWT - jsinwT1 = 1 

Therefore, the log magnitude of the transport lag e-jwT is equal to 0 dB. The phase 
angle of the transport lag is 

/G(jw) = -wT (radians) 

= -57.3 wT (degrees) 

The phase angle varies linearly with the frequency w.The phase-angle characteristic 
of transport lag is shown in Figure 8-14. 
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EXAMPLE 8-4 Draw the Bode diagram of the following transfer function: 

The log magnitude is 

1 
= 0 + 20 log --- 

11 + jwT1 

The phase angle of G(jw) is 

The log-magnitude and phase-angle curves for this transfer function with L = 0.5 and T  = 1 are 
shown in Figure 8-15. 

Figure 8-15 
Bode diagram for the 
system e-JoL/(1 + jwT) 
with L = 0.5 and T  = 1. 
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Figure 8-16 
Unity-feedback 
control system. 

Figure 8-17 
Log-magnitude curve 

Relationship between System Type and Log-Magnitude Curve. Consider the 
unity-feedback control system. The static position, velocity, and acceleration error con- 
stants describe the low-frequency behavior of type 0, type 1, and type 2 systems, 
respectively. For a given system, only one of the static error constants is finite and 
significant. (The larger the value of the finite static error constant, the higher the loop 
gain is as w approaches zero.) 

The type of the system determines the slope of the log-magnitude curve at low 
frequencies. Thus, information concerning the existence and magnitude of the steady- 
state error of a control system to a given input can be determined from the observation 
of the low-frequency region of the log-magnitude curve. 

Determination of Static Position Error Constants. Consider the unity-feedback 
control system shown in Figure 8-16. Assume that the open-loop transfer function is 
given by 

K(T,jw + l ) (Tbjw + l).. .(T,jw + 1 )  
G ( j w )  = 

( j ~ ) ~ ( T , j w  + 1)(T2jw + l ) . . . ( T p j w  + 1 )  

Figure 8-17 shows an example of the log-magnitude plot of a type 0 system. In such a 
system, the magnitude of G ( j w )  equals K, at low frequencies, or 

l i m G ( j w )  = K = K, 
w-- to  

It follows that the low-frequency asymptote is a horizontal line at 20 log K, dB. 

20 log K" 

0 

of a type 0 system. I 
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Determination of Static Velocity Error Constants. Consider the unity-feedback 
control system shown in Figure 8-16. Figure 8-18 shows an example of the log-magnitude ' 

plot of a type 1 system. The intersection of the initial -20-dB/decade segment (or its 
extension) with the line o = 1 has the magnitude 20 log Kv.This may be seen as follows: 
In a type 1 system 

Thus, 

The intersection of the initial -20-dB/decade segment (or its extension) with the 0-dB 
line has a frequency numerically equal to K,. To see this, define the frequency at this 
intersection to be ol ; then 

As an example, consider the type 1 system with unity feedback whose open-loop 
transfer function is 

If we define the corner frequency to be w2 and the frequency at the intersection of the 
-40-dB/decade segment (or its extension) with 0-dB line to be w3,  then 

Figure 8-18 
Log-magnitude curve 
of a type 1 system. 
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Since 

it follows that 

or 

On the Bode diagram, 

log 0, - log w3 = log w3 - log 0 2  

Thus, the w, point is just midway between the w, and w, points.The damping ratio 5 of 
the system is then 

Determination of Static Acceleration Error Constants. Consider the unity- 
feedback control system shown in Figure 8-16. Figure 8-19 shows an example of the 
log-magnitude plot of a type 2 system. The intersection of the initial -40-dB/decade 
segment (or its extension) with the w = 1 line has the magnitude of 20 log K,. Since at 
low frequencies 

it follows that 

20 logl"l = 20 log K, 
( 1 ~ ) ~  o=l 

Figure 8-19 
Log-magnitude curve 
of a type 2 system. 

vl, 20 log K, 
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The frequency w,, at the intersection of the initial -40-dB/decade segment (or its 
extension) with the 0-dB line gives the square root of KO numerically. This can be seen 
from the following: 

which yields 

8-3 PLOTTING BODE DIAGRAMS WITH MATLAB 

The command bode computes magnitudes and phase angles of the frequency response 
of continuous-time, linear, time-invariant systems. 

When the command bode (without left-hand arguments) is entered in the 
computer, MATLAB produces a Bode plot on the screen. Most commonly used bode 
commands are 

When invoked with left-hand arguments, such as 

bode returns the frequency response of the system in matrices mag, phase, and w. No 
plot is drawn on the screen.The matrices mag and phase contain magnitudes and phase 
angles of the frequency response of the system, evaluated at user-specified frequency 
points.The phase angle is returned in degrees. The magnitude can be converted to deci- 
bels with the statement 

Other Bode commands with left-hand arguments are 

To specify the frequency range, use the command logspace(d1 ,d2) or logspace 
(dl ,d2,n). logspace(d1 ,d2) generates a vector of 50 points logarithmically equally spaced 
between decades 1 od' and 1 od2. (50 points include both endpoints. There are 48 points 
between the endpoints.) To generate 50 points between 0.1 rad/sec and 100 rad/sec. 
enter the command 

Chapter 8 / Frequency-Response Analysis 



logspace(dl1d2,n) generates n points logarithmically equally spaced between decades 
1 od' and 1 od2. (n points include both endpoints.) For example, to generate 100 points be- 
tween 1 rad/sec and 1000 rad/sec, enter the following command: 

w = logspace(0,3,100) 

To incorporate the user-specified frequency points when plotting Bode diagrams, 
the bode command must include the frequency vector w, such as bode(num,den,w) and 
[mag,phase,wl = bode(A,B,C, D,w). 

tnn,i~\PLE 8-5 Consider the following transfer function: 

G(s)  = 
25 

s2 + 4s + 25 

Plot a Bode diagram for this transfer function. 
When the system is defined in the form 

use the command bode(num,den) to draw the Bode diagram. [When the numerator and denom- 
inator contain the polynomial coefficients in descending powers of s, bode(num,den) draws the 
Bode diagram.] MATLAB Program 8-1 shows a program to plot the Bode diagram for this sys- 
tem. The resulting Bode diagram is shown in Figure 8-20. 

MATLAB Program 8-1 

num = [O 0 251; 
den = 11 4 251; 
bode(num,den) 
title('Bode Diagram of G(s) = 25/(sA2 + 4s + 25)') 

Figure 8-20 
Bode diagram of 

G(s)  = 
25 

sL + 4s + 25 

Bode Diagram of G(s) = 25/(s2 + 4s + 25)  

Frequency (radlsec) 
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EXAMPLE 8-6 Consider the system shown in Figure 8-21.The open-loop transfer function is 

9(s2 + 0.2s + 1) 
G(s )  = 

s(s2 + 1.2s + 9) 
Plot a bode diagram. 

MATLAB Program 8-2 plots a Bode diagram for the system. The resulting plot is shown in Fig- 
ure 8-22.The frequency range in this case is automatically determined to be from 0.01 to 10 radlsec. 

MATLAB Program 8-2 

num = [O 9 1.8 91; 
den = [I 1.2 9 01; 
bode(num,den) 
title('Bode Diagram of G(s) = 9(sA2 + 0.2s + 1 )/[s(sA2 + 1.2s + 911') 

If it is desired to plot the Bode diagram from 0.01 to 1000 rad/sec, enter the following command: 

w = logspace(-2,3,100) 

This command generates 100 points logarithmically equally spaced between 0.01 and 100 rad/sec. 
(Note that such a vector w specifies the frequencies in radians per second at which the frequency 
response will be calculated.) 

If we use the command 

Figure 8-21 
Control system. 

Bode Diagram of G(s) = 9(s2 + 0.2s + l)l[s(s2 + 1.2s + 9)] 

Figure 8-22 
Bode diagram of 

9(s2 + 0.2s + 1) 
G ( s )  = 

s(s2 + 1.2s + 9) ' 
. . 

Frequency (radtsec) 
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then the frequency range is as the user specified, but the magnitude range and phase-angle range 
will be automatically determined. See MATLAB Program 8-3 and the resulting plot in F'igure 8-23. 

To specify the magnitude range and phase-angle range, use the following command: 

The matrices mag and phase contain the magnitudes and phase angles of the frequency response 
evaluated at the user-specified frequency points. The phase angle is returned in degrees. The 
magnitude can be converted to decibels with the statement 

magdb = 20*log1 O(mag) 

I MATLAB Program 8-3 I 
num = [O 9 1.8 91; 
den = [ l  1.2 9 01; 
w = logspace(-2,3,100); 
bode(num,den,w) 
title('Bode Diagram of G(s) = 9(sA2 + 0.2s + 1 )/[s(sA2 + 1.2s + 9 ) ] ' )  

Figure 8~23 
Bode diagram of 

9(s2 + 0.2s + 1) 1 G(s)  = s(s2 + 1 . b  + 9 ) .  

If we wish to specify the magnitude range to be, for example, between -50 dB and +50 dB, then 
enter lines at -50 dB and +50 dB in the plot by specifying dBmax (maximum magnitude) and 
dBmin (minimum magnitude) as follows: 

dBmax = 50*ones(1, 1 00); 
dBmin = -5O*ones(1,100); 

Then enter the following semilog plot command: 

semilogx(w,magdB,'o',w,magdB,'-',w,dBmax,'--',w,dBmin,':'~ 
(Note that the number of dBmax points and that of dBmin points must be equal to the number 
of frequency points in w. In this example, all numbers are 100.) Then the screen will show the 
magnitude curve magdB with '0' marks. 

The range for the magnitude is normally a multiple of 5,10,20, or 50 dB. (There are excep- 
tions.) For the present case, the range for the magnitude will be from -50 dB to +50 dB. 

Bode Diagram o f  G(s) = 9(s2 + 0.2s + l)/[s(s2 + 1.2s + 9)] 
50 

Frequency (radlsec) 
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Figure 8-24 

For the phase angle, if we wish to specify the range to be, for example, between -150" and 
+150°, we enter lines at -150' and +150° in the program by specifying pmax (maximum phase 
angle) and pmin (minimum phase angle) as follows: 

pmax = 150*ones(l ,I 00); 
pmin = -1SO*ones(l ,I 00); 

Then enter the semilog plot command: 

semilogx(w,phase,'o',w, phase,'-',w,pmax,'--',w,pmin,':') 
(The number of pmax points and that of pmin points must be equal to the number of frequency 
points in w.) The screen will show the phase curve. 

The range for the phase angle is normally a multiple of 5", lo0 ,  50°, or 100". (There are 
exceptions.) For the present case, the range for the phase angle will be from -150" to +150°. 

MATLAB Program 8-4 produces the Bode diagram for the system such that the frequency 
range is from 0.01 to 1000 rad/sec, the magnitude range is from -50 to +50 dB (the magnitude range 
is a multiple of 50 dB), and the phase-angle range is from -150" to +150° (the phase-angle range is 
a multiple of 50"). Figure 8-24 shows the Bode diagram obtained by use of MATLAB Program 8-4. 

Bode Diagram o f  G(s) = 9(s2 + 0.2s +l)l[s(s2+ 1.2s +9)] 

Bode diagram of 
9(s2 + 0.2s + 1 )  

G ( s )  = 
s(s2 + 1.2s + 9)  ' 

10-1 100 1 0 '  1 02 1 o3 
Frequency (radlsec) 

Frequency (radlsec) 
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MATLAB Program 8-4 

% ---------- Bode diagram ---------- 

% ***** Enter the numerator and denominator of the transfer 
% function ***** 
num = [0 9 1.8 91; 
den = [ I  1.2 9 01; 

% ***** Specify the frequency range and enter the command 
% [mag,phase,wl = bode(num,den,w) ***** 

O/O Convert mag to decibels ***** 

% ***** Specify the range for magnitude. For the system 
% considered, the magnitude range should include -50 dB 
% and +50 dB. Enter dBmax and dBmin in the program and 
O/O draw dBmax line and dBmin line. To plot the magdB curve 
% enter the following dBmax, dBmin, and semilogx command ***** 
dBmax = 50*ones(1 ,I 00); 
dBmin = -5O*ones(I ,I 00); 
semilogx(w,magdB,'o',w,magdB,'-',w,dBmax,'-'dBmin,'-'~ 

% ***** Enter grid, title, xlabel, and ylabel ***** 
grid 
title('Bode Diagram of G(s) = 9(sA2+0.2s+1 )/[s(sA2+1 .2s+9)I1) 
xlabel('Frequency (radlsec)') 
ylabel('Gain dB') 

% ***** Next, we shall plot the phase angle curve ***** 
O/O ***** Specify the range for phase angle. For the system 
% considered, the phase angle range should include -1 50 degrees 
'10 and + I  50 degrees. Enter pmax and pmin in the program and 
O/O draw pmax line and pmin line. To plot the phase curve, enter 
% the following pmax, pmin, and semilog command ***** 
pmax = 150*ones(I ,I 00); 
pmin = -1 50*ones(1 , I  00); 
semilogx(w,phase,'o',w,phase,'-',w,pmax,'-',w,pmin,'-'~ 

% ***** Enter grid, xlabel, and ylabel ***** 
grid 
xlabel('Frequency (radlsec)') 
ylabel('Phase deg') 
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Obtaining Bode Diagrams of Systems Defined in State Space. Consider the 
system defined by 

where x = state vector (n-vector) 
y = output vector (m-vector) 
u = control vector (r-vector) 

A = state matrix (n X n matrix) 
B = control matrix (n X r matrix) 
C = output matrix (m X n matrix) 
D = direct transmission matrix (m X r matrix) 

A Bode diagram for this system may be obtained by entering the command 

or others listed at the beginning of this section. 
The command bode(A,B,C,D) produces a series of Bode plots, one for each input of 

the system, with the frequency range automatically determined. (More points are used 
when the response is changing rapidly.) 

The command bode(A,B,C,D,iu), where iu is the ith input of the system, produces 
the Bode diagrams from the input iu.to all the outputs (yl,y,,. .. , y,) of the system, 
with a frequency range automatically determined. (The scalar iu is an index into the in- 
puts of the system and specifies which input is to be used for plotting Bode diagrams). 
If the control vector u has three inputs such that 

then iu must be set to either 1,2, or 3. 
If the system has only one input u, then either of the following commands may be 

used: 

I EXAMPLE 8-7 Consider the following system: 

1 This system has one input u and one output y. By using the command 
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and entering MATLAB Program 8-5 into the computer, we obtain the Bode diagram shown 
in Figure 8-25. 

MATLAB Program 8-5 

I title('Bode Diagram') / 

I If we replace the command bode(A,B,C,D) in MATLAB Program 8-5 with 

then MATLAB will produce the Bode diagram identical to that shown in Figure 8-25. 

Bode Diagram 

Figure 8-25 
Bode dimgram of the 
system considered in 

I Example 8-7. Frequency (radlsec) 

8-4 PCILAR PLOTS 

The polar plot of a sinusoidal transfer function G ( j w )  is a plot of the magnitude of G ( j w )  
versus the phase angle of G ( j w )  on polar coordinates as w  is varied from zero to infin- 
ity.Thus, the polar plot is the locus of vectors l ~ ( j w ) I  / G ( j w )  as w  is varied from zero to 
infinity. Note that in polar plots a positive (negative) phase angle is measured counter- 
clockwise (clockwise) from the positive real axis.The polar plot is often called the Nyquist 
plot.An example of such a plot is shown in Figure 8-26. Each point on the polar plot of 
G ( j w )  represents the terminal point of a vector at a particular value of w.  In the polar 
plot, it is important to show the frequency graduation of the locus. The projections of 
G ( j w )  on the real and imaginary axes are its real and imaginary components. 
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Figure 8-26 
Polar plot. 

MATLAB may be used to obtain a polar plot G ( j w )  or to obtain ( ~ ( j w ) (  and / G ( j w )  
accurately for various values of w  in the frequency range of interest. (See Section 8-5.) 

An advantage in using a polar plot is that it depicts the frequency-response charac- 
teristics of a system over the entire frequency range in a single plot. One disadvantage 
is that the plot does not clearly indicate the contributions of each individual factor of the 
open-loop transfer function. 

Integral and Derivative Factors ( j ~ ) ~ ' .  The polar plot of G ( j o )  = l / j w  is the 
negative imaginary axis since 

The polar plot of G ( j w )  = jw is the positive imaginary axis. 

First-Order Factors ( 1  + juT)".  For the sinusoidal transfer function 

the values of G ( j w )  at w = 0 and w = 1/T are, respectively, 

G ( j 0 )  = 1 IO" and G  

If w  approaches infinity, the magnitude of G ( j w )  approaches zero and the phase angle 
approaches -90". The polar plot of this transfer function is a semicircle as the frequen- 
cy w  is varied from zero to infinity, as shown in Figure 8-27(a). The center is located at 
0.5 on the real axis, and the radius is equal to 0.5. 

To prove that the polar plot of the first-order factor G ( j w )  = 1/(1 + jwT)  is a semi- 
circle, define 

G ( j w )  = X + jY 
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Figure 8127 
(a) Polar plot of 
1/(1 + jwT); (b) plot 
of G(jw) in X-Y 
plane. (a) (b) 

where 

X = 
I 

= real part of Gfjw) 
1 + w2T2 

-wT 
Y = = imaginary part of G(jw) 

1  + w2T2 

Then we obtain 

-f& Re Thus, as shown in the in X-Y Figure plane 8-27(b). G(jw) The is a lower circle semicircle with center corresponds at X = $, Y to = 0  0  5 and w 5 with oo, radius and the $ , 
upper semicircle corresponds to -00 r o r 0. 

The polar plot of the transfer function 1 + jwT is simply the upper half of the straight 
Figure 8-28 line passing through point (1,O) in the complex plane and parallel to the imaginary axis, 
Polar plot of as shown in Figure 8-28. The polar plot of 1 + joT has an appearance completely 
1 + joT. different from that of 1/(1 + jwT). 

Quadratic Factors [ I  + 2<( jco /con)  + ( j ~ / c o , ) ~ ] ' ~ .  The low- and high-fre- 
quency portions of the polar plot of the following sinusoidal transfer function 

are given, respectively, by 

limG(jw) = 1/0" and lim G(jw) = 0/-180" 
w+O w + m  

The polar plot of this sinusoidal transfer function starts at 1  /0" and ends at 0/-180" as 
w increases from zero to infinity. Thus, the high-frequency portion of G(jw) is tangent 
to  the negative real axis. 
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Figure 8-29 
Polar plots of 

1 , , for 5 > 0. 
1 +2[  j- + j- ( WW.) ( :n) 

Examples of polar plots of the transfer function just considered are shown in Figure 
8-29. The exact shape of a polar plot depends on the value of the damping ratio 5, but 
the general shape of the plot is the same for both the underdamped case (1 > > 0 )  
and overdamped case ([ > 1 ) .  

For the underdamped case at w  = wn, we have G(jw,) = l / ( j 2 [ ) ,  and the phase 
angle at o = w, is -90". Therefore, it can be seen that the frequency at which the 
G ( j o )  locus intersects the imaginary axis is the undamped natural frequency on. In 
the polar plot, the frequency point whose distance from the origin is maximum cor- 
responds to the resonant frequency w,. The peak value of G ( j w )  is obtained as the 
ratio of the magnitude of the vector at the resonant frequency w, to the magnitude 
of the vector at w  = O.The resonant frequency w, is indicated in the polar plot shown 
in Figure 8-30. 

For the overdamped case, as 5 increases well beyond unity, the G ( j w )  locus 
approaches a semicircle. This may be seen from the fact that, for a heavily damped 
system, the characteristic roots are real and one is much smaller than the other. Since, 
for sufficiently large 5 ,  the effect of the larger root (larger in the absolute value) on the 
response becomes very small, the system behaves like a first-order one. 

Figure 8-30 
Polar plot showing 
the resonant peak 
and resonant 
frequency w,. 
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Figure 8-31 
Polar plot of 

Next, consider the following sinusoidal transfer function: 

The low-frequency portion of the curve is 

lim G ( j w )  = 1 /0" 
w - t o  

and the high-frequency portion is 

lim G ( j w )  = m /180" 
w-+OO 

Since the imaginary part of G ( j w )  is positive for w  > 0 and is monotonically increasing, 
and the real part of G ( j w )  is monotonically decreasing from unity, the general shape of 
the polar plot of G(jo) is as shown in Figure 8-31. The phase angle is between 0" and 
180". 

I EXAMPLE 8-8 Consider the following second-order transfer function: 

Sketch a polar plot of this transfer function. 
Since the sinusoidal transfer function can be written 

the low-frequency portion of the polar plot becomes 

lim G ( j w )  = -T - jca = ca /-90" 
w - t o  

and the high-frequency portion becomes 

lim G ( j w )  = 0 - jO = 01-180" 
0+00 
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Figure 8-32 
Polar plot of 
l/[jw(l + j w ~ ) ] .  

The general shape of the polar plot of G ( j w )  is shown in Figure 8-32. The G ( j w )  plot is asymp- 
totic to the vertical line passing through the point (-T, 0). Since this transfer function involves an 
integrator ( l / s ) ,  the general shape of the polar plot differs substantially from those of second-order 
transfer functions that do not have an integrator. 

EXAMPLE 8-9 

Figure 8-33 
Polar plot of 
e- jwL/ ( l  + jwT).  

Obtain the polar plot of the following transfer function: 

Since G ( j w )  can be written 

the magnitude and phase angle are, respectively, 

and 

Since the magnitude decreases from unity monotonically and the phase angle also decreases 
monotonically and indefinitely, the polar plot of the given transfer function is a spiral, as shown 
in Figure 8-33. 

- - - -- 

Chapter 8 / Frequency-Response Analysis 



General Shapes of Polar Plots. The polar plots of a transfer function of the form 

where n > m or the degree of the denominator polynomial is greater than that of the 
numerator, will have the following general shapes: 

1. For A = 0 or type 0 systems: The starting point of the polar plot (which corresponds 
to w  = 0) is finite and is on the positive real axis. The tangent to the polar plot at 
w  = 0 is perpendicular to the real axis. The terminal point, which corresponds to 
w  = co, is at the origin, and the curve is tangent to one of the axes. 

2. For A = 1 or type 1 systems: the jw term in the denominator contributes -90" to 
the total phase angle of G ( j w )  for 0 % w  5 co.At w  = 0, the magnitude of G ( j w )  
is infinity, and the phase angle becomes -90". At low frequencies, the polar plot is 
asymptotic to a line parallel to the negative imaginary axis. At w  = co, the magni- 
tude becomes zero, and the curve converges to the origin and is tangent to one of 
the axes. 

3. For A = 2 or type 2 systems: The (jw)' term in the denominator contributes -180" 
to the total phase angle of G ( j w )  for 0 5 w  5 co. At w  = 0, the magnitude of 
G ( j w )  is infinity, and the phase angle is equal to -180'. At low frequencies, the 
polar plot is asymptotic to a line parallel to the negative real axis. At w  = oo, the 
magnitude becomes zero, and the curve is tangent to one of the axes. I 

The general shapes of the low-frequency portions of the polar plots of type 0, type 
1, and type 2 systems are shown in Figure 8-34. It can be seen that, if the degree of the 
denominator polynomial of G ( j w )  is greater than that of the numerator, then the G ( j w )  

Figure 8-341 
Polar plots of type 0, 
type 1, and type 2 
systems. 

w = o  

+ 
Re 

2 
Type 0  system 
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Figure 8-35 
Polar plots in the 
high-frequency 
range. 

Figure 8-36 
Polar plots of 
transfer functions 
with numerator 
dynamics. 

loci converge to the origin clockwise. At w = co, the loci are tangent to one or the other 
axes, as shown in Figure 8-35. 

Note that any complicated shapes'in the polar plot curves are caused by the nu- 
merator dynamics, that is, by the time constants in the numerator of the transfer func- 
tion. Figure 8-36 shows examples of polar plots of transfer functions with numerator 
dynamics. In analyzing control systems, the polar plot of G( jo )  in the frequency range 
of interest must be accurately determined. 
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Table 8-1 Polar Plots of Simple Transfer Functions 

I 1 

Table 8-1 shows sketches of polar plots of several transfer functions. 

8-5 DRAWING NYQUIST PLOTS WITH MATLAB 

Nyquist plots, just like Bode diagrams, are commonly used in the frequency-response rep- 
resentation of linear, time-invariant, feedback control systems. Nyquist plots are polar 
plots, while Bode diagrams are rectangular plots. One plot or the other may be more 

Section 8-5 / Drawing Nyquist Plots with MATLAB 53 1 



convenient for a particular operation, but a given operation can always be carried out 
in either plot. 

The MATLAB command nyquist computes the frequency response for continuous- 
time, linear, time-invariant systems. When invoked without left-hand arguments, nyquist 
produces a Nyquist plot on the screen. 

The command 

draws the Nyquist plot of the transfer function 

where num and den contain the polynomial coefficients in descending powers of s. Other 
commonly used nyquist commands are 

The command involving the user-specified frequency vector w, such as 

calculates the frequency response at the specified frequency points in radians per 
second. 

When invoked with left-hand arguments such as 

MATLAB returns the frequency response of the system in the matrices re, im, and w. 
No plot is drawn on the screen. The matrices re and im contain the real and imaginary 
parts of the frequency response of the system, evaluated at the frequency points speci- 
fied in the vector w. Note that re and im have as many columns as outputs and one row 
for each element in w. 

/ EXAMPLE 8-1 0 Consider the following open-loop transfer function: 

Draw a Nyquist plot with MATLAB. 
Since the system is given in the form of the transfer function, the command 
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Figure 8-37 
Nyquist plot of 

G(s )  = 
1 

s2 + 0.8s + I ' 

Nyquist Plot of  G(s) = l/(s2 + 0.8s + 1) 

Real Axis 

may be used to draw a Nyquist plot. MATLAB Program 8-6 produces the Nyquist plot shown in Fig- 
ure 8-37. In this plot, the ranges for the real axis and imaginary axis are automatically determined. 

-- 

MATLAB Program 8-6 

num = [O 0 11; 
den = [ I  0.8 1  I ;  
nyquist(num,den) 
grid 
title('Nyquist Plot of G(s) = l/(sA2 + 0.8s + 1 ) I )  

If we wish to draw the Nyquist plot using manually determined ranges, for example, from -2 
to 2 on the real axis and from -2 to 2 on the imaginary axis, enter the following command into the 
computer: 

or, combining these two lines into one, 

See MATLAB Program 8-7 and the resulting Nyquist plot shown in Figure 8-38. 

MATLAB Program 8-7 

Ojo - - - -- - - - -- Nyquist plot ---------- 

num = 10 0 11; 
den = [I  0.8 I ] ;  
nyquist(num,den) 
v = [-2 2 -2 21; axis(v) 
grid 
title('Nyquist Plot of G(s) = l/(sA2 + 0.8s + I ) ' )  
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Figure 8-38 
Nyquist plot of 

Figure 8-39 
Erroneous Nyquist 
plot. 

Nyqulst Plot of G(s) = l/(s2 + 0.8s + 1 )  

Caution. In drawing a Nyquist plot, where a MATLAB operation involves "Divide 
by zero," the resulting Nyquist plot may be erroneous. For example, if the transfer func- 
tion G(s )  is given by 

1 
G(s )  = 

S ( S  + 1)  

2 

1.5 

1 

3 0 5 -  
4 

2 0 -  
5 
%Q 

E -05 - 
-1 

-1.5 

-2 

then the MATLAB command 
num= [O 0 11; 
den = [ I  1 01; 
nyquist(num,den) 

produces an erroneous Nyquist plot. An example of an erroneous Nyquist plot is shown 
in Figure 8-39. If such an erroneous Nyquist plot appears on the computer, then it can 
be corrected if we specify the axis(v). For example, if we enter the axis command 

v = [-2 2 -5 51; axis(v) 

in the computer, then a correct Nyquist plot can be obtained. See Example 8-11. 

- 

- 

- 

- 

- 

Nyqilist Diagram 

-2 -1 5 -1 -05 0 0 5  1 1.5 2 
Real AXIS 

Real Axis 
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EXAMPLE 8-1 1 

figure 8-40 
Nyquisit plot of 

Draw a Nyquist plot for the following G ( s ) :  

1 
G ( s )  = --- 

s(s  + 1)  

MATLAB Program 8-43 will produce a correct Nyquist plot on the computer, even though a warn- 
ing message "Divide by zero" may appear on the screen. The resulting Nyquist plot is shown in 
Figure 8-40. 

MATLAB Program 8-8 

% - - - - - - - - - - Nyquist plot---------- 

num = [O 0 I ] ;  
den = [ I  1  01; 
nyquist(num,den) 
v = [-2 2 -5 51; axis(v1 
grid 
title('Nyquist Plot of G(s) = l/[s(s + 111') 

Notice that the Nyquist plot shown in Figure 8-40 includes the loci for both w > 0 and w < 0. 
If we wish to draw the Nyquist plot for only the positive frequency region ( w  > 0), then we need 
to use the command 

A MATLAB program using this nyquist command is shown in MATLAB Program 8-9. The 
resulting Nyquist plot is presented in Figure 8-41. 

Nyquist Plot of G(s) = Il[s(s+l)] 

Real Axis 
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Figure 8-41 
Nyquist plot of 

1 
G ( s )  = ---- 

s ( s  + 1 )  
for w > 0. 

MATLAB Program 8-9 

y(, - - - - - - - - - - Nyquist plot---------- % 
num = [O 0 I ] ;  
den = I1 1 01; 
w = 0.1 :0.1 :I 00; 
[re,im,wl = nyquist(num,den,w); 
plot(re,im) 
v = I-2 2 -5 51; axis(v1 
grid 
title('Nyquist Plot of C(s) = l/(s(s + 111') 
xlabel('Real Axis') 
ylabel('1mag Axis') 

Drawing Nyquist Plots of a System Defined in State Space. Consider the 
system defined by 

i = Ax + Bu 
y = Cx + Du 

where x = state vector (n-vector) 
y = output vector (m-vector) 
u = control vector (r-vector) 
A = state matrix (n X n matrix) 
B = control matrix (n X r matrix) 
C = output matrix (m X n matrix) 
D = direct transmission matrix (m x r matrix) 

Nyquist plots for this system may be obtained by the use of the command 

nyquist(A, B,C,D) 
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This command produces a series of Nyquist plots, one for each input and output com- 
bination of the system.The frequency range is automatically determined. 

The command 

produces Nyquist plots from the single input iu to all the outputs of the system, with 
the frequency range determined automatically.The scalar iu is an index into the inputs 
of the system and specifies which input to use for the frequency response. 

The command 

uses the user-supplied frequency vector w. The vector w specifies the frequencies in 
radians per second at which the frequency response should be calcuhted. 

1 EXAMPLE 8-1 2 Consider the system defined by 

Draw a Nyquist plot. 
This system has a single input u and a single output y. A Nyquist plot may be obtained by 

entering the command 

MATLAB Program 8-10 will provide the Nyquist plot. (Note that we obtain the identical result 
by using either of these two commands.) Figure 8-42 shows the Nyquist plot produced by MAT- 
LAB Program 8-10. 

MATLAB Program 8-1 0 

A = [O 1;-25 -41; 
B = [0;251; 
C = [ I  01; 
D = [OI; 
nyquist(A,B,C,D) 
grid 
title('Nyquist Plot') 
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Figure 8-42 
Nyquist plot of 
system considered in 
Example 8-12. 

EXAMPLE 8-1 3 Consider the system defined by 

Real Axis 

. This system involves two inputs and two outputs. There are four sinusoidal output-input re- 
lationships: Y , ( j w ) / D ; ( j o ) ,  Y , ( jo) /U,( jcd) ,  Y , ( jw)/U,( jw) ,  and Y,( jw)/U2(jw) .  Draw Nyquist 
plots for the system. (When considering input u , ,  we assume that input u2 is zero, and vice 
versa.) 

The four individual Nyquist plots can be obtained by the use of the command 

MATLAB Program 8-11 produces the four Nyquist plots. They are shown in Figure 8-43. 

- 

MATLXB Program 8-1 1 

A = [-I -1;6.5 01; 
B = [ I  1;l 01; 
C =  [ I  0;o I ] ;  
D = [O 0;o 01; 
nyquist(A,B,C,D) 
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I Nyquist Diagrams 

Figure 8-43 
Nyquist plot of 
system considered in 
Example 8-13. 
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8-6 LCIG-MAGNITUDE-VERSUS-PHASE PLOTS 

Another approach to graphically portraying the frequency-response characteristics is to 
use the log-magnitude-versus-phase plot, which is a plot of the logarithmic magnitude 
in decibels versus the phase angle or phase margin for a frequency range of interest. 
[The phase margin is the difference between the actual phase angle r$ and -180"; that 
is, 4 - (-180") = 180" + 4.1 The curve is graduated in terms of the frequency w. Such 
log-magnitude-versus-phase plots are commonly called Nichols plots. 

In the Bode diagram, the frequency-response characteristics of G(jw)  are shown on 
semilog paper by two separate curves, the log-magnitude curve and the phase-angle 
curve, while in the log-magnitude-versus-phase plot, the two curves in the Bode dia- 
gram are combined into one. In the manual approach the log-magnitude-versus-phase 
plot can easily be constructed by reading values of the log magnitude and phase angle 
from the Bode diagram. Notice that in the log-magnitude-versus-phase plot a change in 
the gain constant of G( jw)  merely shifts the curve up (for increasing gain) or down (for 
decreasing gain), but the shape of the curve remains the same. 

Advantages of the log-magnitude-versus-phase plot are that the relative stability of 
the closed-loop system can be determined quickly and that compensation can be worked 
out easily. 

The log-magnitude-versus-phase plot for the sinusoidal transfer function G(jw) and 
that for l /G( jw)  are skew symmetrical about the origin since 
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W 

(a) 

Figure 8-44 

Three representations of the frequency response of 
1 , , for 5 > 0. 

(a) Bode diagram; (b) polar plot; (c) log-magnitude-versus-phase plot. 

and 

/& = - / G ( j w )  

Figure 8-44 compares frequency-response curves of 

in three different representations. In the log-magnitude-versus-phase plot, the vertical 
distance between the points o = 0 and w  = or, where w, is the resonant frequency, is the 
peak value of G ( j w )  in decibels. 

Since log-magnitude and phase-angle characteristics of basic transfer functions have 
been discussed in detail in Sections 8-2 and 8-3, it will be sufficient here to give exam- 
ples of some log-magnitude-versus-phase plots. Table 8-2 shows such examples. (How- 
ever, more on Nichols charts will be discussed in Section 8-10.) 

8-7 NYQUIST STABILITY CRITERION 

The Nyquist stability criterion determines the stability of a closed-loop system from its 
open-loop frequency response and open-loop poles. 

This section presents mathematical background for understanding the Nyquist sta- 
bility criterion. Consider the closed-loop system shown in Figure 8-45. The closed-loop 
transfer function is 
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Table 8-2 Log-Magnitude-versus-Phase Plots of Simple Transfer Functions 

Figure 8-45 
Closed-loop system. 
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For stability, all roots of the characteristic equation 

1 + G ( s ) H ( s )  = 0 

must lie in the left-half s  plane. [It is noted that, although poles and zeros of the open- 
loop transfer function G ( s ) H ( s )  may be in the right-half s plane, the system is stable if 
all the poles of the closed-loop transfer function (that is, the roots of the characteristic 
equation) are in the left-half s  plane.] The Nyquist stability criterion relates the open- 
loop frequency response G( jw)  H ( jw)  to the number of zeros and poles of 1 + G ( s )  H ( s )  
that lie in the right-half s  plane. This criterion, derived by H. Nyquist, is useful in con- 
trol engineering because the absolute stability of the closed-loop system can be deter- 
mined graphically from open-loop frequency-response curves, and there is no need for 
actually determining the closed-loop poles. Analytically obtained open-loop frequency- 
response curves, as well as those experimentally obtained, can be used for the stability 
analysis. This is convenient because, in designing a control system, it often happens that 
mathematical expressions for some of the components are not known; only their 
frequency-response data are available. 

The Nyquist stability criterion is based on a theorem from the theory of complex 
variables.To understand the criterion, we shall first discuss mappings of contours in the 
complex plane. 

We shall assume that the open-loop transfer function G ( s ) H ( s )  is representable as 
a ratio of polynomials in s. For a physically realizable system, the degree of the denom- 
inator polynomial of the closed-loop transfer function must be greater than or equal to 
that of the numerator polynomial.This means that the limit of G ( s )  H ( s )  as s  approaches 
infinity is zero or a constant for any physically realizable system. 

Preliminary Study. The characteristic equation of the system shown in Figure 
8-45 is 

We shall show that, for a given continuous closed path in the s plane that does not go 
through any singular points, there corresponds a closed curve in the F ( s )  plane. The 
number and direction of encirclements of the origin of the F ( s )  plane by the closed 
curve play a particularly important role in what follows, for later we shall correlate the 
number and direction of encirclements with the stability of the system. 

Consider, for example, the following open-loop transfer function: 

The characteristic equation is 
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Figure 8-44 
Conformal mapping of the 
s-plane grids into the F ( s )  
plane, where 
F(s) = (s + l)/(s - 1). 

The function F ( s )  is analytic everywhere in the s  plane except at its singular points. For 
each point of analyticity in the s  plane, there corresponds a point in the F ( s )  plane. For 
example, if s  = 2 + j l ,  then F ( s )  becomes 

2 + j l + l  
F(2  + j l )  = = 2 - j l  

2 + j l - 1  

Thus, point s  = 2 + jl in the s plane maps into point 2 - j l  in the F ( s )  plane. 
Thus, as stated previously, for a given continuous closed path in the s  plane, which 

does not go through any singular points, there corresponds a closed curve in the F ( s )  
plane. 

For the characteristic equation F ( s )  given by Equation (8-15), the conformal map- 
ping of the lines w = 0, f 1, f 2 and the lines a = 0, f 1, f 2 [see Figure 8-46(a)] yield cir- 
cles in the F ( s )  plane, as shown in Figure 8-46(b). Suppose that representative point s  
traces out a contour in the s  plane in the clockwise direction. If the contour in the s  
plane encloses the pole of F ( s ) ,  there is one encirclement of the origin of the F ( s )  plane 
by the locus of F ( s )  in the counterclockwise direction. [See Figure 8-47(a).] If the con- 
tour in the s plane encloses the zero of F ( s ) ,  there is one encirclement of the origin of 
the F ( s )  plane by the locus of F ( s )  in the clockwise direction. [See Figure &47(b).] If 
the contour in the s  plane encloses both the zero and the pole or if the contour enclos- 
es neither the zero nor the pole, then there is no encirclement of the origin of the F ( s )  
plane by the locus of F(s ) .  [See Figures 8-47(c) and (d).] 

From the foregoing analysis, we can say that the direction of encirclement of the ori- 
gin of the F ( s )  plane by the locus of F ( s )  depends on whether the contour in the s  plane 
encloses a pole or a zero. Note that the location of a pole or zero in the s  plane, whether 
in the right-half or left-half s  does not make any difference, but the enclosure of 
a pole or zero does. If the contour in the s  plane encloses equal numbers of poles and 
zeros, then the corresponding closed curve in the F ( s )  plane does not encircle the ori- 
gin of the F ( s )  plane.The foregoing discussion is a graphical explanation of the mapping 
theorem, which is the basis for the Nyquist stability criterion. 

j- t s Plane 
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J> \ s Plane 

Figure 8-47 
Closed contours in the s  
plane and their 
corresponding closed curves 
in the F ( s )  plane, where 
F ( s )  = (s + l ) / ( s  - 1). 

Mapping Theorem. Let F(s )  be a ratio of two polynomials in s. Let P be the num- 
ber of poles and Z be the number of zeros of F ( s )  that lie inside some closed contour in 
the s plane, with multiplicity of poles and zeros accounted for. Let the contour be such 
that it does not pass through any poles or zeros of F(s).This closed contour in the s plane 
is then mapped into the F(s)  plane as a closed curve. The total number N of clockwise 
encirclements of the origin of the F ( s )  plane, as a representative point s traces out the 
entire contour in the clockwise direction, is equal to Z - P. (Note that by this mapping 
theorem, the numbers of zeros and of poles cannot be found-only their difference.) 
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Figure 8-48 
Closed contour in 
the s plane. 

We shall not present a formal proof of this theorem here, but leave the proof to 
Problem A-8-6. Note that a positive number N indicates an excess of zeros over poles " 

of the function F ( s )  and a negative N indicates an excess of poles over zeros. In control 
system applications, the number P can be readily determined for F ( s )  = 1 + G ( s ) H ( s )  
from the function G ( s ) H ( s ) .  Therefore, if N is determined from the plot of F ( s ) ,  the 
number of zeros in the closed contour in the s  plane can be determined readily. Note that 
the exact shapes of the s-plane contour and F ( s )  locus are immaterial so far as encir- 
clements of the origin are concerned, since encirclements depend only on the enclosure 
of poles andlor zeros of F ( s )  by the s-plane contour. 

Application of the Mapping Theorem to the Stability Analysis of Closed-Loop 
Systems. For analyzing the stability of linear control systems, we let the closed con- 
tour in the s plane enclose the entire right-half s  plane. The contour consists of the en- 
tire jw axis from w = -co to +co and a semicircular path of infinite radius in the 
right-half s  plane. Such a contour is called the Nyquist path. (The direction of the path 
is clockwise.) The Nyquist path encloses the entire right-half s  plane and encloses all 
the zeros and poles of 1 + G ( s ) H ( s )  that have positive real parts. [If there are no zeros 
of 1 + G ( s ) H ( s )  in the right-half s  plane, then there are no closed-loop poles there, 
and the system is stable.] It is necessary that the closed contour, or the Nyquist path, not 
pass through any zeros and poles of 1 + G ( s ) H ( s ) .  If G ( s ) H ( s )  has a pole or poles at 
the origin of the s plane, mapping of the point s  = 0 becomes indeterminate. In such 
cases, the origin is avoided by taking a detour around it. (A detailed discussion of this 
special case is given later.) 

If the mapping theorem is applied to the special case in which F ( s )  is equal to 
1 + G ( s ) H ( s ) ,  then we can make the following statement: If the closed contour in the 
s  plane encloses the entire right-half s  plane, as shown in Figure 8-48, then the num- 
ber of right-half plane zeros of the function F ( s )  = 1 + G ( s ) H ( s )  is equal to the num- 
ber of poles of the function F ( s )  = 1 + G ( s ) H ( s )  in the right-half s  plane plus the 
number of clockwise encirclements of the origin of the 1 + G ( s ) H ( s )  plane by the 
corresponding closed curve in this latter plane. 

Because of the assumed condition that 

lim [1 + G ( s ) H ( ~ ) ]  = constant 
S +w 

the function of 1 + G ( s )  H ( s )  remains constant as s  traverses the semicircle of infinite 
radius. Because of this, whether the locus of 1 + G ( s ) H ( s )  encircles the origin of the 
1 + G ( s ) H ( s )  plane can be determined by considering only a part of the closed contour 
in the s  plane, that is, the jw axis. Encirclements of the origin, if there are any, occur only 

j w  A 
s Plane 

F 
0 u 
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Figure 8-49 
Plots of 
1 + G ( j o ) H ( j o )  in 
the 1 + G H  plane 
and G H  plane. 

while a representative point moves from -jco to +jco along the jw axis, provided that no 
zeros or poles lie on the jw axis. 

Note that the portion of the 1 + G ( s ) H ( s )  contour from w  = -ca to o = cx, is sim- 
ply 1 + G ( j w ) H ( j w ) .  Since 1 + G ( j w ) H ( j w )  is the vector sum of the unit vector and 
the vector G ( j w )  H ( j w ) ,  1 + G ( j w )  H  ( j w )  is identical to the vector drawn from the 
-1 + jO point to the terminal point of the vector G ( j w ) H ( j w ) ,  as shown in Figure 8-49. 
Encirclement of the origin by the graph of 1 + G ( j w ) H ( j w )  is equivalent to encir- 
clement of the -1 + jO point by just the G ( j w ) H ( j w )  locus.Thus, the stability of a closed- 
loop system can be investigated by examining encirclements of the -1 + jO point by 
the locus of G ( j w ) H ( j w ) . T h e  number of clockwise encirclements of the -1 + jO point 
can be found by drawing a vector from the -1 + jO point to the G ( j w ) H ( j o )  locus, 
starting from w  = - a ,  going through w  = 0 ,  and ending at w  = +co, and by counting 
the number of clockwise rotations of the vector. 

Plotting G ( j w ) H ( j w )  for the Nyquist path is straightforward.The map of the nega- 
tive jw axis is the mirror image about the real axis of the map of the positive jw axis.That 
is, the plot of G ( j w ) H ( j w )  and the plot of G(- jw)H(- jw)  are symmetrical with each 
other about the real axis. T h e  semicircle with infinite radius maps into either the origin 
of the G H  plane or a point on the real axis of the G H  plane. 

In the preceding discussion, G ( s ) H ( s )  has been assumed to be the ratio of two poly- 
nomials in s. Thus, the transport lag e-Ts has been excluded from the discussion. Note, 
however, that a similar discussion applies to systems with transport lag, although a proof 
of this is not given here. The stability of a system with transport lag can be determined 
from the open-loop frequency-response curves by examining the number of encir- 
clements of the -1 + jO point, just as in the case of a system whose open-loop transfer 
function is a ratio of two polynomials in s. 

Nyquist Stability Criterion. T h e  foregoing analysis, utilizing the encirclement of 
the -1 + jO point by the G ( j o ) H ( j w )  locus, is summarized in the following Nyquist 
stability criterion: 

Nyquist stability criterion [ for  a  special case when G ( s ) H ( s )  has neither poles nor 
zeros on  the jw axis.]: In the system shown in Figure 8-45, if the open-loop transfer func- 
tion G ( s ) H ( s )  has k poles in the right-half s  plane and S-+w lim G ( s ) H ( s )  = constant, 
then for stability, the G ( j w )  H ( j w )  locus, as w  varies from -co to co, must encircle the 
-1 + jO point k times in the counterclockwise direction. 
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Remarks on the Nyquist Stability Criterion 

1. This criterion can be expressed as 

where Z = number of zeros of 1 + G ( s ) H ( s )  in the right-half s  plane 
N = number of clockwise encirclements of the -1 + j0 point 
P = number of poles of G ( s ) H  ( s )  in the right-half s  plane 

If P is not zero, for a stable control system, we must have Z = 0,  or N = -P, which 
means that we must have P counterclockwise encirclements of the -1 + jO point. 

If G ( s ) H ( s )  does not have any poles in the right-half s  plane, then Z = N. 
Thus, for stability there must be no encirclement of the -1 + jO point by the 
G ( j w ) H ( j w )  locus. In this case it is not necessary to consider the locus for the en- 
tire jw axis, only for the positive-frequency portion. The stability of such a system 
can be determined by seeing if the -1 + jO point is enclosed by the Nyquist plot 
of G(jw)H( jw) .The  region enclosed by the Nyquist plot is shown in Figure 8-50. 
For stability, the -1 + jO point must lie outside the shaded region. 

2. We must be careful when testing the stability of multiple-loop systems since they 
may include poles in the right-half s  plane. (Note that although an inner loop may 
be unstable, the entire closed-loop system can be made stable by proper design.) 
Simple inspection of encirclements of the -1 + jO point by the G( jw)H( jw)  locus 
is not sufficient to detect instability in multiple-loop systems. In such cases, howev- 
er, whether any pole of 1 + G ( s )  H ( s )  is in the right-half s  plane can be determined 
easily by applying the Routh stability criterion to the denominator of G ( s ) H ( s ) .  

If transcendental functions, such as transport lag eWT" are included in G ( s )  H ( s ) ,  
they must be approximated by a series expansion before the Routh stability cri- 
terion can be applied. A few forms of series expansion of e-T%ere presented in 
Section 6-7. 

3. If the locus of G ( j w ) H ( j w )  passes through the -1 + jO point, then zeros of the 
characteristic equation, or closed-loop poles, are located on the jw axis. This is not 
desirable for practical control systems. For a well-designed closed-loop system, 
none of the roots of the characteristic equation should lie on the jw axis. 

Special Case when G(s)H(s) Involves Poles and/or Zeros on the jw Axis. In 
the previous discussion, we assumed that the open-loop transfer function G ( s )  H ( s )  has 

I GH Plane 

Figure 8-50 
Region enclosed by a 
Nyquist plot. 
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The points corresponding to s  = jO+ and s  = jO- on the locus of G ( s ) H ( s )  in the 
G ( s ) H ( s )  plane are -joo and joo, respectively. On the semicircular path with radius E 

(where E < I), the complex variable s  can be written 

where 0 varies from -90" to +90°. Then G ( s ) H ( s )  becomes 

j" I s Plane 

Figure 8-51 
Contour near the 
origin of the s plane 
and closed contour in 
the s plane avoiding 
poles and zeros at 

neither poles nor zeros at the origin. We now consider the case where G ( s ) H ( s )  involves 
poles andlor zeros on the jw axis. 

Since the Nyquist path must not pass through poles or zeros of G ( s ) H ( s ) ,  if the func- 
tion G ( s ) H ( s )  has poles or zeros at the origin (or on the jw axis at points other than the 
origin), the contour in the s  plane must be modified. The usual way of modifying the 
contour near the origin is to use a semicircle with the infinitesimal radius E, as shown in 
Figure 8-51. [Note that this semicircle may lie in the right-half s  plane or in the left-half 
s  plane. Here we take the semicircle in the right-half s pIane.1 A representative point s  
moves along the negative jw axis from -jcc to jO-. From s = jO- to s  = jO+, the point 
moves along the semicircle of radius E (where r <. 1) and then moves along the posi- 
tive jw axis from jO+ to joo. From s  = joo, the contour follows a semicircle with infinite 
radius, and the representative point moves back to the starting point, s  = -jco.The area 
that the modified closed contour avoids is very small and approaches zero as the radius 
E approaches zero. Therefore, all the poles and zeros, if any, in the right-half s plane are 
enclosed bjr this contour. 

Consider, for example, a closed-loop system whose open-loop transfer function is 
given by 

the origin. I 
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Figure 8-52 
s-Plane contour and the 
G(s) H(s) locus in the CH 
olane. where 

The value K/E approaches infinity as E approaches zero, and -0 varies from 90" to -90" 
as a representative point s  moves along the semicircle in the s  plane. Thus, the points 
G(j0-)H(jO-) = jm and G(jO+)H(jO+) = -jm are joined by a semicircle of infinite 
radius in the right-half G H  plane. The infinitesimal semicircular detour around the ori- 
gin in the s  plane maps into the G H  plane as a semicircle of infinite radius. Figure 8-52 
shows the s-plane contour and the G ( s ) H ( s )  locus in the G H  plane. Points A, B, and 
C on the s-plane contour map into the respective points A', B', and C' on the G ( s ) H ( s )  
1ocus.A~ seen from Figure 8-52, points D, E,  and F on the semicircle of infinite radius 
in the s plane map into the origin of the G H  plane. Since there is no pole in the right- 
half s  plane and the G ( s ) H ( s )  locus does not encircle the -1 + jO point, there are no 
zeros of the function 1  + G ( s ) H ( s )  in the right-half s  plane. Therefore, the system is 
stable. 

For an open-loop transfer function G ( s ) H ( s )  involving a 11s" factor (where 
n = 2,3,. . . ), the plot of G ( s ) H ( s )  has n clockwise semicircles of infinite radius about 
the origin as a representative point s  moves along the semicircle of radius E (where 
E < 1) .  For example, consider the following open-loop transfer function: 

Then 

K - - K e-zjo lim G ( s ) H ( s )  = - 
s+EL'I" 

As 8 varies from -90" to 90' in the s  plane, the angle of G ( s ) H ( s )  varies from 180" to 
-180°, as shown in Figure 8-53. Since there is no pole in the right-half s plane and the 
locus encircles the -1 + jO point twice clockwise for any positive value of K, there are 
two zeros of 1 + G ( s ) H ( s )  in the right-half s  plane. Therefore, this system is always 
unstable. 

b ( s ) ~ ( s )  = K / [ S ( T S  + I)]. 
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Figure 8-53 
s-Plane contour and the 
C ( s ) H ( s )  locus in the GH 
plane, where 
G ( S ) H ( S )  = K / [ S ~ ( T S  + I)] .  

Note that a similar analysis can be made if G ( s ) H ( s )  involves poles and/or zeros on 
the jw axis. The Nyquist stability criterion can now be generalized as follows: 

Nyquist stability criterion Cfor a  general case when G ( s ) H ( s )  has poles and/or zeros 
on the jw axis.]: In the system shown in Figure 8-45, if the open-loop transfer func- 
tion G ( s ) H ( s )  has k poles in the right-half s  plane, then for stability the G ( s ) H ( s )  
locus, as a representative point s  traces on the modified Nyquist path in the clockwise 
direction, must encircle the -1 + jO point k times in the counterclockwise direction. 

8-8 STABILITY ANALYSIS 

In this section, we shall present several illustrative examples of the stability analysis of 
control systems using the Nyquist stability criterion. 

If the Nyquist path in the s  plane encircles Z zeros and P poles of 1 + G ( s )  H ( s )  and 
does not pass through any poles or zeros of 1 + G ( s ) H ( s )  as a representative point s  
moves in the clockwise direction along the Nyquist path, then the corresponding con- 
tour in the G ( s )  H  ( s )  plane encircles the -1 + jO point N = Z - P times in the clock- 
wise direction. (Negative values of N imply counterclockwise encirclements.) 

In examining the stability of linear control systems using the Nyquist stability crite- 
rion, we see that three possibilities can occur: 

1. There is no encirclement of the -1 + jO point. This implies that the system is sta- 
ble if there are no poles of G ( s ) H ( s )  in the right-half s  plane; otherwise, the sys- 
tem is unstable. 

2. There are one or more counterclockwise encirclements of the -1 + jO point. In this 
case the system is stable if the number of counterclockwise encirclements is the 
same as the number of poles of G ( s )  H ( s )  in the right-half s  plane; otherwise, the 
system is unstable. 

3. There are one or more clockwise encirclements of the -1 + jO point. In this case 
the system is unstable. 

In the following examples, we assume that the values of the gain K and the time con- 
stants (such as T, TI, and T,) are all positive. 
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I EXAMPLE 8-14 Consider a closed-loop system whose open-loop transfer function is given by 

Figure 11-54 
Polar plot of 
G ( j w ) f f ( j w )  
considered in 
Example 8-14. 

Examine the stability of the system. 
A plot of G ( j w ) H ( j w )  is shown in Figure 8-54. Since G ( s ) H ( s )  does not have any poles in 

the right-half s plane and the -1 + jO point is not encircled by the G ( j w )  H ( j w )  locus, this system 
is stable for any positive values of K, T, ,  and T,. 

I EXAMPLE 8-1 5 Consider the system with the following open-loop transfer function: 

Im 

Determine the stability of the system for two cases: (1) the gain K is small and (2) K is large. 
The Nyquist plots of the open-loop transfer function with a small value of K and a large value 

of K are shown in Figure 8-%.The number of poles of G ( s ) H ( s )  in the right-half s  plane is zero. 
Therefore, for this system to be stable, it is necessary that N = Z = 0 or that the G ( s ) H ( s )  locus 
not encircle the -1 + jO point. 

,k 
GH Plane 

Figure 8-55 
Polar plots of the 
systea considered in 
Example 8-15. Small K 

" 
- 1 

GO'o) HO'w) 

Im t GH Plane 

Large K 
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For small values of K,  there is no encirclement of the -1 + j O  point. Hence, the system is sta- 
ble for small values of K. For large values of K, the locus of G ( s ) H ( s )  encircles the -1 + j O  point 
twice in the clockwise direction, indicating two closed-loop poles in the right-half s  plane, and the 
system is unstable. (For good accuracy, K,should be large. From the stability viewpoint, however, 
a large value of K causes poor stability or even instability.To compromise between accuracy and 
stability, it is necessary to insert a compensation network into the system. Compensating tech- 
niques in the frequency domain are discussed in Chapter 9.) 

EXAMPLE 8-1 6 The stability of a closed-loop system with the following open-loop transfer function 

depends on the relative magnitudes of TL and T,. Draw Nyquist plots and determine the stability 
of the system. 

Plots of the locus G ( s ) H ( s )  for three cases, TI < T2, TI = T2, and TI > T2, are shown in Fig- 
ure 8-56. For TI < T2, the locus of G ( s )  H ( s )  does not encircle the -1 + j O  point, and the closed- 
loop system is stable. For T, = T2, the G ( s ) H ( s )  locus passes through the -1 + j O  point, which 
indicates that the closed-loop poles are located on the j w  axis. For T, > T2, the locus of G ( s ) H ( s )  
encircles the -1 + j O  point twice in the clockwise direction.Thus, the closed-loop system has two 
closed-loop poles in the right-half s  plane, and the system is unstable. 

EXAMPLE 8-1 7 Consider the closed-loop system having the following open-loop transfer function: 

Determine the stability of the system. 
The function G ( s ) H ( s )  has one pole ( s  = 1 / T )  in the right-half s  plane.Therefore, P = 1.The 

Nyquist plot shown in Figure 8-57 indicates that the G ( s ) H ( s )  plot encircles the -1 + j O  point 
once clockwise. Thus, N = 1. Since Z = N + P, we find that Z = 2. This means that the closed- 
loop system has two closed-loop poles in the right-half s plane and is unstable. 

EXAMPLE 8-1 8 Investigate the stability of a closed-loop system with the following open-loop transfer function: 

Figure 8-56 
Polar plots of the 
system considered in 
Example 8-16. 

T I  < 7-2 T I  = T2 Ti > T2 
(Stable) GfJw) HCjo) locus (Unstable) 

passes through the 
-I + j0 point 
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Figure 8-57 
Polar plot of the 
system considered in 
Examplle 8-17. 

Figure 8-58 
Polar plot of the ' system considered in 
Example 8-18. 

Irn f GH Plane 

The open-loop transfer function has one pole ( s  = 1) in the right-half s plane, or P = 1.The 
open-loop system is unstable. The Nyquist plot shown in Figure 8-58 indicates that the -1 + jO  
point is encircled by the G ( s ) H ( s )  locus once in the counterclockwise direction. Therefore, 
N = -1. Thus, Z is found from Z = N + P to be zero, which indicates that there is no zero of 
1 -t G ( s ) H ( s )  in the right-half s  plane, and the closed-loop system is stable. This is one of the 
examples for which an unstable open-loop system becomes stable when the loop is closed. 

Conditionally Stable Systems. Figure 8-59 shows an example of a G ( j w ) H ( j w )  
locus for which the closed-loop system can be made unstable by varying the open-loop 
gain. If the open-loop gain is increased sufficiently, the G ( j w ) H ( j w )  locus encloses the 
-1 + jO point twice, and the system becomes unstable. If the open-loop gain is decreased 
sufficiently, again the G ( j w ) H ( j w )  locus encloses the -1 + jO point twice. For stable 
operation of the system considered here, the critical point -1 f jO must not be located 
in the regions between OA and BC shown in Figure 8-59. Such a system that is stable 
only for limited ranges of values of the open-loop gain for which the -1 + jO point is 
completely outside the G ( j w ) H  ( j w )  locus is a conditionally stable system. 
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Figure 8-59 
Polar plot of a 
conditionally stable 
system. 

A conditionally stable system is stable for the value of the open-loop gain lying be- 
tween critical values, but it is unstable if the open-loop gain is either increased or de- 
creased sufficiently. Such a system becomes unstable when large input signals are applied, 
since a large signal may cause saturation, which in turn reduces the open-loop gain of 
the system. It is advisable to avoid such a situation. 

Multiple-Loop System. Consider the system shown in Figure 8-60.This is a mul- 
tiple-loop system.The inner loop has the transfer function 

If G(s) is unstable, the effects of instability are to produce a pole or poles in the right- 
half s plane. Then the characteristic equation of the inner loop, 1 + Gz(s)H2(s) = 0, 
has a zero or zeros in the right-half s plane. If Gz(s) and H2(s) have P, poles here, then 
the number 2, of right-half plane zeros of 1 i- G,(s)H2(s) can be found from 
2, = N, + PI ,  where N,  is the number of clockwise encirclements of the -1 + j O  point 
by the G2(s)H2(s) locus. Since the open-loop transfer function of the entire system is 
given by Gl(s)G(s)Hl(s), the stability of this closed-loop system can be found from the 
Nyquist plot of G,(s)G(s)H,(s) and knowledge of the right-half plane poles of 
G, (s)G(s)H,(s). 

Figure 8-60 
Multiple-loop 
system. 
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Notice that if a feedback loop is eliminated by means of block diagram reductions, 
there is a possibility that unstable poles are introduced; if the feedforward branch is 
eliminated by means of block diagram reductions, there is a possibility that right-half 
plane zeros are introduced.Therefore, we must note all right-half plane poles and zeros 
as they appear from subsidiary loop reductions. This knowledge is necessary in deter- 
mining the stability of multiple-loop systems. 

EXAMPLE 8-1 9 Consider the control system shown in Figure 8-61.The system involves two loops. Determine the 
range of gain K for stability of the system by the use of the Nyquist stability criterion. (The gain 
K is positive.) 

To examine the stability of the control system, we need to sketch the Nyquist locus of G(s) ,  
where 

However, the poles of G(s)  are not known at this point.Therefore, we need to examine the minor 
loop if there are right-half s-plane poles. This can be done easily by use of the Routh stability 
criterion. Since 

I the Routh array becomes as follows: 

Figure 8-61 
Control system. 

Notice that there are two sign changes in the first column. Hence, there are two poles of G2(s) in 
the right-half s plane. 

Once we find the number of right-half s plane poles of G2(s), we proceed to sketch the Nyquist 
locus of G(s), where 

- 
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Our problem is to determine the range of the gain K for stability. Hence, instead of plotting 
Nyquist loci of G(jw) for various values of.K, we plot the Nyquist locus of G(jo)/K. Figure 8-62 
shows the Nyquist plot or polar plot of G(jw)/K. 

Since G(s) has two poles in the right-half s plane, we have P = 2. Noting that 

for stability, we require Z = O or N = -2. That is, the Nyquist locus of G(jw) must encircle the 
-1 + jO point twice counterclockwise. From Figure 8-62, we see that, if the critical point lies 
between 0 ant1 -0.5, then the G(jw)/lC locus encircles the critical point twice counterclockwise. 
Therefore, we require 

The range of the gain K for stability is 

Figure 8-62 
Polar plot of 
G(jw)lK. 

G K Plane 

I 
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Nyquist Stability Criterion Applied t o  Inverse Polar Plots. In the previous 
analyses, the Nyquist stability criterion was applied to polar plots of the open-loop trans- 
fer function G ( s )  H  ( s ) .  

In analyzing multiple-loop systems, the inverse transfer function may sometimes be 
used in order to permit graphical analysis; this avoids much of the numerical calculation. 
(The Nyquist stability criterion can be applied equally well to inverse polar plots. The 
mathematical derivation of the Nyquist stability criterion for inverse polar plots is the 
same as that for direct polar plots.) 

The inverse polar plot of G ( j w ) H ( j w )  is a graph of l / [ G ( j w ) ~ ( j w ) ]  as a function of 
o. For example, if G( jw)H( jw)  is 

then 

The inverse polar plot for w 2 O is the lower half of the vertical line starting at the point 
(1,O) on the real axis. 

The Nyquist stability criterion applied to inverse plots may be stated as follows: For 
a closed-loop system to be stable, the encirclement, if any, of the -1 + jO point by the 
l / [ ~ ( s ) ~ ( s ) ]  locus (as s  moves along the Nyquist path) must be counterclockwise, and 
the number of such encirclements must be equal to the number of poles of l A G ( s ) H ( s ) ]  
[that is, the zeros of G ( s ) H ( s ) ]  that lie in the right-half s plane. [The number of zeros 
of G ( s ) H ( s )  in the right-half s plane may be determined by the use of the Routh sta- 
bility criterion.] If the open-loop transfer function G ( s ) H ( s )  has no zeros in the right- 
half s  plane, then for a closed-loop system to be stable, the number of encirclements of 
the -1 + jO point by the 1  / [ G ( s )  H ( s )  ] locus must be zero. 

Note that although the Nyquist stability criterion can be applied to inverse polar 
plots, if experimental frequency-response data are incorporated, counting the number 
of encirclements of the ~ / [ G ( s ) H ( s ) ]  locus may be difficult because the phase shift cor- 
responding to the infinite semicircular path in the s  plane is difficult to measure. For 
example, if the open-loop transfer function G ( s ) H ( s )  involves transport lag such that 

then the number of encirclements of the -1 + jO point by the z / [ G ( s ) H ( s ) ]  locus be- 
comes infinite, and the Nyquist stability criterion cannot be applied to the inverse polar 
plot of such an open-loop transfer function. 

In general, if experimental frequency-response data cannot be put into analytical 
form, both the G ( j w ) H ( j w )  and l / [ ~ ( j o ) ~ ( j w ) ]  loci must be plotted. In addition, 
the number of right-half plane zeros of G ( s ) H ( s )  must be determined. It is more dif- 
ficult to  determine the right-half plane zeros of G ( s ) H ( s )  (in other words, to deter- 
mine whether a given component is minimum phase) than it is to determine the 
right-half plane poles of C ( s ) N ( s )  (in other words, to determine whether the com- 
ponent is stable). 
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Depending on whether the data are graphical or analytical and whether nonmini- 
mum-phase components are included, an appropriate stability test must be used for 
multiple-loop systems. If the data are given in analytical form or if mathematical ex- 
pressions for all the components are known, the application of the Nyquist stability cri- 
terion to inverse polar plots causes no difficulty, and multiple-loop systems may be 
analyzed and designed in the inverse GH plane. 

EXAMPLE 8-20 Consider the control system shown in Figure 8-61. (Refer to Example 8-19.) Using the inverse 
polar plot, determine the range of gain K for stability. 

Since 

we have 

Hence 

Notice that 1 /G( s )  has a pole at s  = -0.5. It does not have any pole in the right-half s  plane. 
Therefore, the Nyquist stability equation 

Z = N + P  

reduces to Z = N since P = 0. The reduced equation states that the number Z of the zeros of 
1 + [ ~ / G ( s )  ] in the right-half s  plane is equal to N ,  the number of clockwise encirclements of 
the -1 + jO point. For stability, N must be equal to zero, or there should be no encirclement. Fig- 
ure 8-63 shows the Nyquist plot or polar plot of K/G(jw) .  

Notice that since 

the K/G( jw)  locus crosses the negative real axis at w = 2/2, and the crossing point at the nega- 
tive real axis is -2. 

From Figure 8-63, we see that if the critical point lies in the region between -2 and -co, then 
the critical point is not encircled. Hence, for stability, we require 

Thus, the range of gain K for stability is 

2 < K  

which is the same result as we obtained in Example 8-19. 
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Figure 8-63 
Polar plot of 
K/G( jw) .  

Relative Stability Analysis through Modified Nyquist Plots. The Nyquist path 
for stability tests can be modified in order that we may investigate the relative stability 
of closed-loop systems. 

Suppose that the s-plane contour consists of a line to the left of and parallel to the 
jw axis at a distance -a, (or the line s = -ao + jw) and the semicircle of infinite radius 
enclosing the entire right-half s plane and that part of the left-half s plane between the 
lines s = -ao + jw and s = jw, as shown in Figure 8-64(a). If the G(s)H(s) locus cor- 
responding to this s-plane contour does not encircle the -1 + jO point and G(s)H(s) 
has no poles within the enclosed s-plane contour, then the characteristic equation does 
not have any zeros in the region enclosed by the modified s-plane contour. All roots of 
the characteristic equation lie to the left of the line s = -a, + jw. An example of a 

Figure 8-64 
(a) Modified Nyquist path; 
(b) polar plots of 
G(-oo + j w ) ~ ( - a "  + jw) 
locus and ~ ( j w j ~ ( j w )  
locus in the GH plane. 

I s Plane GH Plane 
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G(-a, + jw) ~ ( - a , ,  + jo) locus, together with a G ( j w )  H ( j o )  locus, is shown in Figure 
8-64(b). The magnitude l/u0 is indicative of the time constant of the dominant closed- 
loop poles. If all roots lie outside the s-plane contour, all time constants of the closed- 
loop transfer function are less than l/a,. 

8-9 RELATIVE STABILITY 

In designing a control system, we require that the system be stable. Furthermore, it is nec- 
essary that the system have adequate relative stability. 

In this section, we shall show that the Nyquist plot indicates not only whether a sys- 
tem is stable, but also the degree of stability of a stable system. The Nyquist plot also gives 
information as to how stability may be improved, if this is necessary. (See Chapter 9.) 

In the following discussion, we shall assume that the systems considered have 
unity feedback. Note that it is always possible to reduce a system with feedback ele- 
ments to a unity-feedback system, as shown in Figure 8-65. Hence, the extension of 
relative stability analysis for the unity-feedback system to nonunity-feedback sys- 
tems is possible. 

We shall also assume that, unless otherwise stated, the systems are minimum-phase 
systems; that is, the open-loop transfer function has neither poles nor zeros in the right- 
half s plane. 

Relative Stability Analysis by Conformal Mapping. One of the important prob- 
lems in analyzing a control system is tb find all closed-loop poles or at least those clos- 
est to the jw axis (or the dominant pair of closed-loop poles). If the open-loop 
frequency-response characteristics of a system are known, it may be possible to esti- 
mate the closed-loop poles closest to the jw axis. It is noted that the Nyquist locus G ( j w )  
need not be an analytically known function of w. The entire Nyquist locus may be ex- 
perimentally obtained.The technique to be presented here is essentially graphical and 
is based on a conformal mapping of the s plane into the G ( s )  plane. 

Figure 8-65 
Modification of a 
system with feedback 
elements to a unity- 
feedback system. 
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Figure 8-66 
Conformal mapping 
oE s-plane grids into 
the G ( s )  plane. 

Figure 8-67 
Two systems with 
two closed-loop 
poles each. 

Constant u 
curves 

Consider the conformal mapping of constant-cr liner (lines s = a + jw, where a is 
constant and w varies) and constant-w lines (lines s = cr + jw, where w is constant and 
a varies) in the s plane.'The a = 0 line (the jw axis) in the s plane maps into the Nyquist 
plot in the G(s)  plane.The constant-a lines in the s plane map into curves that are sim- 
ilar to the Nyquist plot and are in a sense parallel to the Nyquist plot, as shown in Fig- 
ure 8-66.The constant-w lines in the J plane map into curves, also shown in Figure 8-66. 

Although the shapes of constant-a and constant-w loci in the G(s )  plane and the 
closeness of approach of the G(jw) locus to the -1 + j0 point depend on a particular 
G(s),  the closeness of approach of the G(1w) locus to the -1 + j O  point is an indication 
of the relative stability of a stable system. In general, we may expect that the closer the 
G(jw) locus is to the -1 + j O  point, the larger the maximum overshoot is in the step 
transient response and the longer it takes to damp out. 

Consider the two systems shown in Figures 8-67(a) and (b). (In Figure 8-67, the X's 
indicate closed-loop poles.) System (a) is obviously more stable than system (b) because 
the closed-loop poles of system (a) are located farther left than those of system (b). 
Figures 8-68(a) and (b) show the conformal mapping of s-plane grids into the G(s) 
plane. 'The closer the closed-loop poles are located to the jw axis, the closer the G(jw) 
locus is to the -1 -t j O  point. 
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Figure 8-68 
Conformal mappings 
of s-plane grids for 
the systems shown in 
Figure 8-67 into the 
G(s) plane. 

G Plane 

Im 1 
G Plane 

Phase and Gain Margins. Figure 8-69 shows the polar plots of G(jw) for three 
different values of the open-loop gain K. For a large value of the gain K, the system is 
unstab1e.A~ the gain is decreased to a certain value, the G(jw) locus passes through the 
-1 + jO point. This means that with this gain value the system is on the verge of insta- 
bility, and the system will exhibit sustained oscillations. For a small value of the gain K, 
the system is stable. 

In general, the closer the G(jw) locus comes to encircling the -1 + j O  point, the 
more oscillatory is the system response.The closeness of the G(jw) locus to the -1 + jO 
point can be used as a measure of the margin of stability. (This does not apply, however, 
to conditionally stable systems.) It is common practice to represent the closeness in 
terms of phase margin and gain margin. 

Phase margin: The phase margin is that amount of additional phase lag at the gain 
crossover frequency required to bring the system to the verge of instability. The gain 
crossover frequency is the frequency at which IG(jw)), the magnitude of the open- 
loop transfer function, is unity. The phase margin y is 180" plus the phase angle 4 
of the open-loop transfer function at the gain crossover frequency, or 

G Plane Irn t 

Figure 8-69 
Polar plots of 
~ ( 1  + j w ~ , ) ( l  '+ j w ~ ~ )  . . . 

( j w ) ( l  + j w ~ , ) ( l  + jwT,) ... ' 
K : Small I 

K = open-loop gain 
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Figure 8-70 
Phase and gain 
margins of stable and 
unstable systems. 
(a) Bode diagrams; 
(b) polar ?lots; 
(c) log-magnitude- 
versus-phase plots. 

Figures 8-70(a), (b), and (c) illustrate the phase margin of both a stable system and 
an unstable system in Bode diagiams, polar plots, and log-magnitude-versus-phase plots. 
In the polar plot, a line may be drawn from the origin to the point at which the unit cir- 
cle crosses the G ( j w )  1ocus.The angle from the negative real axis to this line is the phase 
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margin. The phase margin is positive for y > 0 and negative for y < 0. For a minimum- 
phase system to be stable, the phase margin must be positive. In the logarithmic plots, 
the critical point in the complex plane corresponds to the 0-dB and -180" lines. 

Gain margin: The gain margin is the reciprocal of the magnitude ] ~ ( j w ) l  at the 
frequency at which the phase angle is -180". Defining the phase crossover fre- 
quency w, to be the frequency at which the phase angle of the open-loop transfer 
function equals -180" gives the gain margin Kg: 

In terms of decibels, 

Kg dB = 20 log Kg = -20 logl~(jwl)l 

The gain margin expressed in decibels is positive if K, is greater than unity and nega- 
tive if Kg is smaller than unity. Thus, a positive gain margin (in decibels) means that the 
system is stable, and a negative gain margin (in decibels) means that the system is 
unstable. The gain margin is shown in Figures 8-70(a), (b), and (c). 

For a stable minimum-phase system, the gain margin indicates how much the gain can 
be increased before the system becomes unstable. For an unstable system, the gain mar- 
gin is indicative of how much the gain must be decreased to make the system stable. 

The gain margin of a first- or second-order system is infinite since the polar plots for 
such systems do not cross the negative real axis. Thus, theoretically, first- or second- 
order systems cannot be unstable. (Note, however, that so-called first- or second-order 
systems are only approximations in the sense that small time lags are neglected in de- 
riving the system equations and are thus not truly first- or second-order systems. If these 
small lags are accounted for, the so-called first- or second-order systems may become 
unstable.) 

It is noted that for a nonminimum-phase system with unstable open loop the stabil- 
ity condition will not be satisfied unless the G(jw) plot encircles the -1 + j0 point. 
Hence, such a stable nonminimum-phase system will have negative phase and gain 
margins. 

It is also important to point out that conditionally stable systems will have two or 
more phase crossover frequencies, and some higher-order systems with complicated 
numerator dynamics may also have two or more gain crossover frequencies, as shown 
in Figure 8-71. For stable systems having two or more gain crossover frequencies, the 
phase margin is measured at the highest gain crossover frequency. 

A Few Comments on Phase and Gain Margins. The phase and gain margins of 
a control system are a measure of the closeness of the polar plot to the -1 + jO  point. 
Therefore, these margins may be used as design criteria. 

It should be noted that either the gain margin alone or the phase margin alone does 
not give a sufficient indication of the relative stability. Both should be given in the 
determination of relative stability. 

For a minimum-phase system, both the phase and gain margins must be positive for 
the system to be stable. Negative margins indicate instability. 

Proper phase and gain margins ensure us against variations in the system components 
and are specified for definite positive values. The two values bound the behavior of the 
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closed-loop system near the resonant frequency. For satisfactory performance, the phase 
margin should be between 30" and 60°, and the gain margin should be greater than 6 dB. 
With these values, a minimum-phase system has guaranteed stability, even if the open- 
loop gain and time constants of the components vary to a certain extent. Although the 
phase and gain margins give only rough estimates of the effective damping ratio of the 
closed-loop system, they do offer a convenient means for designing control systems or 
adjusting the gain constants of systems. 

For minimum-phase systems, the magnitude and phase characteristics of the open- 
loop transfer function are definitely related. The requirement that the phase margin be 
between 30" and 60" means that in a Bode diagram the slope of the log-magnitude curve 
at the gain crossover frequency should be more gradual than -40 dB/decade. In most 
practical cases, a slope of -20 dB/decade is desirable at the gain crossover frequency for 
stability. If it is -40 dB/decade, the systems could be either stable or unstable. (Even if 
the system is stable, however, the phase margin is small.) If the slope at the gain crossover 
frequency is -60 dB/decade or steeper, the system is most likely unstable. 

For nonminimum-phase systems, the correct interpretation of stability margins re- 
quires careful study.The best way to determine the stability of nonminimum-phase sys- 
tems is to use the Nyquist diagram approach rather than Bode diagram approach. 

EXAMPLE 8-21 Obtain the phase and gain margins of the system shown in Figure 8-72 for the two cases where 
K = 10 and K = 100. 

Figure 8-72 
Control system. 
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Figure 8-73 
Bode diagrams of the system shown in Figure 5-72; (a) with K = 10 and (b) with K = 100. 

The phase and gain margins can easily be obtained from the Bode diagram. A Bode diagram 
of the given open-loop transfer function with K = 10 is shown in Figure 8-73(a). The phase and 
gain margins for K = 10 are 

Phase margin = 21 ", Gain margin = 8 dB 

Therefore, the system gain may be increased by 8 dB before the instability occurs. 
Increasing the gain from I< = 10 to K = 100 shifts the 0-dB axis down by 20 dB, as shown in 

Figure 8-73(b).The phase and gain margins are 

Phase margin = -30°, Gain margin = -12 dB 

Thus, the system is stable for K = 10, but unstable for I< = 100. 
Notice that one of the very convenienr aspects of the Bode diagram approach is the ease with 

which the effects of gain changes can be evaluated. Note that to obtain satisfactory performance, 
we must increase the phase margin to 30' - 60°.This can be done by decreasing the gain K.  De- 
creasing K is not desirable, however, since a small value of& will yield a large error for the ramp - 
input. This suggests that reshaping of the open-loop frequency-response curve by adding com- 
pensation may be necessary. Compensation techniques are discussed in detail in Chapter 9. 

Obtaining Gain Margin, Phase Margin, Phase-Crossover Frequency, and Gain- 
Crossover Frequency with MATLAB. The gain margin, phase margin, phase- 
crossover frequency, and gain-crossover frequency can be obtained easily with 
MATLAB. The command to be used is 
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Figure 8-74 
Closed-.loop system. 

Figure 8-75 
Bode diagram of 
G(s) shown in 
Figure 8-74. 

where Gm is the gain margin, pm is the phase margin, wcp is the phase-crossover fre- 
quency, and wcg is the gain-crossover frequency. For details of how to use this com- 
mand, see Example 8-22. 

Draw a Bode diagram of the open-loop transfer function G(s) of the closed-loop system shown 
in Figure 8-74. Determine the gain margin, phase margin, phase-crossover frequency, and gain- 
crossover frequency with MATLAB. 

A MATLAB program to plot a Bode diagram and to obtain the gain margin, phase margin, 
phase-crossover frequency, and gain-crossover frequency is shown in MATLAB Program 8-12. 
The Bode diagram of G(s) is shown in Figure 8-75. 

MATLAB Program 8-1 2 

num = [O 0 0 20 201; 
den = conv([l 5 01,[1 2 101); 
sys = tf(num,den); 
w = logspace(-1,2,100); 
bode(sys,w) 
[Gm,pm,wcp,wcg] = margin(sys); 
GmdB = 20*logl O(Gm); 
[GmdB pm wcp wcgl 

ans = 

9.9293 103.6573 4.01 31 0.4426 

Bode Diagram 

, . . . . . . , . . . . . . 

. . . . . . . . . . . . . .  . : : ! ; : i  . , : .  . . : . : : : :  

-300 I I I 1 1 1 1 1 1  I I i I I I I I  I  1 1 1 1  1 1 1  

lo-' 0.4426 lo0 4.0131 10' 1 o2 
Frequency (radlsec) 

- 
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Figure 8-76 
Standard second- 
order system. 

Resonant Peak Magnitude Mr and Resonant Frequency w,. Consider the 
standard second-order system shown in Figure 8-76. The closed-loop transfer function 
is 

where l and w ,  are the damping ratio and the undamped natural frequency, respectively. 
The closed-loop frequency response is 

where 

As given by Equation (8-12), for 0 5 5 5 0.707, the maximum value of M occurs at 
the frequency o r ,  where 

The frequency w, is the resonant frequency. At the resonant frequency, the value of M 
is maximum and is given by Equation (8-13), rewritten 

where M ,  is defined as the resonant peak magnitude. The resonant peak magnitude is 
related to the damping of the system. 

The magnitude of the resonant peak gives an indication of the relative stability of the 
system. A large resonant peak magnitude indicates the presence of a pair of dominant 
closed-loop poles with small damping ratio, which will yield an undesirable transient 
response. A smaller resonant peak magnitude, on the other hand, indicates the absence 
of a pair of dominant closed-loop poles with small damping ratio, meaning that the 
system is well damped. 

Remember that w, is real only if l < 0.707. Thus, there is no closed-loop resonance 
if 5 > 0.707. [The value of M,. is unity only if 5 > 0.707. See Equation (8-14).] Since 
the values of M,. and wr can be easily measured in a physical system, they are quite useful 
for checking agreement between theoretical and experimental analyses. 
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It is noted, however, that in practical design problems the phase margin and gain 
margin are more frequently specified than the resonant peak magnitude to indicate the 
degree of damping in a system. . 

Correlation between Step Transient Response and Frequency Response in 
the Standard Second-Order System. The maximum overshoot in the unit-step re- 
sponse of the standard second-order system, as shown in Figure 8-76, can be exactly 
correlated with the resonant peak magnitude in the frequency response. Hence, essen- 
tially the same information about the system dynamics is contained in the frequency re- 
sponse as is in the transient response. 

For a unit-step input, the output of the system shown in Figure 8-76 is given by Equa- 
tion (5-12), or 

~ ( t )  = 1 - e-i"lJ 

where 

On the other hand, the maximum overshoot M, for the unit-step response is given by 
Equation (5-21), or 

This maximum overshoot occurs in the transient response that has the damped natural 
frequency wd = w , , m .  The maximum overshoot becomes excessive for values of 
5 < 0.4. 

Since the second-order system shown in Figure 8-76 has the open-loop transfer function 

for sinusoidal operation, the magnitude of G(jw) becomes unity when 

0 = 0,ddKrp - 212 

which can be obtained by equating lG(jw)l to unity and solving for o .  At  this frequency, 
the phase angle of G(jw) is 

1 

Thus, the phase margin y is 

Equation (8-21) gives the relationship between the damping ratio 5 and the phase margin 
y. (Notice that the phase margin y is a function only of the damping ratio 5.) 
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Figure 8-77 
Curve y (phase 
margin) versus 5 for 
the system shown in 
Figure 8-76. 

In the following, we shall summarize the correlation between the step transient response 
and frequency response of the standard second-order system given by Equation (8-16): 

1. The phase margin and the damping ratio are directly related. Figure 8-77 shows a plot 
of the phase margin y as a function of the damping ratio 5. It is noted that for the stan- 
dard second-order system shown in Figure 8-76, the phase margin y and the damping 
ratio 5 are related approximately by a straight line for 0 s 5 5 0.6, as follows: 

Thus a phase margin of 60" corresponds to a damping ratio of 0.6. For higher-order 
systems having a dominant pair of closed-loop poles, this relationship may be used 
as a rule of thumb in estimating the relative stability in the transient response (that 
is, the damping ratio) from the frequency response. 

2. Referring to Equations (8-17) and (8-19), we see that the values of w, and wd are 
almost the same for small values of l.Thus, for small values of 5, the value of w, is 
indicative of the speed of the transient response of the system. 

3. From Equations (8-18) and (8-20), we note that the smaller the value of 5 is, the 
larger the values of M ,  and M p  are. The correlation between M ,  and M ,  as a func- 
tion of 5 is shown in Figure 8-78. A close relationship between M ,  and M ,  can be 
seen for p > 0.4. For very small values of 5, M ,  becomes very large ( M ,  + I), while 
the value of M p  does not exceed 1. 

Correlation between Step Transient Response and Frequency Response in 
General Systems. The design of control systems is very often carried out on the basis 
of the frequency response. The main reason for this is the relative simplicity of this ap- 
proach compared with others. Since in many applications it is the transient response of 
the system to aperiodic inputs rather than the steady-state response to sinusoidal in- 
puts that is of primary concern, the question of correlation between transient response 
and frequency response arises. 

For the standard second-order system shown in Figure 8-76> mathematical rela- 
tionships correlating the step transient response and frequency response can be obtained 
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Figure 8-78 
Curves Mr, versus 5 
and M ,  versus 5 for 
the system shown in 
Figure 8-76. 

easily.The time response of the standard second-order system can be predicted exactly 
from a knowledge of the M, and w, of its closed-loop frequency response. 

For nonstandard second-order systems and higher-order systems, the correlation is 
more complex, and the transient response may not be predicted easily from the fre- 
quency response because additional zeros and/or poles may change the correlation be- 
tween the step transient response and the frequency response existing for the standard 
second-order system. Mathematical techniques for obtaining the exact correlation are 
available, but they are very laborious and of little practical value. 

The applicability of the transient-response-frequency-response correlation existing 
for the standard second-order system shown in Figure 5-76 to higher-order systems de- 
pends on the presence of a dominant pair of complex-conjugate closed-loop poles in 
the latter systems. Clearly, if the frequency response of a higher-order system is domi- 
nated by a pair of complex-conjugate closed-loop poles, the transient-response- 
frequency-response correlation existing for the standard second-order system can be 
extended to the higher-order system. 

For linear, time-invariant, higher-order systems having a dominant pair of complex- 
conjugate closed-loop poles, the following relationships generally exist between the step 
transient response and frequency response: 

1. The value of M ,  is indicative of the relative stability. Satisfactory transient per- 
formance is usually obtained if the value of M ,  is in the range 1.0 < Mr < 1.4 
(0 dB < M, < 3 d ~ ) ,  which corresponds to an effective damping ratio of 
0.4 < 6 < 0.7. For values of Mr greater than 1.5, the step transient response may 
exhibit several overshoots. (Note that, in general, a large value of M, corresponds 
to a large overshoot in the step transient response. If the system is subjected t o  
noise signals whose frequencies are near the resonant frequency w,, the noise will 
be amplified in the output and will present serious problems.) 

2. The magnitude of the resonant frequency w, is indicative of the speed of the tran- 
sient response. The larger the value of w,, the faster the time response is. In other 
words, the rise time varies inversely with w,. In terms of the open-loop frequency 
response, the damped natural frequency in the transient response is somewhere 
between the gain crossover frequency and phase crossover frequency. 
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Figure 8-79 
Plot of a closed-loop 
frequency response 
curve showing cutoff 
frequency w, and 
bandwidth. 

3. The resonant peak frequency w, and the damped natural frequency w, for the step 
transient response are very close to each other for lightly damped systems. 

The three relationships just listed are useful for correlating the step transient re- 
sponse with the frequency response of higher-order systems, provided that they can be 
approximated by the standard second-order system or a pair of complex-conjugate 
closed-loop poles. If a higher-order system satisfies this condition, a set of time-domain 
specifications may be translated into frequency-domain specifications. This simplifies 
greatly the design work or compensation work of higher-order systems. 

In addition to the phase margin, gain margin, resonant peak M,, and resonant fre- 
quency w,, there are other frequency-domain quantities commonly used in performance 
specifications. They are the cutoff frequency, bandwidth, and the cutoff rate.These will 
be defined in what follows. 

Cutoff Frequency and Bandwidth. Referring to Figure 8-79, the frequency w, at 
which the magnitude of the closed-loop frequency response is 3 dB below its zero-fre- 
quency value is called the cutoff frequency. Thus 

For systems in which I C ( ~ O ) / R ( ~ O )  1 = 0  dB, 

c(iw) < -3 dB, for w > w, Iml 
The closed-loop system filters out the signal components whose frequencies are greater 
than the cutoff frequency and transmits those signal components with frequencies lower 
than the cutoff frequency. 

The frequency range 0  5 w  s w,, in which the magnitude of the closed loop does not 
drop -3 dB is called the bandwidth of the system.The bandwidth indicates the frequency 
where the gain starts to fall off from its low-frequency value. Thus, the bandwidth indi- 
cates how well the system will track an input sinusoid. Note that for a given w,, the rise 
time increases with increasing damping ratio 5. On the other hand, the bandwidth de- 
creases with the increase in i .  Therefore, the rise time and the bandwidth are inversely 
proportional to each other. 

The specification of the bandwidth may be determined by the following factors: 

I-+-------- Bandwidth --.--ti : \ 

w in log scale 
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1. The ability to reproduce the input signa1.A large bandwidth corresponds to a small 
rise time, or fast response. Roughly speaking, we can say that the bandwidth is 
proportional to the speed of response. (For example, to decrease the rise time in 
the step response by a factor of 2, the bandwidth must be increased by approxi- 
mately a factor of 2.) 

2. The necessary filtering characteristics for high-frequency noise. 

For the system to follow arbitrary inputs accurately, it must have a large bandwidth. 
From the viewpoint of noise, however, the bandwidth should not be too 1arge.Thus there 
are conflicting requirements on the bandwidth, and a compromise is usually necessary for 
good design. Note that a system with large bandwidth requires high-performance 
components, so the cost of components usually increases with the bandwidth. 

Cutoff Rate. The cutoff rate is the slope of the log-magnitude curve near the cut- 
off frequency. The cutoff rate indicates the ability of a system to distinguish the signal 
from noise. 

It is noted that a closed-loop frequency response curve with a steep cutoff charac- 
teristic may have a large resonant peak magnitude, which implies that the system has a 
relatively small stability margin. 

I EXAM,PLE 8-23 Consider the following two systems: 

C ( s )  - 1 
System I: --- - C ( s )  1  - System 11: - - 

R(s )  s + l '  R ( s )  3s + 1  

Compare the bandwidths of these two systems. Show that the system with the larger bandwidth has a 
faster speed of response and can follow the input much better than the one with the smaller bandwidth. 

Figure &80(a) shows the closed-loop frequency-response curves for the two systems. (Asymptot- 
ic curves are shown by dashed lines) We find that the bandwidth of system I is 0 5 w 5 1 rad/sec and 
that of system I1 is 0 5 w 5 0.33 radlsec. Figures &80(b) and (c) show, respectively, the unit-step re- 
sponse and unit-ramp response curves for the two systems. Clearly, system I, whose bandwidth is three 
times wider than that of system 11, has a faster speed of response and can follow the input much better. 

r(t) , 
1 

-20 
Figure 8-80 

I I 
I I 
I I 

Comparison of 0.33 I w ( ~ n  log scale) ~t 0 t  
dynamic 
characteristics of the 
two systems 
considered in 
Example 8-23. 
(a) Closed-loop 
frequency-response 
curves; (b)  unit-step 
response curves; 
(c) unit-ramp 
response curves. 
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MATLAB Approach to Get Resonant Peak, Resonant Frequency, and Band- 
width. The resonant peak is the value of the maximum magnitude (in decibels) of the 
closed-loop frequency response.The resonant frequency is the frequency that yields the 
maximum magnitude. MATLAB commands to be used for obtaining the resonant peak 
and resonant frequency are as follows: 

[mag,phase,w] = bode(num,den,w); or [mag,phase,wl = bode(sys,w); 
[Mp,kl = max(mag); 
resonant-peak = 20*logl O(Mp); 
resonant-frequency = w(k) 

The bandwidth can be obtained by entering the following lines in the program: 

n = l ;  
while 20*log1 O(mag(n)) > = -3; n = n + 1; 
end 
bandwidth = w(n) 

For a detailed MATLAB program, see Example 8-24. 

EXAMPLE 8-24 Consider the system shown in Figure 8-81. Using MATLAB, obtain a Bode diagram for the closed- 
loop transfer function. Obtain also the resonant peak, resonant frequency, and bandwidth. 

MATLAB Program 8-13 produces a Bode diagram for the closed-loop system as well as the 
resonant peak, resonant frequency, and bandwidth. The resulting Bode diagram is shown in 

MATLAB Program 8-1 3 

nump = [O 0 0 1 I; 
denp = [0.5 1.5 1 01; 
sysp = tf(nump,denp); 
sys = feedback(sysp, I ); 
w = logspace(-I ,I ); 
bode(sys,w) 
[mag,phase,w] = bode(sys,w); 
[Mp,kl = max(mag1; 
resonant-peak = 20"logl O(Mp) 

resonant-peak = 

5.2388 

resonant-frequency = w(k) 

resonant-frequency = 

0.7906 

n = l ;  
while 20*log(mag(n))> = -3; n = n + 1 ; 
end 
bandwidth = w(n) 

bandwidth = 

1.2649 
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Figure 8-81 
Closed-loop system. 

Figure 8-82 
Bode diagram of the 
closed-loop transfer 
function of the 
system shown in 
Figure 8-81. 

Bode Diagram 

lo-' 1 oO 10' 
Frequency (radlsec) 

Figure 8-82.The resonant peak is obtained as 5.2388 dB.The resonant frequency is 0.7906 rad/sec. 
The bandwidth is 1.2649 rad/sec. These values can be verified from Figure 8-82. 

8-10 CLOSED-LOOP FREQUENCY RESPONSE OF UNITY- 
FEEDBACK SYSTEMS 

Closed-Loop Frequency Response. For a stable, unity-feedback closed-loop sys- 
tem, the closed-loop frequency response can be obtained easily from that of the open- 
loop frequency response. Consider the unity-feedback system shown in Figure 8-83(a). 
The closed-loop transfer function is 

In the Nyquist or polar plot shown in Figure 8-83(b), the vector a represents ~ ( j w , ) .  

where o, is the frequency at point A. The length of the vector ?%i is IG(jo,)l and thc 
angle of the vector ?%i is /~( jo,) .  The vector PA, the vector from the -1 + j O  point 

to the Nyquist locus, represents 1 + ~(jo,). Therefore, the ratio of a, to PA repre- 
sents the closed-loop frequency response, or 
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Figure 
(a> un 
system; 
(b) determination of 
closed-loop I 
frequency response 
from open-loop 
frequency response. 

The magnitude of the closed-loop transfer function at w = ol is the ratio of the magni- 
---f --t 

tudes of OA to PA. The phase angle of the closed-loop transfer function at w = wl is 
d - 

the angle formed by the vectors OA to PA,  that is 4 - 0, shown in Figure 8-83(b). By 
measuring the magnitude and phase angle at different frequency points, the closed-loop 
frequency-response curve can be obtained. 

Let us define the magnitude of the closed-loop frequency response as M and the 
phase angle as a, or 

In the following, we shall find the constant magnitude loci and constant phase-angle 
loci. Such loci are convenient in determining the closed-loop frequency response from 
the polar plot or Nyquist plot. 

Constant-Magnitude Loci (M circles). To obtain the constant-magnitude loci, let 
us first note that G(jo) is a complex quantity and can be written as follows: 

G(jw) = X + jY 

where X and Y are real quantities. Then M is given by 

and M2 is 

Hence 

If M = 1, then from Equation (8-22), we obtain X = - $.  This is the equation of a 
straight line parallel to the Y axis and.passing through the point (-i, 0). 
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If M # 1, Equation (8-22) can be written 

If the term M ~ / ( M ~  - 1)2  is added to both sides of this last equation, we obtain 

Equation (8-23) is the equation of a circle with center at X = - M ' / ( M ~  - I ) ,  Y = 0 
and with radius J M / ( M ~  - I)/.  

The constant M loci on the G(s) plane are thus a family of circles.The center and ra- 
dius of the circle for a given value of M can be easily calculated. For example, for 
M = 1.3, the center is at (-2.45,' 0 )  and the radius is 1.88. A family of constant M cir- 
cles is shown in Figure 8-84. It is seen that as M becomes larger compared with 1, the 
M circles become smaller and converge to the -1 + jO point. For M > 1, the centers of 
the M circles lie to the left of the -1 + jO point. Similarly, as M becomes smaller com- 
pared with 1, the M circle becomes smaller and converges to the origin. For 0 < M < 1, 
the centers of the M circles lie to the right of the origin. M = 1 corresponds to the locus 
of points equidistant from the origin and from the -1 + jO point. As stated earlier, it is 
a straight line passing through the point (- 4,0) and parallel to the imaginary axis. (The 
constant M circles corresponding to M > 1 lie to the left of the M = 1 line, and those 
corresponding to 0 < M < 1 lie to the right of the M = 1 line.) The M circles are sym- 
metrical with respect to the straight line corresponding to M = 1 and with respect to the 
real axis. 

Figure 8-84 
A family of constant 
M circles. 
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Constant Phase-Angle Loci (N Circles). We shall obtain the phase angle a in 
terms of X and Y. Since 

the phase angle a is 

If we define 

then 

tana = N 

N = t a n  [ tan-' ( - - tad'(&)] 

Since 

we obtain 

The addition of (i) + 1/(2N)' to both sides of this last equation yields 

This is an equation of a circle with center at X = -$, Y = 1 / ( 2 N )  and with radius 

vi + 1/ (2N) ' .  For example, if a = 30°, then N = tana = 0.577, and the center and 
the radius of the circle corresponding to a = 30' are found to be (-0.5,0.866) and unity, 
respectively. Since Equation (8-24) is satisfied when X = Y = 0 and X = -1, Y = 0 
regardless of the value of N, each circle passes through the origin and the -1 + j O  point. 
The constant a loci can be drawn easily once the value of N is given. A family of constant 
N circles is shown in Figure 8-85 with a as a parameter. 

It should be noted that the constant N locus for a given value of a is actually not the 
entire circle, but only an arc. In other words, the a = 30" and a = -150" arcs are parts 
of the same circle. This is so because the tangent of an angle remains the same if rt180° 
(or multiples thereof) is added to the angle. 
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Figure 8-85 
A family of constant 
N circles. 

The use of the M and N circles enables us to find the entire closed-loop frequency 
response from the open-loop frequency response G(jo) without calculating the magni- 
tude and phase of the closed-loop transfer function at each frequency. The intersections 
of the G(jw) locus and the M circles and N circles give the values of M and N at fre- 
quency points on the G(jw) locus. 

The N circles are multivalued in the sense that the circle for a = a,  and that for 
a = a,  =k 180°n ( n  = 1,2, .  . .) are the same. In using the N circles for the determination 
of the phase angle of closed-loop systems, we must interpret the proper value of a. To 
avoid any error, start at zero frequency, which corresponds to a = 0°, and proceed to 
higher frequencies. The phase-angle curve must be continuous. 

Graphically, the intersections of the G(jo) locus and M circles give the values of M 
at the frequencies denoted on the G(jw) locus. Thus, the constant M circle with the 
smallest radius that is tangent to the G(jo) locus gives the value of the resonant peak 
magnitude Mr.  If it is desired to keep the resonant peak value less than a certain value, 
then the system should not enclose the critical point (-1 + j O  point) and, at the same 
time, there should be no intersections with the particular M circle and the G(jw) locus. 

Figure 8-86(a) shows the G(jw) locus superimposed on a family of M circles. Figure 
8-86(b) shows the G(jw) locus superimposed on a family of N circles. From these plots. 
it is possible to obtain the closed-loop frequency response by inspection. It is seen that 
the M = 1.1 circle intersects the G(jw) locus at frequency point w = w,. This means 
that at this frequency the magnitude of the closed-loop transfer function is 1.1. In Fig- 
ure 8-86(a), the M = 2 circle is just tangent to the G(jw) locus. Thus, there is only one 
point on the G(jw) locus for which I ~ ( j w ) / ~ ( j w ) (  is equal to 2. Figure 8-86(c) shows the 
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Figure 8-86 
( a )  G ( j w )  locus 
superimposed on a 
family of M circles; 
(b) G ( j w )  locus 
superimposed on a 
family of N circles; 
(c) closed-loop 
frequency-response 
curves. 

closed-loop frequency-response curve for the system. The upper curve is the M-versus- 
frequency w  curve, and the lower curve is the phase angle a-versus-frequency o curve. 

The resonant peak value is the value of M corresponding to the M circle of small- 
est radius that is tangent to the G ( j o )  locus.Thus, in the Nyquist diagram, the resonant 
peak value M ,  and the resonant frequency w, can be found from the M-circle tangency 
to the G ( j w )  locus. (In the present example, M, = 2 and w, = w,.) 
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Nichols Chart. In dealing with design problems, we find it convenient to construct 
the M and N loci in the log-magnitude-versus-phase plane. The chart consisting of the 
M and N loci in the log-magnitude-versus-phase diagram is called the Nichols chart. 
The G(jw) locus drawn on the Nichols chart gives both the gain characteristics and 
phase characteristics of the closed-loop transfer function at the same time. The Nichols 
chart is shown in Figure 8-87, for phase angles between 0" and -240". 

Note that the critical point (-1 + j O  point) is mapped to the Nichols chart as the 
point (0 dB, -180"). The Nichols chart contains curves of constant closed-loop magni- 
tude and phase angle. The designer can graphically determine the phase margin, gain 
margin, resonant peak magnitude, resonant frequency, and bandwidth of the closed- 
loop system from the plot of the open-loop locus, G(jw). 

The Nichols chart is symmetric about the -180" axis. The M and N loci repeat for 
every 360°, and there is symmetry at every 180" interval.The M loci are centered about 
the critical point (0 dB, -180°).The Nichols chart is useful for determining the frequency 
response of the closed loop from that of the open loop. If the open-loop frequency-re- 
sponse curve is superimposed on the Nichols chart, the intersections of the open-loop 
frequency-response curve G(jw) and the M and N loci give the values of the magni- 
tude M and phase angle a of the closed-loop frequency response at each frequency 
point. If the G(jw) locus does not intersect the M = M, locus, but is tangent to it, then 
the resonant peak value of M of the closed-loop frequency response is given by M,.The 
resonant frequency is given by the frequency at the point of tangency. 

Figure 8-87 
Nichols chart. 
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As an example, consider the unity-feedback system with the following open-loop 
transfer function: 

To find the closed-loop frequency response by use of the Nichols chart, the G(jw) locus 
is constructed in the log-magnitude-versus-phase plane by use of MATLAB or from 
the Bode diagram. Figure 8-%(a) shows the G(jw) locus together with the M and N loci. 
The closed-loop frequency-response curves may be constructed by reading the magni- 
tudes and phase angles at various frequency points on the G(jw) locus from the M and 
N loci, as shown in Figure 8-88(b). Since the largest magnitude contour touched by the 
G ( j w )  locus is 5 dB, the resonant peak magnitude M, is 5 dB. The corresponding reso- 
nant peak frequency is 0.8 rad/sec. 

Notice that the phase crossover point is the point where the G(jw) locus intersects 
the -180" axis (for the present system, o = 1.4 rad/sec), and the gain crossover point is 
the point where the locus intersects the 0-dB axis (for the present system, 
w = 0.76 rad/sec). The phase margin is the horizontal distance (measured in degrees) 
between the gain crossover point and the critical point (0 dB, -180"). The gain margin 
is the distance (in decibels) between the phase crossover point and the critical point. 
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Figure 8-88 
(a) Plot of G ( j w )  superimposed on Nichols chart; (b) closed-loop frequency-response curves. 
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The bandwidth of the closed-loop system can easily be found from the G( jw)  locus 
in the Nichols diagram. The frequency at the intersection of the G( jw)  locus and the 
M = -3 dB locus gives the bandwidth. 

If the open-loop gain K is varied, the shape of the G( jw)  locus in the log-magnitude- 
versus-phase diagram remains the same, but it is shifted up (for increasing K) or down 
(for decreasing K) along the vertical axis. Therefore, the G ( j o )  locus intersects the M 
and N loci differently, resulting in a different closed-loop frequency-response curve. For 
a small value of the gain K ,  the G(jw)  locus will not be tangent to any of the M loci, which 
means that there is no resonance in the closed-loop frequency response. 

1 EXAMPLE 8-25 Consider the unity-feedback control system whose open-loop transfer function is 

G(jw)  = 
K  

jw(1 + jw) 

Determine the value of the gain K  so that M ,  = 1.4. 
The first step in the determination of the gain K  is to sketch the polar plot of 

Figure 8-89 shows the M ,  = 1.4 locus and the G(jw)/K locus. Changing the gain has no effect on 
the phase angle, but merely moves the curve vertically up for K > 1 and down for K  < 1. 

In Figure 8-89, the G ( j o ) / K  locus must be raised by 4 dB in order that it be tangent to the 
desired M ,  locus and that the entire G(jw)/K locus be outside the M ,  = 1.4 1ocus.The amount of 

Figure 8-89 
Determination of the 
gain K  using the 

I Nichols chart. & 
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vertical shift of the G ( j o ) / K  locus determines the gain necessary to yield the desired value of 
M r .  Thus, by solving 

20 log K = 4 

we obtain 
K = 1.59 

8-1 1 EXPERIMENTAL DETERMINATION 
OF TRANSFER FUNCTIONS 

The first step in the analysis and design of a control system is to derive a mathemati- 
cal model of the plant under consideration. Obtaining a model analytically may be 
quite difficult. We may have to obtain it by means of experimental analysis. The 
importance of the frequency-response methods is that the transfer function of the plant, 
or any other component of a system, may be determined by simple frequency-response 
measurements. 

If the amplitude ratio and phase shift have been measured at a sufficient number of 
frequencies within the frequency range of interest, they may be plotted on the Bode di- 
agram.Then the transfer function can be determined by asymptotic approximations. We 
build up asymptotic log-magnitude curves consisting of several segments. With some 
trial-and-error juggling of the corner frequencies, it is usually possible to find a very 
close fit to the curve. (Note that if the frequency is plotted in cycles per second rather 
than radians per second, the corner frequencies must be converted to radians per sec- 
ond before computing the time constants.) 

Sinusoidal-Signal Generators. In performing a frequency-response test, suitable 
sinusoidal-signal generators must be available. The signal may have to be in mechani- 
cal, electrical, or pneumatic form. The frequency ranges needed for the test are ap- 
proximately 0.001 to 10 Hz for large-time-constant systems and 0.1 to 1000 Hz for 
small-time-constant systems. The sinusoidal signal must be reasonably free from har- 
monics or distortion. 

For very low frequency ranges (below 0.01 Hz), a mechanical signal generator 
(together with a suitable pneumatic or electrical transducer if necessary) may be used. 
For the frequency range from 0.01 to 1000 Hz, a suitable electrical-signal generator 
(together with a suitable transducer if necessary) may be used. 

Determination of Minimum-Phase Transfer Functions from Bode Diagrams. 
As stated previously, whether a system is minimum phase can be determined from the 
frequency-response curves by examining the high-frequency characteristics. 

To determine the transfer function, we first draw asymptotes to the experimental- 
ly obtained log-magnitude curve. The asymptotes must have slopes of multiples of 
k20 dB/decade. If the slope of the experimentally obtained log-magnitude curve 
changes from -20 to -40 dB/decade at w = w , ,  it is clear that a factor 1/[1 + j(o/w,)] 
exists in the transfer function. If the slope changes by -40 dB/decade at w = w,, there 
must be a quadratic factor of the form 

1 
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in the transfer function. The undamped natural frequency of this quadratic factor is 
equal to the corner frequency w2. The damping ratio 5 can be determined from the 
experimentally obtained log-magnitude curve by measuring the amount of resonant 
peak near the corner frequency w2 and comparing this with the curves shown in 
Figure 8-9. 

Once the factors of the transfer function G(jw) have been determined, the gain can 
be determined from the low-frequency portion of the log-magnitude curve. Since such 

2 terms as 1 + j(w/w,) and 1 + 2l(jwlw,) + (jw/*) become unity as w approaches zero, 
at very low frequencies the sinusoidal transfer function G(jw) can be written 

-7 

K 
lim G(jw) = - 
w-+O (jw)' 

In many practical systems, A equals 0, 1, or 2. 

1. For A = 0, or type 0 systems, 

G(jw) = K ,  iorw <. 1 

The low-frequency asymptote is a horizontal line at 20 log K dB. The value of K 
can thus be found from this horizontal asymptote. 

2. For h = 1, or type 1 systems, 

for w <. 1 

20 logI~(jw)l  = 20 logK - 20 logw, for w < 1 

which indicates that the low-frequency asymptote has the slope -20 dB/decade. 
The frequency at which the low-frequency asymptote (or its extension) intersects 
the 0-dB line is numerically equal to K. 

3. For h = 2, or type 2 systems, 

or 

20 loglG(jw)l = 20 log K - 40 log w, for w < 1 

The slope of the low-frequency asymptote is -40 dB/decade. The frequency at 
which this asymptote (or its extension) intersects the 0-dB line is numerically equal 
to m. 

Examples of log-magnitude curves for type 0, type 1, and type 2 systems are shown 
in Figure 8-90, together with the frequency to which the gain K is related. 

The experimentally obtained phase-angle curve provides a means of checking the 
transfer function obtained from the log-magnitude curve. For a minimum-phase 
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win log scale 

(a) 

Figure 8-90 
(a) Log-magnitude 
curve of a type 0 
system; (b) log- 
magnitude curves of 
type 1 systems; 
(c) log-magnitude 
curves of type 2 
systems. (The slopes 
shown are in 
dB/decade.) 

w in log scale w in log scale 

(b) 

w in log scale win log scale 
(c) 

system, the experimental phase-angle curve should agree reasonably well with the 
theoretical phase-angle curve obtained from the transfer function just determined. 
These two phase-angle curves should agree exactly in both the very low and very high 
frequency ranges. If the experimentally obtained phase angle at very high frequen- 
cies (compared with the corner frequencies) is not equal to -90°(q - p), where p and 
q are the degrees of the numerator and denominator polynomials of the transfer func- 
tion, respectively, then the transfer function must be a nonminimum-phase transfer 
function. 

Nonminimum-Phase Transfer Functions. If, at the high-frequency end, the com- 
puted phase lag is 180" less than the experimentally obtained phase lag, then one of the 
zeros of the transfer function should have been in the right-half s plane instead of the 
left-half s plane. 

If the computed phase lag differed from the experimentally obtained phase lag by a 
constant rate of change of phase, then transport lag, or dead time, is present. If we assume 
the transfer function to be of the form 
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where G(s) is a ratio of two polynomials in s, then 

d d 
lim - /G(jw)e-jwT = lim - [ /G(jo)  + /e-jwT] 

w - + ~  d o  w+m d o  

d 
= lim - [ /G(jw) - w ~ ]  

w-+m d o  

where we used the fact that lim /G(jw) = constant.Thus, from this last equation, we 
W - + M  

can evaluate the magnitude of the transport lag T. 

A Few Remarks on the Experimental Determination of Transfer Functions 

1. It is usually easier to make accurate amplitude measurements than accurate 
phase-shift measurements. Phase-shift measurements may involve errors that 
may be caused by instrumentation or by misinterpretation of the experimental 
records. 

2. The frequency response of measuring equipment used to measure the system out- 
put must have a nearly flat magnitude-versus-frequency curve. In addition, the 
phase angle must be nearly proportional to the frequency. 

3. Physical systems may have several kinds of nonlinearities. Therefore, it is nec- 
essary to consider carefully the amplitude of input sinusoidal signals. If the am- 
plitude of the input signal is too large, the system will saturate, and the 
frequency-response test will yield inaccurate results. On the other hand, a small 
signal will cause errors due to dead zone. Hence, a careful choice of the ampli- 
tude of the input sinusoidal signal must be made. It is necessary to sample the 
waveform of the system output to make sure that the waveform is sinusoidal 
and that the system is operating in the linear region during the test period. (The 
waveform of the system output is not sinusoidal when the system is operating in 
its nonlinear region.) 

4. If the system under consideration is operating continuously for days and weeks, 
then normal operation need not be stopped for frequency-response tests. The si- 
nusoidal test signal may be superimposed on the normal inputs.Then, for linear sys- 
tems, the output due to the test signalis superimposed on the normal output. For 
the determination of the transfer function while the system is in normal opera- 
tion, stochastic signals (white noise signals) also are often used. By use of corre- 
lation functions, the transfer function of the system can be determined without 
interrupting normal operation. 

EXAMPLE 8-26 Determine the transfer function of the system whose experimental frequency-response curves 
are as shown in Figure 8-91. 

The first step in determining the transfer function is to approximate the log-magnitude curve 
by asymptotes with slopes 120 dB/decade and multiples thereof, as shown in Figure &91. We 
then estimate the corner frequencies. For the system shown in Figure 8-91, the following form of 
the transfer function is estimated: 
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Figure 8-91 
Bode diagram of a 
system. (Solid curves 
are experimeiltally 
obtained curves.) 

The value of the damping ratio 5 is estimated by examining the peak resonance near w = 6 rad/sec. 
Referring to Figure 8-9, [ is determined to be 0.5. The gain K is numerically equal to the fre- 
quency at the intersection of the extension of the low-frequency asymptote and the 0-dB line. 
The value of K is thus found to be lO.Therefore, G ( j w )  is tentatively determined as 

This transfer function is tentative because we have not examined the phase-angle curve yet. 
Once the corner frequencies are noted on the log-magnitude curve, the corresponding phase- 

angle curve for each component factor of the transfer function can easily be drawn.Tne sum of 
these component phase-angle curves is that of the assumed transfer function. The phase-angle 
curve for G ( j w )  is denoted by in Figure 8-91. From Figure 8-91, we clearly notice a dis- 
crepancy between the computed phase-angle curve and the experimentally obtained phase- 
angle curve. The difference between the two curves at very high frequencies appears to be n 
constant rate of change. Thus, the discrepancy in the phase-angle curves must be caused by 
transport lag. 
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Hence, we assume the complete transfer function to be G(s)eWTs. Since the discrepancy be- 
tween the computed and experimental phase angles is -0.20 rad for very high frequencies, we can 
determine the value of T as follows. 

The presence of transport lag can thus be determined, and the complete transfer function deter- 
mined from the experimental curves is 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-8-1. Consider a system whose closed-loop transfer function is 

(This is the same system considered in Problem A-6-8.) Clearly, the closed-loop poles are locat- 
ed at s = -2 and s = -5, and the system is not oscillatory. (The unit-step response, however, ex- 
hibits overshoot due to the presence of a zero at s = -1. See Figure 6-46.) 

Show that the closed-loop frequency response of this system will exhibit a resonant peak, al- 
though the damping ratio of the closed-loop poles is greater than unity. 

Solution. Figure 8-92 shows the Bode diagram for the system. The resonant peak value is ap- 
proximately 3.5 dB. (Note that, in the absence of a zero, the second-order system with ( > 0.7 will 
not exhibit a resonant peak; however, the presence of a closed-loop zero will cause such a peak.) 

Figure 8-92 
Bode diagram for 
lO(1 + j w ) / [ ( 2  + jw)(5 + jw)]. 
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A-8-2. Consider the system defined by 

Obtain the sinusoidal transfer functions Y l ( j w ) / U l ( j w ) ,  Y2( jw) /Ul ( jw) ,  Y l ( jw) /U2( jw) ,  and 
Y, ( jw) /U2( jw) .  In deriving Y , ( j w ) / U l ( j w )  and Y2( jw) /Ul ( jw) ,  we assume that U2(jw)  = 0. Simi- 
larly,in obtaining Y,( jw)/U2(jw)  and Y2(jw)/U2(jw) ,  we assume that U l ( j w )  = 0. 

Solution. The transfer matrix expression for the system defined by 

is given by 
Y ( s )  = G ( s ) U ( s )  

where G ( s )  is the transfer matrix and is given by 

G ( S )  = C ( S I  - A ) - ~ B  + D 

For the system considered here, the transfer matrix becomes 

Hence 

Assuming that U 2 ( j w )  = 0, we find Y,( jw)/U,( jw)  and Y2( jw) /Ul ( jw)  as follows: 

Similarly, assuming that U l ( j w )  = 0, we find Y I ( j w ) / U 2 ( j w )  and Y2(jw)/U2(jw)  as follows: 

Y I ( I ~ )  jw + 5  -= 

U2( jw)  (jw)' + 4jw + 25 

Notice that Y2(jw)/U2(jw)  is a nonminimum-phase transfer function. 
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A-8-3. Referring to Problem A-8-2, plot Bode diagrams for the system, using MATLAB. 

Solution. MATLAB Program 8-14 produces Bode diagrams for the system. There are four sets of 
Bode diagrams: two for input 1 and two for input 2.These Bode diagrams are shown in Hgure 8-93. 

MATLAB Program 8-1 4 

A = [0 1 ;-25 -41; 
B = [ l  1;o 11; 
C = [ I  O;o I I; 
D = [O 0;o 01; 
bode(A,B,C,D) 

Bode Diagrams 
From: U,  From: U2 
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Figure 8-93 
Bode diagrams. 
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J(S + 1) (5' + 5) 

Figure 8-94 
Closed-loop system. - 

A-8-4. Using MATLAB, plot Bode diagrams for the closed-loop system shown in Figure &94 for K = 1, 
K = 10, and K = 20. Plot three magnitude curves in one diagram and three phase-angle curves 
in another diagram. 

Solution. The closed-loop transfer function of the system is given by 

Hence the numerator and denominator of C ( s ) / R ( s )  are 

num=[O 0 0 K ]  
den = [ I  6 5 K] 

A possible MATLAB program is shown in MATLAB Program &15.The resulting Bode diagrams 
are shown in Figures 8-95(a) and (b). 

I MATLAB Program 8-1 5 I 
w = logspace(-I ,2,200); 
for i = 1 :3; 

if i = 1; K = l;[mag,phase,w] = bode([O 0 0 Kl,[1 6 5 K1,w); 
magldB = 20*log1 O(mag); phase1 = phase; end; 

if i = 2; K = 1 O;[mag,phase,w] = bode([O 0 0 K],[1 6 5 K],w); 
mag2dB = 20Ylog1 O(mag); phase2 = phase; end; 

if i = 3; K = 20;[mag,phase,w] = bode([O 0 0 K], [ I  6 5 K1,w); 
mag3dB = 20*logIO(mag); phase3 = phase; end; 

end 
semilogx(w,magl dB,'-',w,mag2dB,'-',wrmag3dB,'-'1 
grid 
title('Bode Diagrams of G(s) = K/[s(s + l)(s + 511, where K = 1, K = 10, and K = 20') 
xlabel('Frequency (radlsec)') 
ylabelilGain (dB)') 
text(1.2,-31 ,'K = 1 ') 
text(1 . I  ,-8,'K = 10') 
textil I ,-31 ,'K = 20') 
semilogx(w,phasel ,'-I, w,phase2, '-',w,phase3,'-'1 
grid 
xlabel('Frequency (radlsec)') 
ylabel('Phase (deg)') 
text(0.2,-90,'K = 1 ') 
text(0.2,-20,'K = I  0') 
text(1.6,-20,'K = 20') 
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Figure 8-95 
Bode diagrams: 
(a) Magnitude- 
versus-frequency 
curves; (b) phase- 
angle-versus- 

Frequency (radlsec) 

(a) 

Frequency (radlsec) 

frequency curves. (b) 

A-8-5. Prove that the polar plot of the sinusoidal transfer function 

. jwT 
G(jw) = ---- f o r O w s c o  

1 + jwT' 

is a semicircle. Find the center and radius of the circle. 
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Solution. The given sinusoidal transfer function G ( j w )  can be written as follows: 

where 

Then 

Hence, we see that the plot of G ( j w )  is a circle centered at (0.5,O) with radius equal to 0.5. The 
upper semicircle corresponds to '0 5 w 5 oo, and the lower semicircle corresponds to 
-00 5 0 5 0. 

A-8-6. Prove the following mapping theorem: Let F ( s )  be a ratio of polynomials in s. Let P be the num- 
ber of poles and Z be the number of zeros of F ( s )  that lie inside a closed contour in the s  plane, 
with multiplicity accounted for. Let the closed contour be such that it does not pass through any 
poles or zeros of F(s ) .The  closed contour in the s  plane then maps into the F ( s )  plane as a closed 
curve.The number N of clockwise encirclements of the origin of the F ( s )  plane, as a representa- 
tive point s  traces out the entire contour in the s  plane in the clockwise direction, is equal to Z - P. 

Solution. To prove this theorem, we use Cauchy's theorem and the residue theorem. Cauchy's 
theorem states that the integral of F ( s )  around a closed contour in the s  plane is zero if F ( s )  is 
analytic within and on the closed contour, or 

4 F ( s ) d s  = 0  

Suppose that F ( s )  is given by 

where X ( s )  is analytic in the closed contour in the s  plane and all the poles and zeros are located 
in the contour. Then the ratio F t ( s ) / F ( s )  can be written 

This may be seen from the following consideration: If F ( s )  is given by 

F ( s )  = ( s  + Z ~ ) ~ X ( S )  

then F ( s )  has a zero of kth order at s  = -zl. Differentiating F ( s )  with respect to s  yields 

F'(s)  = k ( s  + Z ~ ) ~ - ' X ( S )  + ( S  + z ~ ) ~ x ' ( s )  

Hence, 

We see that by taking the ratio F 1 ( s ) / F ( s ) ,  the kth-order zero of F ( s )  becomes a simple pole of 
F 1 ( s ) / F ( s ) .  
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If the last term on the right-hand side of Equation (8-26) does not contain any poles or zeros 
in the closed contour in the s  plane, F 1 ( s ) / F ( s )  is analytic in this contour except at the zero 
s  = -zl .Then, referring to Equation (8-25) and using the residue theorem, which states that the 
integral of F f ( s ) / F ( s )  taken in the clockwise direction around a closed contour in the s  plane is 
equal to -2aj times the residues at the simple poles of F ' ( s ) / F ( s ) ,  or 

we have 

where Z = k ,  + k2 + ... = total number of zeros of F ( s )  enclosed in the closed 
contour in the s  plane 

P = rnl + m2 + .. .  = total number of poles of F ( s )  enclosed in the closed 
contour in the s  plane 

[The k multiple zeros (or poles) are considered k zeros (or poles) located at the same point.] 
Since F ( s )  is a complex quantity, F ( s )  can be written 

F ( s )  = (Flejo 

and 

Noting that F r ( s ) / F ( s )  can be written 

we obtain 

If the closed contour in the s  plane is mapped into the closed contour r in the F ( s )  plane, then 

The integral fi- d In IF\ is zero since the magnitude In 1 FI is the same at the initial point and the final 
point of the contour E Thus we obtain 

The angular difference between the final and initial values of 0 is equal to the total change in 
the phase angle of F 1 ( s ) / F ( s )  as a representative point in the s  plane moves along the closed 
contour. Noting that N is the number of clockwise encirclements of the origin of the F ( s )  plane 
and O2 - 0, is zero or a multiple of 2 a  rad, we obtain 
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I" t F(s) Plane '" t F(s) Plane 

Figure 8-96 
Determination of 
encirclement of the 
origin of F(s)  plane. 

Origin encircled 
o2 - 61 = 27r 

(a) 

Thus, we have the relationship 

Origin not encircled 
6, - 0, = 0 

(b) 

This proves the theorem. 
Note that by this mapping theorem, the exact numbers of zeros and of poles cannot be found- 

only their difference. Note also that,from Figures 8-96(a) and (b), we see that if 0 does not change 
through 2m rad, then the origin of the F ( s )  plane cannot be encircled. 

A-8-7. The Nyquist plot (polar plot) of the open-loop frequency response of a unity-feedback control 
system is shown in Figure 8-97(a). Assuming that the Nyquist path in the s plane encloses the 
entire right-half s plane, draw a complete Nyquist plot in the G plane.Then answer the following 
questions: 

(a) If the open-loop transfer function has no poles in the right-half s plane, is the closed-loop 
system stable? 

(b) If the open-loop transfer function has one pole and no zeros in right-half s plane, is the closed- 
loop system stable? 

(c) If the open-loop transfer function has one zero and no poles in the right-half s plane, is the 
closed-loop system stable? 

Figure 8-97 
(a) Nyquist plot; 
(b) complete Nyquist 
plot in the G plane. 
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Solution. Figure 8-97(b) shows a complete Nyquist plot in the G plane.The answers to the three 
questions are as follows: 

(a) The closed-loop system is stable, because the critical point (-1 + jO) is not encircled by the 
Nyquist plot.That is,since P = 0  and N = 0 ,  we have Z = N + P = 0.  

(b) The open-loop transfer function has one pole in the right-half s plane. Hence, P = 1. (The 
open-loop system is unstable.) For the closed-loop system to be stable, the Nyquist plot must 
encircle the critical point (-1 + jO) once counterclockwise. However, the Nyquist plot does 
not encircle the critical point. Hence, N = O.Therefore, Z = N + P = 1. The closed-loop sys- 
tem is unstable. 

(c) Since the open-loop transfer function has one zero, but no poles, in the right-half s plane, we 
have Z = N + P = 0. Thus, the closed-loop system is stable. (Note that the zeros of the 
open-loop transfer function do not affect the stability of the closed-loop system.) 

A-8-8. Is a closed-loop system with the following open-loop transfer function and with K = 2 stable? 

Find the critical value of the gain K for stability. 

Solution. The open-loop transfer function is 

This open-loop transfer function has no poles in the right-half s plane. Thus, for stability, the 
-1 + jO point should not be encircled by the Nyquist plot. Let us find the point where the Nyquist 
plot crosses the negative real axis. Let the imaginary part of G ( j o ) H ( j w )  be zero, or 

1 - 2w2 = 0  

from which 

1 
w = f -  

fi 
Substituting w = 1/fi into G ( j w ) H ( j w ) ,  we obtain 

The critical value of the gain K is obtained by equating -2K/3 to -1, or 

2  - - K  = -1 
3 

Hence, 

3 K = -  
2 

The system is stable if 0  < K < i. Hence, the system with K = 2  is unstable. 
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Figure 8-98 
Closed-loop system. 

A-8-9. Consider the closed-loop system shown in Figure 8-98. Determine the critical value of K for sta- 
bility by the use of the Nyquist stability criterion. 

Solution. The polar plot of 

Figure 8-99 
(a) Polar plot of 
K/(jw - 1); 
(b) polar plots of 
K/(jw - 1) for 
stable and unstable 
cases. 

is a circle with center at -K/2 on the negative real axis and radius K / 2 ,  as shown in Figure &99(a). 
As w is increased from -cm to CCI, the G(jw) locus makes a counterclockwise rotation. In this sys- 
tem, P = 1 because there is one pole of G(s) in the right-half s plane. For the closed-loop system 
to be stable, Z must be equal to zero.Therefore, N = Z - P must be equal to -1, or there must 
be one counterclockwise encirclement of the -1 + jO point for stability. (If there is no encir- 
clement of the -1 + jO point, the system is unstable.) Thus, far stability, K must be greater than 
unity, and K = 1 gives the stability limit. Figure 8-99(b) shows both stable and unstable cases of 
G(jw) plots. 

K Irn G Plane - 

'"t G Plane '"t G Plane 
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A-8-10. Consider a unity-feedback system whose open-loop transfer function is 

Using the Nyquist plot, determine the critical value of K for stability. 

Solution. For this system, 

- K(cos 0 . 8 ~  - j sin 0.80) (1 - jw) 
- 

1 + w2 

- K -- [(cos 0 . 8 ~  - w s in0 .8~)  - j (s in0.8~ + w cos0.8w)l 
I + w2 

The imaginary part of G(jw) is equal to zero if 

s i n 0 . 8 ~  + w cos 0 . 8 ~  = 0 
Hence, 

Solving this equation for the smallest positive value of w, we obtain 

w = 2.4482 

Substituting w = 2.4482 into G(jw), we obtain 

G(j2.4482) = 
. K 

1 + 2.4482' 
(cos 1.9586 - 2.4482 sin 1.9586) = -0.378K 

The critical value of K for stability is obtained by letting G(j2.4482) equal -1. Hence, 

0.378K = 1 
or 

K = 2.65 

Figure 8-100 shows the Nyquist or polar plots of 2.65e-08Jw/(1 + jw) and 2.65/(1 + jw).The first- 
order system without transport lag is stable for all values of K, but the one with a transport lag of 
0.8 sec becomes unstable for K > 2.65. 

Figure 8-100 
Polar plots of 
2.65e4.8jw/(l f jw) 
and 2.65/(1 + jw). 
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A-8-11. Consider a unity-feedback system with the following open-loop transfer function: 

Draw a Nyquist plot with MATLAB and examine the stability of the closed-loop system. 

Solotion. MATLAB Program 8-16 produces the Nyquist diagram shown in Figure 8-101. From 
this figure, we see that the Nyquist plot does not encircle the -1 + jO point. Hence, N = 0 in the 
Nyquist stability criterion. Since no open-loop poles lie in the right-half s plane, P = O.Therefore, 
Z = N + P = 0. The closed-loop system.is stable. 

MATLAB Program 8-1 6 

num = [O 20 20 101; 
den = [ I  11 10 01; 
nyquist(num,den) 
v = [-2 3 -3 31; axis(v) 
grid 

Nyquist Diagram 

Figure 8-101 
Nyquist plot of 

20(s2 + s + 0.5) 
G ( s )  = 

S ( S  + 1)(s + 10) ' Real Axis 

A-8-12, Consider the same system as discussed in Problem A-8-11. Draw the Nyquist plot for only the 
positive frequency region. 

Solution. Drawing a Nyquist plot for only the positive frequency region can be done by the use 
of the following command: 

The frequency region may be divided into several subregions by using different increments. For 
example, the frequency region of interest may be divided into three subregions as follows: 
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MATLAB Program 8-17 uses this frequency region. Using this program, we obtain the Nyquist 
plot shown in Figure 8-102. 

MATLAB Program 8-1 7 

num = [O 20 20 101; 
den = [ I  11 10 01; 
w l  = 0.1 :0.1 :I 0; w2 = 10:2:100; w3 = 100:10:500; 
w = [w l  w2 w31; 
[re,im,w] = nyquist(num,den,w); 
plot(re,im) 
v = [-3 3 -5 I I ;  axis(v) 
grid 
title('Nyquist Plot of G(s) = 20(sA2 + s + O.S)/[s(s + 1 )(s + 1 O)]') 
xlabel('Rea1 Axis') 
ylabel('lmag Axis') 

Figure 8-102 
Nyquist plot for the 
positive frequency 
region. Real Axis 

A-8-13. Referring to Problem A-8-12, plot the polar locus of G ( s )  where 

Locate on the polar locus frequency points where w  = 0.2,0.3,0.5,1,2,6,10, and 20 rad/sec. 
Also, find the magnitudes and phase angles of C ( j w )  at the specified frequency points. 

Solution. In MATLAB Program 8-17 we used the frequency vector w, which consists of 
three frequency subvectors: w l ,  w2, and w3. Instead of such a w, we may simply use the 
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frequency vector w = logscale(d,, d,, n). MATLAB Program 8-18 uses the following fre- 
quency vector: 

This MATLAB program plots the polar locus and locates the specified frequency points on the 
polar locus, as shown in Figure 8-103. 

MATLAB Program 8-1 8 

num = [O 20 20 101; 
den= [ I  11 10 01; 
ww = logspace(-1,2,100); 
nyquist(num,den,ww) 
v = [-2 3 -5 01; axis(v) 
grid 
hold 
Current plot held 
w = [0.2 0.3 0.5 1 2 6 10 201; 
[re,im,w] = nyquist(num,den,w); 
plot(re,im,'o') 
text(1 .I , -4 .8 , '~  = 0.2') 
text(1 .I ,-3.1,'0.3') 
text(1.25,-1.7,'0.5') 
text(1.37,-0.4,'11) 
text(l.8,-0.3,'2') 
text(l.4,-1 .I ,'6') 
text(0.77,-0.8,'IO') 
text(0.037,-0.8,'201) 

% ----- To get the values of magnitude and phase (in degrees) of G(jw) 
O/O at the specified w values, enter the command [mag,phase,w] 
% = bode(num,den,w) ------ 

% ----- The following table shows the specified frequency values w and 
% the corresponding values of magnitude and phase (in degrees) ----- 

[w mag phase] 

ans = 
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Figure 8-103 
Polar plot of G ( j w )  
given in Problem 
A-8-13. 

A-8-14. Consider a unity-feedback, positive-feedback system with the following open-loop transfer 
function: 

s2 + 4s + 6 
G(s )  = s2 + 5s + 4 

Draw a Nyquist plot. 

Solution. The Nyquist plot of the positive-feedback system can be obtained by defining nurn and 
den as 

num = [-I -4 -61 
den = [ I  5 41 

and using the command nyquist(num,den). MATLAB Program 8-19 produces the Nyquist plot, 
as shown in Figure 8-104. 

This system is unstable, because the -1 + jO point is encircled once clockwise. Note that this 
is a special case where the Nyquist plot passes through -1 + jO point and also encircles this point 
once clockwise.This means that the closed-loop system is degenerate; the system behaves as if it 
is an unstable first-order system. See the following closed-loop transfer function of the positive- 
feedback system: 

1 MATLAB Program 8-1 9 I 
num = [-I -4 -61; 
den = [I 5 41; 
nyquist(num,den); 
grid 
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Figure 8-104 
Nyquist plot for 
positive-feedback 
system. 

Note that the Nyquist plot for the positive-feedback case is a mirror image about the imaginary 
axis of the Nyquist plot for the negative-feedback case.This may be seen from Figure 8-105, which 
was obtained by use of MATLAB Program 8-20. (Note that the positive-feedback case is unsta- 
ble, but the negative-feedback case is stable.) 

MATLAB Program 8-20 

numl = [ I  4 61; 
den1 = [ I  5 41; 
num2 = 1-1 -4 -61; 
den2 = [ I  5 41; 
nyquist(num1 ,den1 1; 
hold on 
nyquist(num2,den2); 
v = [ - 2  2 -1 I ] ;  
axis(v1; 
grid 
title('Nyquist Plots of G(s) and -G(s)') 
text(l.0,0.5,'G(s)') 
text(0.57,-0.48,'Use this Nyquist') 
text(0.57,-0.61 ,'plot for negative') 
text(0.57,-0.73,'feedback system') 
text(-I .3,0.5,'-G(s)') 
text(-1.7,-0.48,'Use this Nyquist') 
text(-1.7,-0.61 ,'plot for positive') 
text(-I .7,-0.73,'feedback system') 
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Figure 8-105 
Nyquist plots for 
positive-feedback 
system and negative- 
feedback system. 

A-8-15. Figure 8-106 shows a block diagram of a space vehicle control system. Determine the gain K such 
that the phase margin is 50". What is the gain margin in this case? 

Solution. Since 

we have 
w  

/ G ( j w )  = / jw  + 2 - 2/lw = tan-' - - 180" 
2 

The requirement that the phase margin be 50" means that /G( jwc)  must be equal to --130°, where 
oc is the gain crossover frequency, or 

Hence, we set 

from which we obtain 

Since the phase curve never crosses the -180" line, the gain margin is +oo dB. Noting that the 
magnitude of G ( j w )  must be equal to 0 dB at w  = 2.3835, we have 

Figure 8-106 
Space vehicle control 
system. 
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from which we get 

This K value will give the phase margin of 50". 

A-8-16. For the standard second-order system 

sh6b th{t the bandwidth w ,  is given by 

Note that wb/wn is a function only of l. Plot a curve of w,/w, versus 5. 

Solution. The bandwidth w, is determined from I c ( ~ W ~ ) / R ( ~ W ~ ) I  = -3 dB. Quite often, instead of 
-3 dB, we use -3.01 dB, which is equal to 0.707.Thus, 

Then 

from which we get 

By dividing both sides of this last equation by w t ,  we obtain 

Solving this last equation for (ob/w,,)' yields 

Since (wb/wn)' > 0, we take the plus sign in this last equation. Then 

Figure 8-107 shows a curve relating wb/w,  versus 6. 
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Figure 8407 
Curve of o,/w, 
versus 5, where wb is 
the bandwidth. 

A-8-17. Consider the control system shown in Figure 8-108.The open-loop transfer function G(s)H(s )  is 

Plot Nyquist diagrams of G ( s ) H ( s )  for K = 1,7.5, and 20. 

Solution. A possible MATLAB program is shown in MATLAB Program 8-21. The resulting 
Nyquist diagrams are shown in Figure 8-109. From the diagrams, we see that the system is stable 
when K = 1. It is critically stable when K = 7.5.The system is unstable when K = 20. 

A-8-18. Figure 8-110 shows a block diagram of a chemical reactor system. Draw a Bode diagram of G ( j w ) .  
Also, draw the G ( j w )  locus on the Nichols chart. From the Nichols diagram, read magnitudes and 
phase angles of the closed-loop frequency response and then plot the Bode diagram of the closed- 
loop system ~ ( j w ) / [ l  + ~ ( j w ) ] .  

Solution. Noting that 

Figure 8-1.08 
Control system. 
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Figure 8-109 
Nyquist diagrams. 

Figure 8-110 
Block diagram of a 
chemical reactor 
system. 

MATLAB Program 8-21 

den = [0.1 1.5 5 01; 
for i = 1:3; 

if i = 1; K = 1 ; [re1 ,iml ] = nyquist([O 0 0 1 O*K],den); end; 
if i = 2; K = 7.5; [re2,im2] = nyquist([O 0 0 lO*K],den); end; 
if i = 3; K = 20; [re3,im3] = nyquist([O 0 0 IO"K1,den); end; 

end 
plot(re1 ,iml ,'-',re2,im2,'o',re2,im2,'-',re3,im3,'x',re3,im3,'-') 
v = [-5 1 -5 1 I; axis(v) 
grid 
title('Nyquist Diagrams of G(s)H(s) = 1 OK/[s(s + 5)(0.l s + 1 )I for K = 1, 7.5, and 20') 
xlabel('Rea1 Axis') 
ylabel('1maginary Axis') 
text(-0.4,-3.7,'K = 1 ' )  
text(-2.7,-2.7,'K = 7.5') 
text(-4.35,-1.7,'K = 20') 

Nyquist Diagrams of G(s)H(s) = 10Kl[s(s + 5)(0.ls + l)] for K = 1, 7.5, and 20 

Real Axis 
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we have 

Figure 8-1.111 
Bode diagram of 
G(jo)  of the system 
shown in Figure 
8-110. 

The phase angle of the transport lag e-'.'jW is 

/e-'.'jw = /cos(O.lw) - j s in (0 .1~)  = - 0 . 1 ~  (rad) 

= - 5 . 7 3 ~  (degrees) 

The Bode diagram of G ( j w )  is shown in Figure 8-111. 
Next, by reading magnitudes and phase angles of G(jw) for various values of w, it is possible 

to plot the gain-versus-phase plot on a Nichols chart. Figure 8-112 shows such a G(jw) locus 
superimposed on the Nichols chart. From this diagram, magnitudes and phase angles of the closed- 
loop system at various frequency points can be read. Figure 8-113 depicts the Bode diagram of 
the closed-loop frequency response ~ ( j w ) / [ l  + ~ ( j o ) ] .  
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Figure 8-112 
G(jo)  locus 
superimposed on 
Nichols chart 
(Problem A-8-18). 

. Figure 8-113 
Bode diagram of the 
closed-loop 
frequency response 
(Problem A-8-18). 
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A-8-19. A Bode diagram of the open-loop transfer function G ( s )  of a unity-feedback control system is 
shown in Figure 8-114. It is known that the open-loop transfer function is minimum phase. From 
the diagram, it can be seen that there is a pair of complex-conjugate poles at w = 2 rad/sec. 
Determine the damping ratio of the quadratic term involving these complex-conjugate poles. 
Also, determine the transfer function G ( s ) .  

Solution. Referring to Figure 8-9 and examining the Bode diagram of Figure 8-114, we find the' 
damping ratio 5 and undamped natural frequency w, of the quadratic term to be 

Noting that there is another corner frequency at w = 0.5 rad/sec and the slope of the magnitude 
curve in the low-frequency region is -40 dBldecade, G ( j w )  can be tentatively determined as 
follows: 

Since, from Figure 5-114, we find /G( jo . l ) l  = 40 dB, the gain value K can be determined to be unity. 
Also, the calculated phase curve, / G ( j w )  versus w,  agrees with the given phase curve. Hence, the 
transfer function G ( s )  can be determined to be 

Figure 8-114 
Bode diagram of the 
open-loop transfer 
function lolf a unity- 
feedback  control 
system. 

0.1 0.2 0.4 0.6 1 2 4 6 10 20 40 60 100 
win  radisec 
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Figure 8-115 
Control system. 

A-8-20. A closed-loop control system may include an unstable element within the loop. When the Nyquist 
stability criterion is to be applied to such a system, the frequency-response curves for the unsta- 
ble element must be obtained. 

How can we obtain experimentally the frequency-response curves for such an unstable ele- 
ment'? Suggest a possible approach to the experimental determination of the frequency response 
of an unstable linear element. 

Solution. One possible approach is to measure the frequency-response characteristics of the un- 
stable element by using it as a part of a stable system. 

Consider the system shown in Figure 8-115. Suppose that the element G,(s) is unstable.The 
complete system may be made stable by choosing a suitable linear element G,(s). We apply a si- 
nusoidal signal at the input. At steady state, all signals in the loop will be sinusoidal. We measure 
the signals e(t), the input to the unstable element, and x(t), the output of the unstable element. 
By changing the frequency [and possibly the amplitude for the convenience of measuring e ( t )  
and x(t)] of the input sinusoid and repeating this process, it is possible to obtain the frequency re- 
sponse of the unstable linear element. 

PROBLEMS 

B-8-1. Consider the unity-feedback system with the open- B-8-4. Sketch the Bode diagrams of the following three 
loop transfer function: transfer functions: 

10 
G(s) = - Tls + 1 

s + l  (a) G(s) = - 
T2s + 1 (TI > T2 > 0) 

Obtain the steady-state output of the system when it is sub- 
T,s - 1 

jected to each of the following inputs: (b) G(s) = ------ 
T2s + 1 (TI > T2 > 0) 

(a) r ( t )  = sin(t + 30') 
-T,s + 1 

(b) r( t)  = 2 cos(2t - 45") (c) G(s) = 
T,s + 1 (TI > T2 > 0) 

(c) r( t)  = sin ( t  + 30") - 2 cos (2t - 45") 

B-8-2. Consider the system whose closed-loop transfer B-&5. Plot the Bode diagram of 
function is 

C(s) - K(T,s + I) 
-- 10(s2 + 0.4s + 1) 
R(s) T , s + l  G(s) = 

s(s2 + 0.8s + 9) 
Obtain the steady-state output of the system when it is sub- 
jected to the input r(t) = R sin wt. B-8-6. Given 
B-8-3. Using MATLAB, plot Bode diagrams of G,(s) and 
Gz(s) given below. 

G,(s) is a minimum-phase system and G2(s) is a nonmini- 
mum-phase system. 

show that 
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B-8-7. Consider a unity-feedback control system with the 
following open-loop transfer function: 

This is a nonminimum-phase system.Two of the three open- 
loop poles are located in the right-half s plane as follows: 

Cblpen-loop poles at s = -1.4656 

Plot the Bode diagram of G(s) with MATLAB. Explain why 
the phase-angle curve starts from 0" and approaches +180°. 

B-8-8. Sketch the polar plots of the open-loop transfer 
function 

for the following two cases: 

(a) T , > T > O ,  T b > T > O  

(b) T  > T! > 0, T  > TI, > 0 

B-8-9. The pole-zero configurations of complex functions 
F,(s) and &(s) are shown in Figures 8-116(a) and (b), re- 
spectively. Assume that the closed contours in the s plane ' 

are those shown in Figures 8-116(a) and (b). Sketch quali- 
tatively the corresponding closed contours in the F,(s) plane 
and F2(s) plane. 

i w  1 s plane j w  4 s Plane 

(a) ('J) 

Figure 8-116 
(a) s-Plane representation of complex function 
F,(s) and a closed contour; (b) s-Plane 
representation of complex function F2(s) 
and a closed contour. 

B-8-10. Draw a Nyquist locus for the unity-feedback 
control system with the open-loop transfer function 

K ( l  - s) 
G(s) = 

s + l  

Using the Nyquist stability criterion, determine the stabili- 
ty of the closed-loop system. 

B-8-11. A system with the open-loop transfer function 

is inherently unstable. This system can be stabilized by 
adding derivative control. Sketch the polar plots for the 
open-loop transfer function with and without derivative 
control. 

B-8-12. Consider the closed-loop system with the following 
open-loop transfer function: 

10K(s + 0.5) 
G(s)H(s) = 

s2(s + 2)(s + 10) 

Plot both the direct and inverse polar plots of G(s)H(s) 
with K = 1 and K = 10. Apply the Nyquist stability crite- 
rion to the plots, and determine the stability of the system 
with these values of K. 

B-8-13. Consider the closed-loop system whose open-loop 
transfer function is 

~ ~ - 2 9  

G(s)H(s) = -- 
S 

Find the maximum value of K for which the system is stable. 

B-8-14. Draw a Nyquist plot of the following G(s): 

B-8-15. Consider a unity-feedback control system with the 
following open-loop transfer function: 

1 
G(s) = s3 + 0.22 + S + 1 

Draw a Nyquist plot of G(s) and examine the stability of 
the system. 

B-8-16. Consider a unity-feedback control system with the 
following open-loop transfer function: 

s2 + 2s + 1 
G(s) = 

s3 + 0.2s2 + S + 1 

Draw a Nyquist plot of G(s) and examine the stability of 
the closed-lo~p~system. 

Problems 



R-8-17. Consider the dnity-feedback system with the fol- 
lowing G(s) :  

Suppose that we choose the Nyquist path as shown in Fig- 
ure 8-117. Draw the corresponding G(jo)  locus in the G ( s )  
plane. Using the Nyquist stability criterion, determine the 
stability of the system. 

Figure 8-117 
Nyquist path. 

B-8-18. Consider the closed-loop system shown in Figure 
8-118. G ( s )  has no poles in the right-half s  plane. 

If the Nyquist plot of G ( s )  is as shown in Figure 
8-119(a), is this system stable? 

If the Nyquist plot is as shown in Figure 8-119(b), is this 
system stable? 

Figure 8-118 
Closed-loop system. 

B-8-19. A Nyquist plot of a unity-feedback system with the 
feedforward transfer function G(s)  is shown in Figure 8-120. 

If G ( s )  has one pole in the right-half s  plane, is the sys- 
tem stable'? 

If G ( s )  has no pole in the right-half s  plane, but has one 
zero in the right-half s plane, is the system stable? 

(a) 

'" t 

I 

(b) 

Figure 8-119 
Nyquist plots. 

Figure 8-120 
Nyquist plot. 

614 Chapter 8 / Frequency-Response Analysis 



Figure 8-121 
Control system. 

B-8-20. (Consider the unity-feedback control system with 
the following open-loop transfer function G(s) :  

Plot Nyquist diagrams of G ( s )  for K = 1,10, and 100. 

B-8-21. Consider a negative-feedback system with the fol- 
lowing open-loop transfer function: 

Plot the Nyquist diagram of G(s) .  If the system were a pos- 
itive-feedback one with the same open-loop transfer func- 
tion G(s) ,  what would the Nyquist diagram look like? 

B-8-22. (Consider the control system shown in Figure 8-121. 
Plot Nyquist diagrams of G(s), where 

for k = 0.3,0.5, and 0.7. 

B-S-23. Consider the closed-loop system shown in Figure 
8-122. Plot the Bode diagrams and Nyquist diagrams of G(s)  
for K = 0.2,0.5, and 2.Als0, plot the root-locus diagram of 
G ( s )  and locate the closed-loop poles of the system for 
K = 0.2,0.5, and 2. [G(s)  is the open-loop transfer function 
of the system.] 

B-8-24. Consider the system defined by 

There are four individual Nyquist plots involved in this sys- 
tem. Draw two Nyquist plots for the input ul in one diagram 
and two Nyquist plots for the input u2 in another diagram. 
Write a MATLAB program to obtain these two diagrams. 

B-8-25. Referring to Problem B-8-24, it is desired to plot 
only Y,(jw)/Ul(jw) for w > 0. Write a MATLAB program 
to produce such a plot. 

If it is desired to plot q(jw)/U,(jw) for -oo < w < co, 
what changes must be made in the MATLAB program? 

B-8-26. Consider the unity-feedback control system whose 
open-loop transfer function is 

Determine the value of a so that the phase margin is 45". 

B-8-27. Consider the system shown in Figure 8-123. Draw 
a Bode diagram of the open-loop transfer function G(s) .  
Determine the phase margin and gain margin. 

Figure &-I22 
Closed-loop system. 

Problems 

Figure 8-123 
Control system. 



B-8-28. Consider the system shown in Figure 8-124. 
Draw a Bode diagram of the open-loop transfer function 
G(s ) .  Determine the phase margin and gain margin with 
MATLAB. ' 

Figure 8-124 
Control system. 

Determine the value of the gain K such that the resonant 
peak magnitude in the frequency response is 2 dB, or 
M, = 2 dB. 

B-8-32. Figure 8-126 shows a block diagram of a process con- 
trol system. Determine the range of the gain K for stability. 

Figure 8-126 
Process control system. 

B-8-29. Consider a unity-feedback control system with the 
open-loop transfer function 

Determine the value of the gain K such that the phase 
margin is 50". What is the gain margin with this gain K? 

B-8-30. Consider the system shown in Figure 8-125. Draw 
a Bode diagram of the open-loop transfer function, and 
determine the value of the gain K such that the phase 
margin is SO0. What is the gain margin of this system with 
this gain K? 

Figure 8-125 
Control system. 

B-8-31. Consider a unity-feedback control system whose 
open-loop transfer function is 

B-8-33. Consider a closed-loop system whose open-loop 
transfer function is 

Determine the maximum value of the gain K for stability 
as a function of the dead time T. 

B-8-34. Sketch the polar plot of 

Show that, for the frequency range 0 < wT < 2 a ,  this 
equation gives a good approximation to the transfer function 
of transport lag, e-"". 

B-8-35. Figure 8-127 shows a Bode diagram of a transfer 
function G(s) .  Determine this transfer function. 

B-8-36. The experimentally determined Bode diagram of 
a system G(jw) is shown in Figure 8-128. Determine the 
transfer function G(s) .  
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Figure 8-127 
Bode diagram of a transfer function G(s) 

w in radlsec 

Figure 8-128 
Experimentally determined Bode diagram of a system. 

Problems 



Control Systems Design 
by Frequency Response 

9-1 INTRODUCTION 

This chapter's primary objective is to present procedures for the design and compensa- 
tion of single-input-single-output, linear, time-invariant control systems by the fre- 
quency-response approach. 

In Chapters 6 and 7, we presented root-locus analysis and design. The root-locus 
method was shown to be very useful to reshape the transient response characteristics of 
closed-loop control systems.The root-locus approach gives us direct information on the 
transient response of the closed-loop system. The frequency-response approach, on the 
other hand, gives us this information only indirectly. However, as we shall see in this 
chapter, the frequency-response approach is very useful in designing control systems. 

For any design problem, the designer will do well to use both approaches to the design 
and choose the compensator that most closely produces the desired closed-loop response. 

Frequency-Response Approach to Control System Design. It is important to 
note that in a control system design, transient-response performance is usually most im- 
portant. In the frequency-response approach, we specify the transient-response per- 
formance in an indirect manner. That is, the transient-response performance is specified 
in terms of the phase margin, gain margin, resonant peak magnitude (they give a rough 
estimate of the system damping); the gain crossover frequency, resonant frequency, band- 
width (they give a rough estimate of the speed of transient response); and static error 
constants (they give the steady-state accuracy). Although the correlation between the 
transient response and frequency response is indirect, the frequency domain specifica- 
tions can be conveniently met in the Bode diagram approach. 



After the open loop has been designed by the frequency-response method, the closed- 
loop poles and zeros can be determined.The transient-response characteristics must be 
checked to see whether the designed system satisfies the requirements in the time do- 
main. If it does not, then the compensator must be modified and the analysis repeated 
until a satisfactory result is obtained. 

Design in the frequency domain is simple and straightforward. The frequency-re- 
sponse plot indicates clearly the manner in which the system should be modified, al- 
though the exact quantitative prediction of the transient-response characteristics cannot 
be made. The frequency-response approach can be applied to systems or components 
whose dynamic characteristics are given in the form of frequency-response data. Note 
that because of difficulty in deriving the equations governing certain components, such 
as pneumatic and hydraulic components, the dynamic characteristics of such compo- 
nents are usually determined experimentally through frequency-response tests.The ex- 
perimentally obtained frequency-response plots can be combined easily with other such 
plots when the Bode diagram approach is used. Note also that in dealing with high-fre- 
quency noises we find that the frequency-response approach is more convenient than 
other approaches. 

There are basically two approaches in the frequency-domain design. One is the polar 
plot approach and the other is the Bode diagram approach. When a compensator is 
added, the polar plot does not retain the original shape, and, therefore, we need to draw 
a new polar plot, which will take time and is thus inconvenient. On the other hand, a Bode 
diagram of the compensator can be simply added to the original Bode diagram, and 
thus plotting the complete Bode diagram is a simple matter. Also, if the open-loop gain 
is varied, the magnitude curve is shifted up or down without changing the slope of the 
curve, and the phase curve remains the same. For design purposes, therefore, it is best 
to work with the Bode diagram. 

A common approach to the Bode diagram is that we first adjust the open-loop gain 
so that the requirement on the steady-state accuracy is met. Then the magnitude and 
phase curves of the uncompensated open loop (with the open-loop gain just adjusted) 
is plotted. If the specifications on the phase margin and gain margin are not satisfied, then 
a suitable compensator that will reshape the open-loop transfer function is determined. 
Finally, if there are any other requirements to be met, we try to satisfy them, unless some 
of them are mutually contradictory. 

Information Obtainable from Open-Loop Frequency Response. The low- 
frequency region (the region far below the gain crossover frequency) of the locus indi- 
cates the steady-state behavior of the closed-loop system.The medium-frequency region 
(the region near the -1. 4 jO point) of the locus indicates relative stability. The high- 
frequency region (the region far above the gain crossover frequency) indicates the 
complexity of the system. 

Requirements on Open-Loop Frequency Response. We might say that, in many 
practical cases, compensation is essentially a compromise between steady-state accura- 
cy and relative stability. 

To have a high value of the velocity error constant and yet satisfactory relative sta- 
bility, we find it necessary to reshape the open-loop frequency-response curve. 

The gain in the low-frequency region should be large enough, and near the gain 
crossover frequency, the slope of the log-magnitude curve in the Bode diagram should 
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Figure 9-1 
(a) Examples of 
desirable and 
undesirable open- 
loop frequency- 
response curves; 
(b) examples of 
desirable and 
undesirable closed- 
loop frequency: 
response curves. 

Desirable 

hldq & 

Desirable 

M Circle 

Desirable 

i 

Undesirable 

(b) 

Figure 9-2 
Reshaping of the 
open-loop 
frequency-response 
curve. 

be -20 dB/decade.This slope should extend over a sufficiently wide frequency band to 
assure a proper phase margin. For the high-frequency region, the gain should be atten- 
uated as rapidly as possible to minimize the effects of noise. 

Examples of generally desirable and undesirable open-loop and closed-loop 
frequency-response curves are shown in Figure 9-1. 

Referring to Figure 9-2, we see that the reshaping of the open-loop frequency- 
response curve may be done if the high-frequency portion of the locus follows the G,(jw) 
locus, while the low-frequency portion of the locus follows the G,(jw) 1ocus.The reshaped 
locus G,(jw)G(jw) should have reasonable phase and gain margins or should be tangent 
to a proper M circle, as shown. 

Basic Characteristics of Lead, Lag, and Lag-Lead Compensation. Lead com- 
pensation essentially yields an appreciable improvement in transient response and a 
small change in steady-state accuracy. It may accentuate high-frequency noise effects. Lag 
compensation, on the other hand, yields an appreciable improvement in steady-state 
accuracy at the expense of increasing the transient-response time. Lag compensation 
will suppress the effects of high-frequency noise signals. Lag-lead compensation com- 
bines the characteristics of both lead coinpensation and lag compensation.'r'he use of a 
lead or lag compensator raises the order of the system by 1 (unless cancellation occurs 
between the zero of the compensator and a pole of the uncompensated open-loop trans- 
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fer function).The use of a lag-lead compensator raises the order of the system by 2 [un- 
less cancellation occurs between zero(s) of the lag-lead compensator and pole(s) of the 
uncompensated open-loop transfer function], which means that the system becomes 
more complex and it is more difficult to control the transient response behavior.The par- 
ticular situation determines the type of compensation to be used. 

Outline of the Chapter. Section 9-1 has presented introductory material. Section 
9-2 discusses lead compensation by the Bode diagram approach and Section 9-3 treats 
lag compensation by the Bode diagram approach. Section 9-4 discusses lag-lead com- 
pensation techniques based on the Bode diagram approach. Section 9-5 gives conclud- 
ing comments on the frequency-response approach to the control systems design. 

9-2 LEAD COMPENSATION 

We shall first examine the frequency characteristics of the lead compensator. Then we 
present a design technique for the lead compensator by use of the Bode diagram. 

Characteristics of Lead Compensators. Consider a lead compensator having the 
following transfer function: 

Figure 9-3 
Polar plot of a lead 
Compensator 
ct.(jwT + l ) / ( jwaT + I) ,  
where 0 < a  < 1. 

where a is called the attenuation factor of the lead compensator. It  has a zero at 
s = - l /T  and a pole at s = -1/(aT). Since 0 < a < 1, we see that the zero is always 
located to the right of the pole in the complex plane. Note that for a small value of a the 
pole is located far to the left. The minimum value of a is limited by the physical con- 
struction of the lead compensator.The minimum value of a is usually taken to be about 
0.05. (This means that the maximum phase lead that may be produced by a lead com- 
pensator is about 6 5 O . )  [See Equation (9-I).] 

Figure 9-3 shows the polar plot of 

Section 9-2 / Lead Compensation 



with Kc = 1. For a given value of a, the angle between the positive real axis and the tan- 
gent line drawn from the origin to the semicircle gives the maximum phase-lead angle, 
4,. We shall call the frequency at the tangent point w,. From Figure 9-3 the phase angle 
at w = w, is 4,, where 

1 - a  

10 

Equation (9-1) relates the maximum phase-lead angle and the value of a. 
Figure 9-4 shows the Bode diagram of a lead compensator when Kc = 1 and a = 0.1. 

The corner frequencies for the lead compensator are w = 1/T and w = l / ( a T )  = 10/T. 
By examining Figure 9-4, we see that w, is the geometric mean of the two corner fre- 
quencies, or 

dB 0 

-10 

1 
log w, = (log - + Log - 

2 T 

- ........................................................... 

........................................................... - 

Hence, 

-20 

90" - .......................................................... i ......................................................... " ............................................................... - - ............. ....(_ ............... j.. ........ ..( ...... 
Figure P-4 
Bode diagram of a 
lead compensator OA - I  TI - - 10 1Lo 
a ( j ~ T  + l ) / ( j ~ a T  + I) ,  T T T T T 
where a = 0.1. w in radlsec 

As seen from Figure 9-4, the lead compensator is basically a high-pass filter. (The high 
frequencies are passed, but low frequencies are attenuated.) 

Lead Compensation Techniques Based on the Frequency-Response Approach. 
The primary function of the lead compensator is to reshape the frequency-response 
curve to provide sufficient phase-lead angle to offset the excessive phase lag associated 
with the components of the fixed system. 

Consider the system shown in Figure 9-5. Assume that the performance specifica- 
tions are given in terms of phase margin, gain margin, static velocity error constants, 
and so on. The procedure for designing a lead compensator by the frequency-response 
approach may be stated as follows: 
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Figure 9-5 
Control system. 

1. Assume the following lead compensator: 

Define 

K,a = K 

Then 

The open-loop transfer function of the compensated system is 

where 

G,(s) = KG(s)  

Determine gain K to satisfy the requirement on the given static error constant. 
2. Using the gain K thus determined, draw a Bode diagram of G,(jw), the gain- 

adjusted but uncompensated system. Evaluate the phase margin. 
3. Determine the necessary phase-lead angle to be added to the system. Add an 

additional 5" to 12" to the phase-lead angle required, because the addition of the 
lead compensator shifts the gain crossover frequency to the right and decreases the 
phase margin. 

4. Determine the attenuation factor a by use of Equation (9-1). Determine the 
frequency where the magnitude of the uncompensated system Gl(jw) is equal to 
-20 log (l/&). Select this frequency as the new gain crossover frequency. This 
frequency corresponds to w,, = 1 / ( 6 ~ ) ,  and the maximum phase shift 4, occurs 
at this frequency. 

5. Determine the corner frequencies of the lead compensator as follows: 

1 
Zero of lead compensator: o = - 

T 

1 
Pole of lead compensator: o = - 

aT 
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6. Using the  value of K determined in step 1 and  that  of a determined in step 4, 
calculate constant Kc from 

7. Check the gain margin to  be  sure it is satisfactory. If not, repeat the design process 
by modifying the pole-zero location of the  compensator until a satisfactory result 
is obtained. 

EXAMPLE 9-1 Consider the system shown in Figure 9-6. The open-loop transfer function is 

It is desired to design a compensator for the system so that the static velocity error constant K,, 
is 20 sec-', the phase margin is at least 50°, and the gain margin is at least 10 dB. 

We shall use a lead compensator of the form 

The compensated system will have the open-loop transfer function G,(s)G(s). 
Define 

where K = K,a. 
The first step in the design is to adjust the gain K to meet the steady-state performance spec- 

ification or to provide the required static velocity error constant. Since this constant is given as 
20 sec-', we obtain 

Ts + 1 s4 K 
= limsG,(s)G(s) = $ i s  - G,(s) = lim ------ = 2K = 20 

S+O aTs + 1 3-0 s(s + 2) 

With K = 10, the compensated system will satisfy the steady-state requirement. 
We shall next plot the Bode diagram of 

Figure 9-6 
Control system. 
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Figure 9-7 shows the magnitude and phase-angle curves of G, (jw).  From this plot, the phase and 
gain margins of the system are found to be 17" and +co dB, respectively. (A phase margin of 17" 
implies that the system is quite oscillatory. Thus, satisfying the specification on the steady state 
yields a poor transient-response performance.) The specification calls for a phase margin of at 
least 50". We thus find the additional phase lead necessary to satisfy the relative stability re- 
quirement is 33O.To achieve a phase margin of 50" without decreasing the value of K, the lead com- 
pensator must contribute the required phase angle. 

Noting that the addition of a lead compensator modifies the magnitude curve in the Bode di- 
agram, we realize that the gain crossover frequency will be shifted to the right. We must offset the 
increased phase lag of G,(jw) due to this increase in the gain crossover frequency. Considering 
the shift of the gain crossover frequency, we may assume that +,, the maximum phase lead re- 
quired, is approximately 38". (This means that 5" has been added to compensate for the shift in 
the gain crossover frequency.) 

Since 

I - n  
sin 4, = --- 

l + n  

+,, = 38" corresponds to n  = 0.24. once the attenuation factor a has been determined on the 
basis of the required phase-lead angle, the next step is to determine the corner frequencies w  = 1/T 
and w = l / ( a T )  of the lead compensator. To do so, we first note that the maximum phase-lead 
angle +,,, occurs at the geometric mean of the two corner frequencies, or w  = ~/(GT). [See Equa- 
tion (9-2).] The amount of the modification in the magnitude curve at w  = l / ( & ~ )  due to the 
inclusion of the term (Ts  + l ) / ( n T s  + 1 )  is 
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Note that 

and IG, (jw)( = -6.2 dB corresponds tow = 9 rad/sec. We shall select this frequency to be the new 
gain crossover frequency w,. Noting that this frequency corresponds to l / ( G T ) ,  or 
w, = l/(&T), we obtain 

and 

The lead compensator thus determined is 

where the value of Kc is determined as 

Thus, the transfer function of the compensator becomes 

s + 4.41 - 0.227s + 1 
G, (s) = 41.7 ------ - 

s + 18.4 lo 0.054s + 1 

Note that 

The magnitude curve and phase-angle curve for G,(jw)/lO are shown in Figure 9-8. The 
compensated system has the following open-loop transfer function: 

The solid curves in Figure 9-8 show the magnitude curve and phase-angle curve for the compen- 
sated system. Note that the bandwidth is approximately equal to the gain crossover frequency. The 
lead compensator causes the gain crossover frequency to increase from 6.3 to 9 rad/sec. The in- 
crease in this frequency means an increase in bandwidth. This implies an increase in the speed of 
response.The phase and gain margins are seen to be approximately 50" and +cn dB, respectively. 
The compensated system shown in Figure 9-9 therefore meets both the steady-state and the rel- 
ative-stability requirements. 

Note that for type 1 systems, such as the system just considered, the value of the static veloc- 
ity error constant K, is merely the value of the frequency corresponding to the intersection of 
the extension of the initial -20-dB/decade slope line and the O-dB line, as shown in Figure 9-8. 
Note also that we have changed the slope of the magnitude curve near the gain crossover frequency 
from -40 dB/decade to -20 dB/decade. 
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Figure 9-8 
Bode diagram for the 
compensated system. 

Figure 9L9 
Compensated 
system. 

Figure 9-10 shows the polar plots of the gain-adjusted but uncompensated open-loop trans- 
fer function G,(jw) = 10 G(jo) and the compensated open-loop transfer function G,(jo)G(jw). 
From Figure 9-10, we see that the resonant frequency of the uncompensated system is about 
6 rad/sec and that of the compensated system is about 7 rad/sec. (This also indicates that the 
bandwidth has been increased.) 

From Figure 9-10, we find that the value of the resonant peak M, for the uncompensated sys- 
tem with K = 10 is 3.The value of M ,  for the compensated system is found to be 1.29.This clear- 
ly shows that the compensated system has improved relative stability. 

Note that, if the phase angle of G l ( j w )  decreases rapidly near the gain crossover frequency, 
lead compensation becomes ineffective because the shift in the gain crossover frequency to the 
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Figure 9-10 
Polar plots of the 
gain-adjusted but 
uncompensated 
open-loop transfer 
function GI and 
compensated open- 
loop transfer 
function G,G. 

right makes it difficult to provide enough phase lead at the new gain crossover frequency. This 
means that, to provide the desired phasemargin, we must use a very small value for a.The value 
of a,  however, should not be too small (smaller than 0.05) nor should the maximum phase lead 
9, be too large (larger than 6S0),  because such values will require an additional gain of excessive 
value. [If more than 65" is needed, two (or more) lead networks may be used in series with an iso- 
lating amplifier.] 

Finally, we shall examine the transient-response characteristics of the designed system. We 
shall obtain the unit-step response and unit-ramp response curves of the compensated and 
uncompensated systems with MATLAB. Note that the closed-loop transfer functions of the 
uncompensated and compensated systems are given, respectively, by 

and 

MATLAB programs for obtaining the unit-step response and unit-ramp response curves are given 
in MATLAB Program 9-1. Figure 9-11 shows the unit-step response curves of the system before 
and after compensation. Also, Figure 9-12 depicts the unit-ramp response curves before and after 
compensation. These response curves indicate that the designed system is satisfactory. 
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MATLAB Program 9-1 

%*****Unit-step responses***** 

num = [O 0 41; 
den = [ I  2 41; 
numc = [O 0 166.8 735.5881; 
denc = [I 20.4 203.6 735.5881; 
t = 0:0.02:6; 
[c l  ,XI ,t] = step(num,den,t); 
[c2,x2,t] = step(numc,denc,t); 
plot (t,cl ,'.',t,c2,'-'1 
grid 
title('Unit-Step Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('0utputs') 
te~t(0.4~1.31 ,'Compensated system') 
text(l.55,0.88,'Uncompensated system') 

numl = 10 0 0 41; 
den1 = 11 2 4 01; 
numl c = [O 0 0 166.8 735.5881; 
denlc = [ l  20.4 203.6 735.588 01; 
t = 0:0.02:5; 
[y l  ,zl ,tl = step(num1 ,den1 ,I); 
[y2,z2,tl = step(num1 c,denl c,t); 
plot(t,yl ,'.',t,y2,'-',t,t,'--'I 
grid 
title('Unit-Ramp Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('Outputsl) 
text(0.89,3.7,'Compensated system') 
text(2.25,l . I  ,'Uncompensated system') 

It is noted that the closed-loop poles for the compensated system are located as follows: 

Because the dominant closed-loop poles are located far from the jo axis, the response damps out 
quickly. 
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Figure 9-11 
Unit-step response 
curves of the 
compensated and 
uncompensated 
systems. 

1 Unit-Ramp Responses of Compensated and Uncompensated Systems 

Figure 9-12 
Unit-ramp response 
curves of the 
compensated and 
uncompensated 
systems. 

45 - 

4 - 
Compensated system 

3 5  - 

3 - 

t Sec 

9-3 LAG COMPENSATION 

In this section we first discuss the Nyquist plot and Bode diagram of the lag compensator. 
Then we present lag compensation techniques based on the frequency-response approach. 

Characteristics of Lag Compensators. Consider a lag compensator having the 
following transfer function: 
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Figure 9-13 
Polar plot of a lag 
compensator 
K,P(jwT + l ) / ( j w p T  + 1 ) .  

Figure 9-14 
Bode diagram of a 
lag compensator 
P(jwT + I ) / ( j 4 T  + I),  
with p = :LO. 

In the complex plane, a lag compensator has a zero at s = -1/T and a pole at 
s = -1/(PT). The pole is located to the right of the zero. 

Figure 9-13 shows a polar plot of the lag compensator. Figure 9-14 shows a Bode di- 
agram of the compensator, where Kc = 1 and p = 10. The corner frequencies of the lag 
compensator are at w = 1/T and w = l/(PT). As seen from Figure 9-14, where the val- 
ues of Kc and ,L3 are set equal to 1 and 10, respectively, the magnitude of the lag com- 
pensator becomes 10 (or 20 dB) at low frequencies and unity (or 0 dB) at high 
frequencies. Thus, the lag compensator is essentially a low-pass filter. 

Lag Compensation Techniques Based on the Frequency-Response Approach. 
The primary function of a lag compensator is to provide attenuation in the high- 
frequency range to give a system sufficient phase margin. The phase-lag characteristic 
is of no consequence in lag compensation. 

The procedure for designing lag compensators for the system shown in Figure 9-5 
by the frequency-response approach may be stated as follows: 

1. Assume the following lag compensator: 
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Define 

Then 

The open-loop transfer function of the compensated system is 

where 

Determine gain K to satisfy the requirement on the given static velocity error 
constant. 

2. If the gain-adjusted but uncompensated system G,( jw)  = K G ( j w )  does not sat- 
isfy the specifications on the phase and gain margins, then find the frequency point 
where the phase angle of the open-loop transfer function is equal to -180" plus the 
required phase margin. The required phase margin is the specified phase margin 
plus 5" to 12'. (The addition of 5" to 12" compensates for the phase lag of the lag 
compensator.) Choose this frequency as the new gain crossover frequency. 

3. To prevent detrimental effects of phase lag due to the lag compensator, the pole 
and zero of the lag compensator must be located substantially lower than the new 
gain crossover frequency. Therefore, choose the corner frequency w = 1/T (cor- 
responding to the zero of the lag compensator) 1 octave to 1 decade below the 
new gain crossover frequency. (If the time constants of the lag compensator do 
not become too large, the corner frequency w = 1/T may be chosen 1 decade 
below the new gain crossover frequency.) 

Notice that we choose the compensator pole and zero sufficiently small. Thus 
the phase lag occurs at the low-frequency region so that it will not affect the phase 
margin. 

4. Determine the attenuation necessary to bring the magnitude curve down to 0 dB 
at the new gain crossover frequency. Noting that this attenuation is -20 logP, de- 
termine the value of p. Then the other corner frequency (corresponding to the 
pole of the lag compensator) is determined from w = l/(PT). 

5. Using the value of K determined in step 1 and that of @ determined in step 4, cal- 
culate constant K, from 
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EXAMPLE 9-2 Consider the system shown in Figure 9-15.The open-loop transfer function is given by 

It is desired to compensate the system so that the static velocity error constant K,  is 5 sec-', the 
phase margin is at least 40°, and the gain margin is at least 10 dB. 

We shall use a lag compensator of the form 

Define 

Define also 

The first step in the design is to adjust the gain K to meet the required static velocity error con- 
stant. Thus, 

Ts + 1 
K, = lim sG,(s)G(s) = lim s ------- 

s-0  
Gl(s) = limsG,(s) 

s - 0  PTs + 1 s+o 

= lim 
s K = K = 5  

s+o s(s + 1)(0.5s + 1) 

With K = 5, the compensated system satisfies the steady-state performance requirement. 
We shall next plot the Bode diagram of 

Figure 9-15 
Control system. 
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Figure 9-16 
Bode diagrams for 
GI (gain-adjusted but 
uncompensated 
open-loop transfer 
function), G, 
(compensator), and 
G,G (compensated 
open-loop transfer 
function). 
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The magnitude curve and phase-angle curve of Gl(jw) are shown in Figure 9-16. From this plot, 
the phase margin is found to be -20", which means that the gain-adjusted but uncompensated 
system is unstable. 

Noting that the addition of a lag compenSator modifies the phase curve of the Bode diagram, we 
must allow 5" to 12' to the specified phase margin to compensate for the modification of the phase 
curve. Since the frequency corresponding to a phase margin of 40" is 0.7 rad/sec, the new gain crossover 
frequency (of the compensated system) must be chosen near this value. To avoid overly large time 
constants for the lag compensator, we shall choose the corner frequency o = 1/T (which corresponds 
to the zero of the lag compensator) to be 0.1 radjsec. Since this comer frequency is not too far below 
the new gain crossover frequency, the modification in the phase curve may not be small. Hence, we add 
about 12" to the given phase margin as an allowance to account for the lag angle introduced by the lag 
compensator.The required phase margin is now 52O.The phase angle of the uncompensated open-loop 
transfer function is -128" at about w = 0.5 rad/sec. So we choose the new gain crossover frequency 
to be 0.5 rad/sec.To bring the magnitude curve down to 0 dB at this new gain crossover frequency, the 
lag compensator must give the necessary attenuation, which in this case is -20 dB. Hence, 

1 
20 log - = -20 

P 

The other corner frequency o = l(PT), which corresponds to the pole of the lag compen- 
sator, is then determined as 
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Figure 9-17 
Log-magnitude- 
versus-phase plots of 
G, (gain-adjusted but 
uncompensated 
open-loop transfer 
function) and G,G 
(compensated open- 
loop transfer 
function). 

Thus, the transfer function of the lag compensator is 

Since the gain K was determined to be 5 and /3 was determined to be 10, we have 

The open-loop transfer function of the compensated system is 

The magnitude and phase-angle curves of C,(jo)G(jw) are also shown in Figure 9-16. 
The phase margin of the compensated system is about 40°, which is the required value. The 

gain margin is about 11 dB, which is quite acceptable.The static velocity error constant is 5 sec-', 
as required. The compensated system, therefore, satisfies the requirements on both the steady 
state and the relative stability. 

Note that the new gain crossover frequency is decreased from approximately 1 to 0.5 rad/sec. 
This means that the bandwidth of the system is reduced. 

To further show the effects of lag compensation, the log-magnitude-versus-phase plots of the gain- 
adjusted but uncompensated system Gl(jo) and of the compensated system G,(jw)G(jw) are shown 
in Figure 9-17.The plot of G,(jo) clearly shows that the gain-adjusted but uncompensated system is 
unstable.The addition of the lag coml;ensator stabilizes the system.The plot of G,(jw)G(jw) is tan- 
gent to the M = 3 dB locus. Thus, the resonant peak value is 3 dB, or 1.4, and this peak occurs at 
o = 0.5 radlsec. 

Compensators designed by different methods or by different designers (even using the same ap- 
proach) may look sufficiently different. Any of the well-designed systems, however, will give similar 
transient and steady-state performance. The best among many alternatives may be chosen from the 
economic consideration that the time constants of the lag compensator should not be too large. 

Section 9-3 / Lag Compensation 



Finally, we shall examine the unit-step response and unit-ramp response of the compensated 
system and the original uncompensated system without gain adjustment. The closed-loop trans- 
fer functions of the compensated and uncompensated systems are 

and 

respectively. MATLAB Program 9-2 will produce the unit-step and unit-ramp responses of the 
- - 

compensated and uncompensated systems.The resulting unit-step response curves and unit-ramp 
response curves are shown in Figures 9-18 and 9-19, respectively. From the response curves we 
find that the designed system satisfies the given specifications and is satisfactory. 

MATLAB Program 9-2 

num = [O 0 0 1 I; 
den = [0.5 1.5 1 11; 
numc = [O 0 0 50 51; 
denc = [SO 150.5 101.5 51 51; 
t = 0:0.1:40; 
[c l  ,XI ,tl = step(num,den,t); 
[c2,x2,t] = step(numc,denc,t); 
plot(t,cl ,'.',t,cZtl-') 
grid 
title('Unit-Step Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('0utputs') 
text(12.7,1.27,'Compensated system') 
text(l2.2,0.7,'Uncompensated system') 

numl = [O 0 0 0 11; 
denl = [0.5 1.5 1 1 01; 
numlc = [O 0 0 0 50 51; 
denl c = [50 150.5 101.5 51 5 01; 
t = 0:0.1:20; 
[y l  ,zl ,tl = step(num1 ,den1 ,t); 
[y2,z2,tl = stepbum1 c,denl c,t); 
plot(t,yl ,'.',t,y2,'-',t,t,'--'I; 
grid 
title('Unit-Ramp Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabeli'Outputsl) 
text(8.3,3,'Compensated system') 
text(8.3,5,'Uncompensated system') 
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Unit-Step Rcsponses of Compensated and Uncompensated Systems 

Figure 9-18 
Unit-step response 
curves for the 
compensated and 
uncompensated 
systems (Example 
9-2). 

Figure 9-19 
Unit-ramp response 
curves for the 
compensated and 
uncompensated 
systems (Example 
9-2). ' 

t Sec 

Unit-Ramp Responses of Compensated and Uncompensated Systems 

"0 2 4 6 8 10 12 14 16 18 20 
t Sec 

Note that the zero and poles of the designed closed-loop system are as follows: 

I Zero at s = -0.1 

1 Poles at s = -0.2859 rt 10.5196, s = -0.1228, s = -2.3155 

The dominant closed-loop poles are very close to the jw axis with the result that the response 
is slow. Also, a pair of the closed-loop pole at s = -0.1228 and the zero at s = -0.1 produces a 
slowly decreasing tail of small amplitude. 

Section 9-3 / Lag Compensation 637 



A Few Comments on Lag Compensation. 

1. Lag compensators are essentially low-pass filters. Therefore, lag compensation 
permits a high gain at low frequencies (which improves the steady-state per- 
formance) and reduces gain in the higher critical range of frequencies so as to im- 
prove the phase margin. Note that in lag compensation we utilize the attenuation 
characteristic of the lag compensator at high frequencies rather than the phase- 
lag characteristic. (The phase-lag characteristic is of no use for compensation 
purposes.) 

2. Suppose that the zero and pole of a lag compensator are located at s = -z and 
s = -p, respectively.Then the exact location of the zero and pole is not critical pro- 
vided that they are close to the origin and the ratio z / p  is equal to the required mul- 
tiplication factor of the static velocity error constant. 

It should be noted, however, that the zero and pole of the lag compensator 
should not be located unnecessarily close to the origin, because the lag compen- 
sator will create an additional closed-loop pole in the same region as the zero and 
pole of the lag compensator. 

The closed-loop pole located near the origin gives a very slowly decaying tran- 
sient response, although its magnitude will become very small because the zero of 
the lag compensator will almost cancel the effect of this pole. However, the tran- 
sient response (decay) due to this pole is so slow that the settling time will be ad- 
versely affected. 

It is also noted that in the system compensated by a lag compensator the trans- 
fer function between the plant disturbance and the system error may not involve 
a zero that is near this pole. Therefore, the transient response to the disturbance 
input may last very long. 

3. The attenuation due to the lag compensator will shift the gain crossover frequen- 
cy to a lower frequency point where the phase margin is acceptable. Thus, the lag 
compensator will reduce the bandwidth of the system and will result in slower 
transient response. [The phase angle curve of G,(jw)G(;w) is relatively unchanged 
near and above the new gain crossover frequency.] 

4. Since the lag compensator tends to integrate the input signal, it acts approximately 
as a proportional-plus-integral controller. Because of this, a lag-compensated sys- 
tem tends to become less stable. To avoid this undesirable feature, the time con- 
stant T should be made sufficiently larger than the largest time constant of the 
system. 

5. Conditional stability may occur when a system having saturation or limiting is 
compensated by use of a lag compensator. When the saturation or limiting takes 
place in the system, it reduces the effective loop gain. Then the system becomes 
less stable and unstable operation may even result, as shown in Figure 9-20. To 
avoid this, the system must be designed so that the effect of lag compensation be- 
comes significant only when the amplitude of the input to the saturating ele- 
ment is small. (This can be done by means of minor feedback-loop 
compensation.) 
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Figure 9-20 
Bode diagram of ,a 
conditionally stable 
system. 

9-4 LAG-LEA.D COMPENSATION 

We shall first examine the frequency-response characteristics of the lag-lead compen- 
sator. Then we present the lag-lead compensation technique based on the frequency- 
response approach. 

Characteristic of Lag-Lead Compensator. Consider the lag-lead compensator 
given by 

where y > 1 and P > 1. The term 

produces the effect of the lead network, and the term 

produces the effect of the lag network. 
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Figure 9-21 
Polar plot of a 
lag-lead 
compensator given 
by Equation (9-3), 
with Kc = 1 and 
Y = P. 

In designing a lag-lead compensator, we frequently chose y = P. (This is not nec- 
essary. We can, of course, choose y f p.) In what follows, we shall consider the case 
where y = p. The polar plot of the lag-lead compensator with K, = 1 and y = /3 be- 
comes as shown in Figure 9-21. It can be seen that, for 0 < w < w,,  the compensator 
acts as a lag compensator, while for w, < w < oo it acts as a lead compensator.The fre- 
quency w,  is the frequency at which the phase angle is zero. It is given by 

(To derive this equation, see Problem A-9-2.) 
Figure 9-22 shows the Bode diagram of a lag-lead compensator when Kc = 1, 

y = p = 10, and T, = lOT,. Notice that the magnitude curve has the value 0 dB at the 
low- and high-frequency regions. 

Figure 9-22 
Bode diagram of a 
lag-lead 
compensator given 
by Equation (9-3) 
with Kc = 1, 
y = p = 10, and 
T2 = IOT,. 
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Lag-Lead Compensation Based on the Frequency-Response Approach. The 
design of a lag-lead compensator by the frequency-response approach is based on the 
combination of the design techniques discussed under lead compensation and lag 
compensation. 

Let us assume that the lag-lead compensator is of the following form: 

where p > 1. The phase lead portion of the lag-lead compensator (the portion involv- 
ing T I )  alters the frequency-response curve by adding phase-lead angle and increasing 
the phase margin at the gain crossover frequency. The phase-lag portion (the portion in- 
volving T,) provides attenuation near and above the gain crossover frequency and there- 
by allows an increase of gain at the low-frequency range to improve the steady-state 
performance. 

We shall illustrate the details of the procedures for designing a lag-lead compen- 
sator by an example. 

EXAMPLE 9-3 Consider the unity-feedback system whose open-loop transfer function is 

It is desired that the static velocity error constant be 10 sec-I, the phase margin be SO0, and the 
gain margin be 10 dB or more. 

Assume that we use the lag-lead compensator given by Equation (9-4). [Note that the phase- 
lead portion increases both the phase margin and the system bandwidth (which implies increas- 
ing the speed of response). The phase lag portion maintains the low-frequency gain.] 

The open-loop transfer function of the compensated system is G,.(s)G(s). Since the gain K of 
the plant is adjustable, let us assume that K,. = 1. Then, J!$" GG,(s) = 1. 

From the requirement on the static velocity error constant, we obtain 

Hence, 

We shall next draw the Bode diagram of the uncompensated system with K = 20, as shown in Fig- 
ure 9-23.The phase margin of the gain-adjusted but uncompensated system is found to be -32", 
which indicates that the gain-adjusted but uncompensated system is unstable. 

The next step in the design of a lag-lead compensator is to choose a new gain crossover fre- 
quency.From the phase-angle curve for G(jw), we notice that /G(jw) = -180' at w = 1.5 rad/sec. 
It is convenient to choose the new gain crossover frequency to be 1.5 rad/sec so that the phase- 
lead angle required at w = 1.5 rad/sec is about SO0, which is quite possible by use of a single 
lag-lead network. 

Once we choose the gain crossover frequency to be 1.5 rad/sec, we can determine the corner 
frequency of the phase-lag portion of the lag-lead compensator. Let us choose the corner fre- 
quency w = 1/T2 (which corresponds to the zero of the phase-lag portion of the compensator) to 
be 1 decade below the new gain crossover frequency, or at w = 0.15 rad/sec. 
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Figure 9-23 
Bode diagrams for G 
(gain-adjusted but 
uncompensated 
open-loop transfer 
function), G, 
(compensator), and 
G,G (compensated 
open-loop transfer 
function). 

Recall that for the lead compensator the maximum phase-lead angle 4 ,  is given by Equation 
(9-I), where a is l/p in the present case. By substituting a = 1/P in Equation (9-I), we have 

1 
1 - -  

Notice that p = 10 corresponds to 4, = 54.9O. Since we need a 50" phase margin, we may choose 
p = 10. (Note that we will be using several degrees less than the maximum angle, 54.9O.) Thus, 

p = 10 

Then the corner frequency w = 1/PT2 (which corresponds to the pole of the phase-lag portion of 
the compensator) becomes w = 0.015 rad/sec. The transfer function of the phase-lag portion of 
the lag-lead compensator then becomes 

The phase-lead portion can be determined as follows: Since the new gain crossover frequen- 
cy is w = 1.5 rad/sec, from Figure 9-23, G(j1.5) is found to be 13 dB. Hence, if the lag-lead com- 
pensator contributes -13 dB at w = 1.5 rad/sec, then the new gain crossover frequency is as 
desired. From this requirement, it is possible to draw a straight line of slope 20 dB/decade, pass- 
ing through the point (1.5 rad/sec, -13 dB). The intersections of this line and the 0-dB line and 
-20-dB line determine the corner frequencies. Thus, the corner frequencies for the lead portion 
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Figure 9-24 
Polar plots of G (gain 
adjusted) and G,G. 

are w = 0.7 rad/sec and w = 7 rad/sec. Thus, the transfer function of the lead portion of the 
lag-lead compensator becomes 

Combining the transfer functions of the lag and lead portions of the compensator, we obtain the 
transfer function of the lag-lead compensator. Since we chose Kc = 1, we have 

The magnitude and phase-angle curves of the lag-lead compensator just designed are shown in 
Figure 9-23. The open-loop transfer function of the compensated system is 

The magnitude and phase-angle curves of the system of Equation (9-5) are also shown in Figure 
9-23.The phase margin of the compensated system is 50°, the gain margin is 16 dB, and the stat- 
ic velocity error constant is 10 sec-'. All the requirements are therefore met, and the design has 
been completed. 

Figure 9-24 shows the polar plots of G(jw) (gain-adjusted but uncompensated open-loop 
transfer function) and G,(jw)G(jw) (compensated open-loop transfer function).The G,(jw)G(jw) 
locus is tangent to the M = 1.2 circle at about w = 2 rad/sec. Clearly, this indicates that the com- 
pensated system has satisfactory relative stability. The bandwidth of the compensated system is 
slightly larger than 2 rad/sec. 
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Figure 9-25 
Unit-step response of 
the compensated 
system (Example 
9-3). 

Figure 9-26 
Unit-ramp response 
of the compensated 
system (Example 
9-3). 

r Sec 

In the following we shall examine the transient-response characteristics of the compensated 
system. (The gain-adjusted but uncompensated system is unstable.) The closed-loop transfer func- 
tion of the compensated system is 

The unit-step and unit-ramp response curves obtained with MATLAB are shown in Figures 9-25 
and 9-26, respectively. 

Note that the designed closed-loop control system has the following closed-loop zeros and poles: 

Zeros at s = -0.1499, s = -0.6993 

Poles at s = -0.8973 Jr j1.4439 

Unit-Ramp Response of Compensated System 

t Sec 
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The pole at s = -0.1785 and zero at s = -0.1499 are located very close to each other. Such a pair 
of pole and zero produces a long tail of small amplitude in the step response, as seen in Figure 9-25. 
Also, the pole at s = -0.5425 and zero at s = -0.6993 are located fairly close to each other.This 
pair adds amplitude to the long tail. 

9-5 CONCLUIIING COMMENTS 

This chapter has presented detailed procedures for designing lead, lag, and lag-lead 
compensators by the use of simple examples. We have shown that the design of a com- 
pensator to satisfy the given specifications (in terms of the phase margin and gain mar- 
gin) can be carried out in the Bode diagram in a simple and straightforward manner. It 
is noted that not every system can be compensated with a lead, lag, or lag-lead com- 
pensator. In some cases compensators with complex poles and zeros may be used. For 
systems that cannot be designed by use of the root-locus or frequency-response meth- 
ods, the pole-placement method may be used. (See Chapter 12.) In a given design prob- 
lem if both conventional design methods and the pole-placement method can be used, 
conventional methods (root-locus or frequency-response methods) usually result in a 
lower-order stable compensator. Note that a satisfactory design of a compensator for a 
complex system may require a creative application of all available design methods. 

Comparison of Lead, Lag, and Lag-Lead Compensation. 

1. Lead compensation achieves the desired result through the merits of its phase- 
lead contribution, whereas lag compensation accomplishes the result through the 
merits of its attenuation property at high frequencies. (In some design problems 
both lag compensation and lead compensation may satisfy the specifications.) 

2. Lead compensation is commonly used for improving stability margins. Lead com- 
pensation yields a higher gain crossover frequency than is possible with lag com- 
pensation. The higher gain crossover frequency means a larger bandwidth. A large 
bandwidth means reduction in the settling time. The bandwidth of a system with 
lead compensation is always greater than that with lag compensation. Therefore, 
if a large bandwidth or East response is desired, lead compensation should be em- 
ployed. If, however, noise signals are present, then a large bandwidth may not be 
desirable, since it makes the system more susceptible to noise signals because of 
an increase in the high-frequency gain. 

3. Lead compensation requires an additional increase in gain to offset the attenua- 
tion inherent in the lead network.This means that lead compensation will require 
a larger gain than that required by lag compensation. A larger gain, in most cases, 
implies larger space, greater weight, and higher cost. 

4. The lead compensation may generate large signals in the system. Such large sig- 
nals are not desirable because they will cause saturation in the system. 

5. Lag compensation reduces the system gain at higher frequencies without reduc- 
ing the system gain at lower frequencies. Since the system bandwidth is reduced,. 
the system has a slower speed to respond. Because of the reduced high-frequen- 
cy gain, the total system gain can be increased, and thereby low-frequency gain 
can be increased and the steady-state accuracy can be improved. Also, any high- 
frequency noises involved in the system can be attenuated. 
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Figure 9-27 
Unit-step response 
curves and unit-ramp 
response curves. 
(a) Uncompensated 
system; (b) lead 
compensated system; 
(c) lag compensated 
system; (d) lag-lead 
compensated system. 

6. Lag compensation will introduce a pole-zero combination near the origin that will 
generate a long tail with small amplitude in the transient response. 

7. If both fast responses and good static accuracy are desired, a lag-lead compensator 
may be employed. By use of the lag-lead compensator, the low-frequency gain can 
be increased (which means an improvement in steady-state accuracy), while at the 
same time the system bandwidth and stability margins can be increased. 

8. Although a large number of practical compensation tasks can be accomplished 
with lead, lag, or lag-lead compensators, for complicated systems, simple com- 
pensation by use of these compensators may not yield satisfactory results.Then, dif- 
ferent compensators having different pole-zero configurations must be employed. 

Graphical Comparison. Figure 9-27(a) shows a unit-step response curve and unit- 
ramp response curve of an uncompensated system.Typica1 unit-step response and unit- 
ramp response curves for the compensated system using a lead, lag, and lag-lead 
compensator, respectively, are shown in Figures 9-27(b), (c), and (d).The system with a 
lead compensator exhibits the fastest response, while that with a lag compensator exhibits 
the slowest response, but with marked improvements in the unit-ramp response. The 
system with a lag-lead compensator will give a compromise; reasonable improvements 
in both the transient response and steady-state response can be expected.The response 
curves shown depict the nature of improvements that may be expected from using dif- 
ferent types of compensators. 

Feedback Compensation. A tachometer is one of the rate feedback devices. An- 
other common rate feedback device is the rate gyro. Rate gyros are commonly used in 
aircraft autopilot systems. 

Velocity feedback using a tachometer is very commonly used in positional servo sys- 
tems. It is noted that, if the system is subjected to noise signals, velocity feedback may 
generate some difficulty if a particular velocity feedback scheme performs differentia- 
tion of the output signal. (The result is the accentuation of the noise effects.) 
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Figure 9-28 
Step-response cu~rves 
showing the effect of 
canceling a large 
time constant. 

Cancellation of Undesirable Poles. Since the transfer function of elements in 
cascade is the product of their individual transfer functions, it is possible to cancel some 
undesirable poles or zeros by placing a compensating element in cascade, with its poles 
and zeros being adjusted to cancel the undesirable poles or zeros of the original system. 
For example, a large time constant T, may be canceled by use of the lead network 
(T,S + I)/(T,S + 1) as follows: 

If T, is much smaller than T, , we can effectively eliminate the large time constant T,. Fig- 
ure 9-28 shows the effect of canceling a large time constant in step transient response. 

If an undesirable pole in the original system lies in the right-half s plane, this compen- 
sation scheme should not be used since, although mathematically it is possible to cancel 
the undesirable pole with an added zero, exact cancellation is physically impossible be- 
cause of inaccuracies involved in the location of the poles and zeros. A pole in the right-half 
s plane not exactly canceled by the compensator zero will eventually lead to unstable 
operation, because the response will involve an exponential term that increases with time. 

It is noted that if a left-half plane pole is almost canceled but not exactly canceled, 
as is almost always the case, the uncanceled pole-zero combination will cause the re- 
sponse to have a small amplitude but long-lasting transient-response component. If the 
cancellation is not exact but is reasonably good, then this component will be small. 

It should be noted that the ideal control system is not the one that has a transfer 
function of unity. Physically, such a control system cannot be built since it cannot 
instantaneously transfer energy from the input to the output. In addition, since noise is 
almost always present in one form or another, a system with a unity transfer function is 
not desirable. A desired control system, in many practical cases, may have one set of 
dominant complex-conjugate closed-loop poles with a reasonable damping ratio and 
undamped natural frequency. The determination of the significant part of the closed-loop 
pole-zero configuration, such as the location of the dominant closed-loop poles, is based 
on the specifications that give the required system performance. 

Cancellation of Undesirable Complex-Conjugate Poles. If the transfer func- 
tion of a plant contains one or more pairs of complex-conjugate poles, then a lead, lag, 
or lag-lead compensator may not give satisfactory results. In such a case, a network that 
has two zeros and two poles may prove to be useful. If the zeros are chosen so as to 
cancel the undesirable complex~conjugate poles of the plant, then we can essentially 
replace the undesirable poles by acceptable poles. That is, if the undesirable complex- 
conjugate poles are in the left-half s plane and are in the form 
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Figure 9-29 
~ r i d ~ e d - T  networks. (a) (b) 

then the insertion of a compensating network having the transfer function 

will result in an effective change of the undesirable complex-conjugate poles to accept- 
able poles. Note that even though the cancellation may not be exact the compensated 
system will exhibit better response chaiacteristics. (As stated earlier, this approach can- 
not be used if the undesirable complex-conjugate poles are in the right-half s plane.) 

Familiar networks consisting only of RC components whose transfer functions pos- 
sess two zeros and two poles are the bridged-T networks. Examples of bridged-T net- 
works and their transfer functions are shown in Figure 9-29. (The derivations of the 
transfer functions of the bridged-T networks were given in Problem A-3-19.) 

Concluding Comments. In the design examples presented in this chapter, we 
have been primarily concerned only with the transfer functions of compensators. In ac- 
tual design problems, we must choose the hardware. Thus, we must satisfy additional 
design constraints such as cost, size, weight, and reliability. 

The system designed may meet the specifications under normal operating condi- 
tions but may deviate considerably from the specifications when environmental changes 
are considerable. Since the changes in the environment affect the gain and time con- 
stants of the system, it is necessary to provide automatic or manual means to adjust the 
gain to compensate for such environrllental changes, for nonlinear effects that were not 
taken into account in the design, and also to compensate for manufacturing tolerances 
from unit to unit in the production of system components. (The effects of manufactur- 
ing tolerances are suppressed in a closed-loop system; therefore, the effects may not be 
critical in closed-loop operation but critical in open-loop operation.) In addition to this, 
the designer must remember that any system is subject to small variations due mainly 
to the normal deterioration of the system. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-9-1. Show that the lead network and lag network inserted in cascade in an open loop act as 
proportional-plus-derivative control (in the region of small o) and proportional-plus-integral 
control (in the region of large w), respectively. 
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Figure 9-30 
(a) Polar plots of ,a 
lead network and a 
proportional-plus- 
derivative controller; 
(b) polar plots of (3 

lag network and a 
proportional-plus- 
integral controller. 

PD controller 
Lead network 

a 1 Re 
PI controller 

Solution. In the region of small w, the polar plot of the lead network is approximately the same 
as that of the proportional-plus-derivative controller.This is shown in Figure 9-30(a). 

Similarly, in the region of large o ,  the polar plot of the lag network approximates the 
proportional-plus-integral controller, as shown in Figure 9-30(b). 

A-9-2. Consider a lag-lead compensator G,(s) defined by 

Show that at frequency w,, where 

1 
w* = - m 

the phase angle of G,(jo) becomes zero. (This compensator acts as a lag compensator for 
0 < w < ol and acts as a lead compensator for w1 < o < m.) 

Solution. The angle of G, (jo) is given by 

= tan-' wTl + tan-lwT, - tan-'wT,/p - tan-'oT,p 

At w = w, = 1 / a ,  we have 

Since 

tan-' 6 + tan-' @ = 
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Figure 9-31 
Control system. 

and also 

we have 

/G,(jw,) = 0' 

Thus, the angle of G,(jw,) becomes 0" at w = w,  = 1 / m  

A-9-3. Consider the control system shown in Figure 9-31. Determine the value of gain K such that the 
phase margin is 60". What is the gain margin with this value of gain K? 

Solution. The open-loop transfer function is 

Let us plot the Bode diagram of G ( s )  when K = 1. MATLAB Program 9-3 may be used for this 
purpose. Figure 9-32 shows the Bode diagram produced by this program. From this diagram the 
required phase margin of 60" occurs at the frequency w = 1.15 rad/sec.The magnitude of G ( j w )  
at this frequency is found to be 14.5 dB.Then gain K must satisfy the following equation: 

20 log K = -14.5 dB 

num=[O 0 10 11; 
den = [I 1.5 0.5 0); 
bode(num,den) 
title('8ode Diagram of G(s) = (1 0s + I )/[s(s + 0.5)(s + 1 )I1) 
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Figure 9-32 
Bode diagram of 

Bode Diagram of G(s) = (10s + l)/[s(s + 0.5)(s + I)] 
100 

50 

Frequency (radtsec) 

Thus, we have determined the value of gain K. Since the angle curve does not cross the -180" line, 
the gain margin is +co dB. 

To verify the results, let us draw a Nyquist plot of G for the frequency range 

The end point of the locus (o = 1.15 radlsec) will be on a unit circle in the Nyquist plane.To check 
the phase margin, it is convenient to draw the Nyquist plot on a polar diagram, tlsing polar grids. 

To draw the Nyquist plot on a polar diagram, first define a complex vector z by 

where r and 6 (theta) are given by 

r = abs(z) 
theta = angle(z) 

The abs means the square root of the sum of the real part squared and imaginary part squared, 
angle means tan-' (imaginary partireal part). 

If we use the command 

MATLAB will produce a plot in the polar coordinates. Subsequent use of the grid command 
draws polar grid lines and grid circles. 
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MATLAB Program 9 4  produces the Nyquist plot of G ( j w ) ,  where w is between 0.5 and 
1.15 rad/sec.The resulting plot is shown in Figure 9-33. Notice that point G( j1 .15 )  lies on the 
unit circle, and the phase angle of this point is -120". Hence, the phase margin is 60°.The fact that 
point G(j1 .15)  is on the unit circle verifies that at w = 1.15 rad/sec the magnitude is equal to 1 
or 0 dB. (Thus, w = 1.15 is the gain crossover frequency.) Thus, K = 0.188 gives the desired phase 
margin of 60". 

Note that in writing 'text' in the polar diagram we enter the text command as follows: 

text(x,y,' I) 

For example, to write 'Nyquist plot' starting at point (0.1, -1.5), enter the command 

text(0.1, -1.5,'Nyquist plot1) 

The text is written horizontally on the screen. 

MATLAB Program 9-4 

%*****Nyquist plot in rectangular coordinates***** 

num = [O 0 1.88 0.1 881; 
den = [ I  1.5 0.5 01; 
w = 0.5:O.Ol :I .I 5; 
[re,im,w] = nyquist(num,den,w); 

o /O ***** Convert rectangular coordinates into polar coordinates 

% by defining z, r, theta as follows***** 

z = re + i*im; 
r = abs(z); 
theta = angle(z); 

0 *****T 
/O o draw polar plot, enter command 'polar(theta,r)'***** 

polar(theta,r) 
text(-1.2,3,'Check of Phase Margin') 

%*****We shall superimpose a unit circle to the polar plot***** 

hold 
Current plot held 

k = 0:0.01:2*pi; re-I< = sin(k); im-k = cos(k); 
zz = re-k + i*im-k; theta-k = angle(zz); rr = abs(zz); 
poladtheta-k,rr) 

text(O.l ,-I .45,'Nyquist plot') 
text(-2,-0.3,'Phase margin'). 
text(-2,-0.6,'is 60 degrees') 
text(l.4,-0.3,'Unit circle') 
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Figure P-33 
Nyquist plot of 
G ( j w )  showing that 
the phase margin is 

Check of Phase Margin 
YO 

180 0 

A-9-4. If the open-loop transfer function G ( s )  involves lightly damped complex-conjugant poles, then 
more than one M locus may be tangent to the G ( j w )  locus. 

Consider the unity-feedback system whose open-loop transfer function is 

Draw the Bode diagram for this open-loop transfer function. Draw also the log-magnitude-versus- 
phase plot, and show that two M loci are tangent to the G ( j w )  locus. Finally, plot the Bode diagram 
for the closed-loop transfer function. 

Solution. Figure 9-34 shows the Bode diagram of G ( j w ) .  Figure 9-35 shows the log-magnitude- 
versus-phase plot of G ( j w ) .  It is seen that the G ( j w )  locus is tangent to the M = 8-dB locus at 
w  = 0.97 rad/sec, and it is tangent to the M = -4-dB locus at o = 2.8 rad/sec. 

Figure 9-34 
Bode diagram of 
G ( j w )  given by 
Equation (9-6). 
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Figure 9-35 
Log-magnitude- 
versus-phase plot of 
G(jo)  given by 
Equation (9-6). 

Figure 9-36 
Bode diagram of 
~ ( j o ) / [ l  + ~ ( j o ) ] ,  
where G(jo)  is given 
by Equation (9-6). 

Figure 9-36 shows the Bode diagram of the closed-loop transfer function. The magnitude 
curve of the closed-loop frequency response shows two resonant peaks. Note that such a case 
occurs when the closed-loop transfer function involves the product of two lightly damped second- 
order terms and the two corresponding resonant frequencies are sufficiently separated from each 
other. As a matter of fact, the closed-loop tiansfer function of this system can be written 

0.1 0.2 0.4 0.6 1 2 4 6 10 
o in radlsec 
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Clearly, the closed-loop transfer function is a product of two lightly damped second-order terms (the 
damping ratios are 0.243 and 0.102), and the two resonant frequencies are sufficiently separated. 

A--9-5. Consider a unity-feedback system whose feedforward transfer function is given by 

It is desired to insert a series compensator so that the open-loop frequency-response curve is 
tangent to the M = 3-dB circle at w = 3 rad/sec.The system is subjected to high-frequency noises 
and sharp cutoff is desired. Design an appropriate series compensator. 

Solution. To stabilize the system, we may insert a proportional-plus-derivative type of compensator 
or a lead compensator. Since sharp cutoff is required, we choose a lead compensator. Consider the 
following lead compensator: 

The compensated open-loop frequency-response curve must be tangent to the M = 3-dB locus. 
To minimize the additional gain Kc,  we choose the tangent point to the 3-dB locus as shown in 
Figure 9-37. From Figure 9-37 we see that the lead compensator must provide about 45". Then 
the necessary value of a  is determined from 

1 - a  
sin 45" = --- 

l + a  

or a = 0.172 = a .  Let us choose a  = a. Since it is required that the open-loop frequency-response 
curve Gc(jw)G(jw) be tangent to the M = 3-dB locus at w = 3 rad/sec, we obtain 

20 ~ o ~ [ ~ , ( j w ) ~ ( j w ) l , , ,  = 20 1og/~,(j3)l  + 20 logl~(j3)I  

= 20 loglG,(j3)\ -t 20 log - = 3 dB I b l 

Figure 9-37 
Nichols chart 
showing that the 
G,(jw)G(jw) locus is 
tangent to the 
M = 3-dB locus at 
w = 3 radlsec. 
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Figure 9-38 
Bode diagram of the 
lead compensator 
designed in Problem 
A-9-5. 

The two time constants T and aT of the lead compensator can be determined as follows: Noting 
that 

we have 

From the Bode diagram as shown in Figure 9-38, we find the gain K, to be 14.3 dB or 5.19.Thus, 
the designed compensator is given by 

A-9-4. Consider the system shown in Figure 9-39. Design a lead compensator such that the closed-loop 
system will have the phase margin of 50" and gain margin of not less than 10 dB. Assume that 

It is desired that the bandwidth of the closed-loop system be 1 - 2 radlsec. What are the values 
of M ,  and w, of the compensated system? 

Solution. Notice that 

Figure 9-39 
Closed-loop system. 
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Since the bandwidth of the closed-loop system is close to the gain crossover frequency, we choose 
the gain crossover frequency to be 1 rad/sec. At w = 1, the phase angle of G(jw) is -191.31". 
Hence, the lead network needs to supply 50" + 13.31" = 61.31" at w = 1. Hence, a can be deter- 
mined from 

1 - a  
sing, = sin61.31" = ---- - - 0.8772 

l + n  

as follows: 

Noting that the maximum phase-lead angle g,, occurs at the geometric mean of the two corner 
frequencies, we have 

Thus, 

and 

Hence, 

A Bode diagram for ~,(jw)~(jw)/(0.06541 K,) is shown in Figure 9-40. By simple calculations 
(or from the Bode diagram), we find that the magnitude curve must be raised by 2.306 dB so that 
the magnitude equals 0 dB at w = 1 rad/sec. Hence, we set 

0.06541 Kc = 1.3041 

which yields 

The magnitude and phase curves of the compensated system show that the system has the phase 
margin of 50" and gain margin of 16 dB. Hence, the design specifications are satisfied. 

Figure 9-41 shows the G,(jw)G(jw) locus superimposed on the Nichols chart. From this dia- 
gram, we find the bandwidth to be approximately 1.9 rad/sec. The values of M, and w, are read 
from this diagram as follows: 

Example Problems and Solutions 



Figure 9-40 
Bode diagram of the 
system shown in 
Figure 9-39. 

Figure 9-41 
G,(jw)G(jw) locus 
superimposed on 
Nichols chart 
(Problem A-9-6). /GH 

A-9-7. Referring to Example 9-1, draw Nyquist plots of G(jw), Gl(jw), and G,(jw)G(jw) with MATLAB. 
(Compare the Nyquist plots obtained here with Figure 9-10.) Write a possible MATLAB program 
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for drawing the Nyquist plots in one diagram. Note that G ( j w ) ,  G l ( j w ) ,  and G,( jw )G( jw)  are 
given by 

Solution. A possible MATLAB program for this problem is given in MATLAB Program 9-5. 
The resulting Nyquist plots are shown in Figure 942 .  

MATLAB Program 9-5 

%*****Nyquist plots in polar coordinates***** 

numl = [O 0 41; 
den1 = [ I  2 01; 
num2 = [O 0 401; 
den2 = [ I  2 01; 
num3 = [O 0 166.8 735.5881; 
den3 = [ I  20.4 36.8 01; 
w = 0.2:O.l : I  0; 
ww = 1.5:O.l :I 0; 
[re1 ,iml ,w] = nyquist(num1 ,den1 ,w); 
z l  = re1 + i*iml; 
r l  = abs(z1); 
theta1 = angle(z1); 
polar(theta1 ,rl , 'oL) 
hold 
Current plot held 
[re2,im2,wwl = nyquist(num2,den2,ww); 
z2 = re2 + i*im2; 
r2 = abs(z2); 
theta2 = angle(z2); 
polar(theta2,r2,'01) 
[re3,im3,ww] = nyquist(num3,den3,ww); 
23 = re3 + i*im3; 
r3 = abs(z3); 
theta3 = angle(z3); 
polar(theta3,r3,'x1) 
text(-1 1 ,I 2.4,'Nyquist Plots of G(jw), GI  (jw), and Gc(jw)C(jw)') 
text(0.7,-8.8,'G(jw)') 
text(-I 1.7,-8.5,'Gl (jw)') 
text(-6.6,-1 2.3,'Gc(jw)G(jw)') 
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Figure 9-42 
Nyquist plots of 
G(jw), Gl(jw), and 
G,(jw)G(jw). 

Nyquist Plots of GGw), GlGw), and GcGw)Guw) 
90 

0 

A-9-8. Consider the system shown in Figure 9-43(a). Design a compensator such that the closed-loop 
system will satisfy the requirements that the static velocity error constant = 20 sec-', phase 
margin = 50°, and gain margin 2 10 dB. 

Solution. To satisfy the requirements, we shall try a lead compensator G,(s) of the form 

(If the lead compensator does not work, then we shall employ a compensator of different form.) 
The compensated system is shown in Figure 9-43(b). 

Define 

where K = Kca.The first step in the design is to adjust the gain K to meet the steady-state per- 
formance specification or to provide the required static velocity error constant. Since the static ve- 
locity error constant K, is given as 20 sec-', we have 

Figure 9-43 
(a) Control system; 
(b) compensated 
system. 
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Figure 9-44 
Bode diagram of 
G,(s).  

Ts + 1 
= lim s  ------- 

s-'O aTs + 1 G , ( s )  

slOK 
= lim ------ 

"0 S ( S  + 1 )  

With K = 2, the compensated system will satisfy the steady-state requirement. 
We shall next plot the Bode diagram of 

MATLAB Program 9-6 produces the Bode diagram shown in Figure 9-44. From this plot, the 
phase margin is found to be 14". The gain margin is +oo dB. 

MATLAB Program 9-6 

num = [O 0 201; 
den = E l  1 01; 
w = logspace(-1,2,100); 
bode(num,den,w) 
title('Bode Diagram of GI  (s) = 20/[s(s + 1 )I1) 

.- 
Bode Diagram of G I ( ~ )  = 20/[s(s + l)] 

Frequency (radlsec) 
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Since the specification calls for a phase margin of 50°, the additional phase lead necessary to 
satisfy the phase-margin requirement is 36". A lead compensator can contribute this amount. 

Noting that the addition of a lead compensator modifies the magnitude curve in the Bode di- 
agram, we realize that the gain crossover frequency will be shifted to the right. We must offset the 
increased phase lag of GI&) due to this increase in the gain crossover frequency.Taking the shift 
of the gain crossover frequency into consideration, we may assume that $,, the maximum phase 
lead required, is approximately 41". (This means that approximately 5" has been added to com- 
pensate for the shift in the gain crossover frequency.) Since 

1 - f f  
sin 4 ,  = --- 

l + a !  

4,  = 41" corresponds to a = 0.2077. Note that a = 0.21 corresponds to 4, = 40.76'. Whether 
we choose 4, = 41" or 4, = 40.76" does not make much difference in the final solution. Hence, 
let us choose (Y = 0.21. 

Once the attenuation factor (Y has been determined on the basis of the required phase-lead 
angle, the next step is to determine the corner frequencies w = 1/T and w = l / ( a T )  of the lead 
compensator. Notice that the maximum phase-lead angle 4, occurs at the geometric mean of the 
two corner frequencies, or w = ~/(.\/I;T). 

The amount of the modification in the magnitude curve at w = z/(&T) due to the inclusion 
of the term ( T s  + l ) / ( a T s  + 1 )  is 

Note that 

We need to find the frequency point where, when the lead compensator is added, the total mag- 
nitude becomes 0 dB. 

From Figure 9-44 we see that the frequency point where the magnitude of G,( jw)  is 
-6.7778 dB occurs between w = 1 and 10 radlsec. Hence, we plot a new Bode diagram of G,(jw) 
in the frequency range between w = 1 and 10 to locate the exact point where Gl( jw)  = -6.7778 
dB. MATLAB Program 9-7 produces the Bode diagram in this frequency range, which is shown 
in Figure 9-45. From this diagram, we find the frequency point where lG,(jw)J = -6.7778 dB 

MATLAB Program 9-7 

num = [O 0 201; 
den = [1 1 01; 
w = logspace(0, I , I  00); 
bode(num,den,w) 
titleltBode Diagram of GI  (s) = 20/[s(s + 1 ) I 1 )  
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Figure 9-45 
Bode diagram of 
G,(s). 

Bode Diagram of G,(s) = 20/[s(s + I)] 

1 oO 10' 
Frequency (radlsec) 

occurs at o = 6.5 rad/sec. Let us select this frequency to be the new gain crossover frequency, or 
w, = 6.5 rad/sec. Noting that this frequency corresponds to ~ / ( G T ) ,  or 

1 
W, = - 

GT 
we obtain 

and 

The lead compensator thus determined is 

where Kc is determined as 

K = - = - =  9.5238 
cu 0.21 

Thus, the transfer function of the compensator becomes 

MATLAB Program 9-8 produces the Bode diagram of this lead compensator, which is shown in 
Figure 9-46. 
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Figure 9-46 
Bode diagram of 
C,(s). 

MATLAB Program 9-8 

nclmc = [9.5238 28.36851; 
denc = [ l  14.1 8421; 
w = logspace(-1,3,100); 
bode(numc,denc,w) 
title('Bode Diagram of Gc(s) = 9.5238(s + 2.9787)/(s + 14.1 842)') 

Bode Diagram of Gc(s) = 9.5238(s + 2.9787)/(s + 14.1842) 

Frequency (radlsec) 

The open-loop transfer function of the designed system is 

MATLAB Program 9-9 will produce the Bode diagram of G,(s)G(s), which is shown in Figure 
9-47. 

MATLAB Program 9-9 

num = [O O 95.238 283.68541; 
den = [ I  15.1842 14.1842 01; 
w = logspacet-1,3,100); 
bode(num,den,w) 
title('Bode Diagram of Gc(s)G(sIt) 

Chapter 9 / Control Sys tems Design by Frequency Response 



Figure 9-47 
Bode diagram of 
G,(s)G(s). 

Bode Diagram of Gc(s) G(s) 
50 

Frequency (radlsec) 

From Figure 9-47 it is clearly seen that the phase margin is approximately 50" and the gain 
margin is + cw, dB. Since the static velocity error constant K, is 20 sec-', all the specifications are 
met. Before we conclude this problem, we need to check the transient-response characteristics. 

Unit-Step Response: We shall compare the unit-step response of the compensated system with 
that of the original uncompensated system. 

The closed-loop transfer function of the original uncompensated system is 

The closed-loop transfer function of the compensated system is 

MATLAB Program 9-10 produces the unit-step responses of the uncompensated and compen- 
sated systems. The resulting response curves are shown in Figure 9-48. Clearly, the compensated 
system exhibits a satisfactory response. Note that the closed-loop zero and poles are located as 
folIows: 

Zero at s = -2.9787 

Poles at s = -5.2270 * j5.7141, s = -4.7303 

Unit-Ramp Response: It is worthwhile to check the unit-ramp response of the compensated 
system. Since K, = 20 sec-', the steady-state error following the unit-ramp input will be 
1/K, = 0.05. The static velocity error constant of the uncompensated system is 10 sec-'. Hence, 
the original uncompensated system will have twice as large a steady-state error in following the 
unit-ramp input. 
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Figure 9-48 
Unit-step responses 
of the compensated 
and uncompensated 
systems. 

MATLAB Program 9-1 0 

%*****Unit-step responses***** 

numl = [O 0 101; 
den1 = [ I  1 101; 
num2 = [O 0 95.238 283.68541; 
den2 = [ l  15.1 842 109.4222 283,68541; 
t = 0:0.01:6; 
[c l  ,XI ,t] = step(num1 ,den1 ,t); 
[c2,x2,tl = step(num2,den2,t); 
plot(t,cl ,'.',t,c2,'-'1 
grid 
title('Unit-Step Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('Outputst) 
text(1 .I ,0.5,'Compensated system') 
text(l.7,1.46,'Uncompensated system') 

Unit-Step Responses of Compensated and Uncompensated Systems 
1.8 

MATLAB Program 9-11 produces the unit-ramp response curves. [Note that the unit-ramp 
response is obtained as the unit-step response of C(s ) / sR( s ) . ]  The resulting curves are shown in 
Figure 9-49. The compensated system has a steady-state error equal to one-half that of the orig- 
inal uncompensated system. 

Uncompensated system 

1 

0 6  ' - Compensated system 
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Figure 9-49 
Unit-ramp responses 
of the compensated 
and uncompensated 
systems. 

MATLAB Program 9-1 1 

O/o*****Unit-ramp responses***** 

numl = [O 0 0 101; 
den1 = [I 1 10 01; 
num2 = [O 0 0 95.238 283.68541; 
den2 = [ I  15.1 842 109.4222 283.6854 01; 
t = 0:0.01:3; 
[c l  ,XI ,t] = step(num1 ,den1 ,t); 
[c2,x2,t] = step(num2,den2,t); 
plot(t,cl ,'.',t,c2,'-',t,t,'--'I 
grid 
title('Unit-Ramp Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('Outputsl) 
te~t(0.1~1 .3,'Compensated system') 
text(1.2,0.65,'Uncompensated system') 

;nit-Ramp Responses of Compensated and Uncompensated Systems 

t Sec 

A-9-9. Consider the unity-feedback system whose open-loop transfer function is 

Design a lag-lead compensator G,(s) such that the static velocity error constant is 10 sec-l, the 
phase margin is SO0,  and the gain margin is 10 dB or more. 
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Solution. We shall design a lag-lead compensator of the form 

Then the open-loop transfer function of the compensated system is G C ( s ) G ( s )  Since the gain K 
of the ~ l a n t  is adjustable, let us assume that Kc = 1.Then !$G,(s) = 1. From the requirement 
on the static velocity error constant, we obtain 

Hence, 

We shall first plot a Bode diagram of the uncompensated system with K = 40. MATLAB Pro- 
gram 9-12 may be used to plot this Bode diagram.The diagram obtained is shown in figure 9-50. 

MATLAB Program 9-1 2 

Figure 9-50 
Bode diagram of 
G ( s )  = 40/[s(s + I ) ( $  + 4 ) ] .  

bode(&m,den,w) 
title('Bode Diagram of G(s) = 40/[s(s + 1 )(s + 411 

Bode Diagram o 

I u 
Frequency (radlsec) 
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From Figure 9-50, the phase margin of the gain-adjusted but uncompensated system is 
found to be -16", which indicates that this system is unstable.The next step in the design of a 
lag-lead compensator is to choose a new gain crossover frequency. From the phase-angle curve 
for C ( j w ) ,  we notice that the phase crossover frequency is o = 2 rad/sec. We may choose the 
new gain crossover frequency to be 2 rad/sec so that the phase-lead angle required at 
w  = 2 rad/sec is about 50". A single' lag-lead compensator can provide this amount of phase- 
lead angle quite easily. 

Once we choose the gain crossover frequency to be 2 rad/sec, we can determine the corner 
frequencies of the phase-lag portion of the lag-lead compensator. Let us choose the corner 
frequency w = 1/T2 (which corresponds to the zero of the phase-lag portion of the compensator) 
to be 1 decade below the new gain crossover frequency, or at o = 0.2 rad/sec. For another corner 
frequency w = 1/(/3~,), we need the value of /3. The value of /3 can be determined from the 
consideration of the lead portion of the compensator, as shown next. 

For the lead compensator, the maximum phase-lead angle +, is given by 

Notice that p = 10 corresponds to +,, = 54.9O. Since we need a 50" phase margin, we may choose 
p = 10. (Note that we will be using several degrees less than the maximum angle, 54.9O.) Thus, 

Then the corner frequency w  = 1/(/3~,) (which corresponds to the pole of the phase-lag portion 
of the compensator) becomes 

The transfer function of the phase-lag portion of the lag-lead compensator becomes 

The phase-lead portion can be determined as follows: Since the new gain crossover frequency 
is w  = 2 radjsec, from Figure 9-50,l~(j2)l is found to be 6 dB. Hence, if the lag-lead compensator 
contributes -6 dB at w = 2 rad/sec, then the new gain crossover frequency is as desired. From this 
requirement, it is possible to draw a straight line of slope 20 dB/decade passing through the point 
(2 rad/sec, -6 dB). (Such a line has been manually drawn on Figure 9-50.) The intersections of 
this line and the 0-dB line and -20-dB line determine the corner frequencies. From this 
consideration, the corner frequencies for the lead portion can be determined as w = 0.4 rad/sec 
and w = 4 rad/sec. Thus, the transfer function of the lead portion of the lag-lead compensator 
becomes 

Combining the transfer functions of the lag and lead portions of the compensator, we can obtain 
the transfer function G,(s) of the lag-lead compensator. Since we chose Kc = 1, we have 

The Bode diagram of the lag-lead compensator G,(s) can be obtained by entering MATLAB 
Program 9-13 into the computer.The resulting plot is shown in Figure 9-51. 
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Figure 9-51 
Bode diagram of the 
designed lag-lead 
compensator. 

MATLAB Program 9-1 3 

numc = [ I  0.6 0.081; 
denc = [ I  4.02 0.081; 
bode(nurnc,denc) 
title('Bode Diagram of Lag-Lead Compensator') 

Bode Diagram of Lag-Lead Compensator 

Frequency (radisec) 

The open-loop transfer function of the compensated system is 

Using MATLAB Program 9-14 the magnitude and phase-angle curves of the designed open-loop 
transfer function G,(s)G(s) can be obtained as shown in Figure 9-52. Note that the denominator 
polynomial den1 was obtained using the conv command, as follows: 

b = [I 5 4 01; 
conv(a, b) 

ans = 
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Figure 9-52 
Bode diagram of Ithe 
open-loop transfer 
function G,(s)G(:r) 
of the compensate:d 
system. 

MATLAB Program 9-1 4 - 
numl = [O 0 0 40 24 3.21; 
den1 = [I 9.02 24.18 16.48 0.32 01; 
bodehum1 ,den1 ) 
title('Bode Diagram of Gc(s)C(s)') 

Bode Diagram of Gc(s)G(s) 

Frequency (radsec) 

Since the phase margin of the compensated system is 50°, the gain margin is 12 dB, and the 
static velocity error constant is 10 sec-l, all the requirements are met. 

We shall next investigate the transient-response characteristics of the designed system. 

Unit-Step Response: Noting that 

we have 

To determine the denominator polynomial with MATLAB, we may proceed as follows: 
Define 
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Then we have 

a = [ l  4.02 0.081 
b = [ l  5 4 01 
c = [40 24 3.21 

Using the following MATLAB program, we obtain the denominator polynomial. 

MATLAB Program 9-15 is used to obtain the unit-step response of the compensated system. 
The resulting unit-step response curve is shown in Figure 9-53. (Note that the gain-adjusted but 
uncompensated system is unstable.) 

MATLAB Program 9-1 5 

%*****Unit-step response**** 

num = [O 0 0 40 24 3.21; 
den = [ I  9.02 24.1 8 56.48 24.32 3.21; 
t = 0:0.2:40; 
step(num,den,t) 
grid 
title('Unit-Step Response of Compensated System') 

Figure 9-53 
Unit-step response 
curve of the 
compensated system. 
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Figure 9-!j4 
Unit-ramp response 
of the compensated 
system. 

Unit-Ramp Response: The unit-ramp response of this system may be obtained by entering 
MATLAB Program 9-16 into the computer. Here we converted the unit-ramp response of 
G,G/(~ + G,G) into the unit-step response of G,G/[s(l + G , G ) ] . T ~ ~  unit-ramp response curve 
obtained using this program is shown in Figure 9-54. 

MATLAB Program 9-1 6 

%*****Unit-ramp response***** 

num = [O 0 0 0 40 24 3.21; 
den = [I 9.02 24.18 56.48 24.32 3.2 01; 
t = 0:0.05:20; 
c = step(num,den,t); 
plot(t,c,'-',t,t,'.') 
grid 
title('Unit-Ramp Response of Compensated System') 
xlabel('Time (sec)') 
ylabel('Unit-Ramp Input and Output c(t)') 

Unit-Ramp Response of Compensated System 

Time (sec) 

A-9-10. Consider the system shown in Figure 9-55. Design a compensator such that the static velocity 
error constant is 4 sec-', phase margin is SO0, and gain margin is 10 dB or more. Obtain the unit- 
step and unit-ramp response curves of the compensated system with MATLAB. 

Solution. Since the plant does not have an integrator, it is necessary to add an integrator in the 
compensator. Let us choose the compensator to be 
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1 K A  1 
K, = lim sG,(s) - = lim s - G,(s) --- 

s--to s2 + 1 ~ - t o  S s2 + 1 

1 
s2+ 1 

= K = 4  
Thus 

L . 

Next, we plot a Bode diagram of 

Figure 9-55 
Control system. 

where 

l imhC(s) = 1 
A+O 

[&,(s) is to be determined later.] Since the static velocity error constant K,  is specified as 4 sec-', 
we have 

MATLAB Program 9-17 produces a Bode diagram of G(s).The resulting Bode diagram is shown 
in Figure 9-56. 

MATLAB Program 9-1 7 

num = [O 0 0 41; 
den = [ I  0.00000000001 1 01; 
w = logspace(-I , I  ,200); 
bode(num,den,w) 
title('Bode Diagram of 4/[s(sA2+1 )I1) 

Figure 9-56 
Bode diagram of 
4/[s(s2 + I)]. 

Bode Diagram of 4/[s(s2 + I)] 
5 0  

1 o0 
Frequency (radlsec) 
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Figure 9-57 
Bode diagram of 
G ( s )  = 4(5s + 1 ) /  
[s(s2 + I ) ] "  

We need the phase margin of 50" and gain margin of 10 dB or more. From the Bode diagram 
of Figure 9-56, we notice that the gain crossover frequency is approximately w = 1.8 rad/sec. Let , 
us assume the gain crossover frequency of the compensated system to be somewhere between 
w = 1 and w = 10 rad/sec. 

Let us choose G,(s )  to be 

e , ( s )  = (as  + l ) ( b s  + 1 )  

and choose a = 5. Then, (as  + 1 )  will contribute up to 90" phase lead in the high-frequency region. 
MATLAB Program 9-18 produces the Bode diagram of 

s(s2 + 1) 

The resulting Bode diagram is shown in Figure 9-57. 

MATLAB Program 9-1 8 

num = [O 0 20 41; 
den = [ I  0.00000000001 1 01; 
w = logspace(-2,1,101); 
bode(num,den,w) 
title('Bode Diagram of G(s) = 4(5s+l )/[s(sA2+1)]') 

Based on the Bode diagram of Figure 9-57, we choose the value of b. The term (bs  + 1 )  needs 
to give the phase margin of 50". By simple MATLAB trials, we find b = 0.25 to give the phase mar- 
gin of 50" and gain margin of +oo dB. Therefore, by choosing b = 0.25, we have 

6 , ( s )  = (5s  + 1)(0.25s + 1 )  

Bode Diagram of G(s) = 4(5s + l)l[s(s2 + I)] 
60 

lo-' 1 o0 
Frequency (raasec) 
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and the open-loop transfer function of the designed system becomes 

4 ( 5 s + 1 ) ( 0 . 2 5 ~ + 1 )  1 
Open-loop transfer function = 

S s2 + 1 

Note that the controller designed here is a PID controller. MATLAB Program 9-19 produces 
the Bode diagram of the open-loop transfer function. The resulting Bode diagram is shown in 
Figure 9-58. From it we see that the static velocity error constant is 4 sec-', the phase margin is 
50°, and the gain margin is +cu dB.Therefore, the designed system satisfies all the requirements. 
Thus, the designed system is acceptable. (Note that there exist infinitely many systems that satis- 
fy all the requirements.The present system is just one of them.) 

MATLAB Program 9-1 9 

num = [O 5 21 41; 
den = [I 0 1 01; 
w = logspace(-2,2,100); 
bode(num,den,w) 
title('Bode Diagram of 4(5~+1)(0.25~+1 )/[s(sA2+1 11') 

Bode Diagram of 4(5s + 1)(0.25s + l)/[s(s2 + I)]  

Figure 9-58 
Bode diagram of 
4 ( 5 s  + 1)(0.25s + I ) /  
[s(s2 + I)]. Frequency (radlsec) 
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Next, we shall obtain the unit-step response and the unit-ramp response of the designed 
system. The closed-loop transfer function is 

Note that the closed-loop zeros are located at 

The closed-loop poles are located at 

Notice that the complex-conjugate closed-loop poles have the damping ratio of 0.5237. MATLAB 
Program 9-20 produces the unit-step response and the unit-ramp response. The resulting unit- 
step response curve is shown in Figure 9-59 and the unit-ramp response curve in Figure 9-60. 
Notice that the closed-loop pole at s = -0.1897 and the zero at s = -0.2 produce a long tail of 
small amplitude in the unit-step response. 

MATLAB Program 9-20 

%***** Unit-step response ***** 

num = [0 5 21 41; 
den = [ I  5 22 41; 
t = 0:0.01 :I 4; 
c = step(num,den,t); 
plot(t,c) 
grid 
title('Unit-Step Response of Compensated System') 
xlabel('t (sec)') 
ylabel('0utput c(t)') 

' lo***** Unit-ramp response ***** 

numl = [0 0 5 21 41; 
den1 = [ I  5 22 4 01; 
t = 0:0.02:20; 
c = step(num1 ,den1 ,t); 
plot(t,c,'-',t,t,'--'I 
title('Unit-Ramp Response of Compensated System') 
xlabel('t (sec)') 
ylabel('Unit-Ramp Input and Output c(t)') 
text(l0.8,8,'Compensated System') 
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Figure 9-59 
Unit-step response 
curve. 

Figure 9-60 
Unit-ramp input and 
the output curve. 

Unit-Step Response of Compensated System 
1.4 
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Unit-Ramp Response of Compensated System 
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PROBLEMS 

B-9-1. Draw Bode diagrams of the lead network and lag B-9-5. Referring to the closed-loop system shown in Figure 
network shown in Figures 9-61(a) and (b), respectively. 9-63, design a lead compensator G,(s) such that the phase 
Assume that R = 50 kCl and C = 10pF. margin is 45", gain margin is not less than 8 dB, and the static 

velocity error constant Kv is 4.0 sec-'. Plot unit-step and unit- 
ramp response curves of the compensated system with 
MATLAB. 

K + 
0- 

(a) ('J) 

Figure 9-61 Figure 9-63 
(a) L.ead network; (b) lag network. Closed-loop system. 

B-9-2. Draw Bode diagrams of the PI controller given by 
B-9-6. Consider the system shown in Figure 9-64. Design 
a compensator such that the static velocity error constant Kv 

G,(s) = 5 1 + - ( i s )  
is 50 set-', phase margin is 50°, and gain margin not less 
than 8 dB. Plot unit-step and unit-ramp response curves of 

and the I'D controller given by the compensated and uncompensated systems with 
MATLAB. 

B-9-3. Consider a PID controller given by 

(s  + 0.65)2 
G,(s) = 30.3215 

S 

Draw a Bode diagram of the controller. 

B-9-4. Figure 9-62 shows a block diagram of a space vehi- 
cle attitude control system. Determine the proportional gain 
constant K, and derivative time Td such that the bandwidth 
of the closed-loop system is 0.4 to 0.5 radlsec. (Note that 
the closed-loop bandwidth is close to the gain crossover fre- 
quency.) The system must have an adequate phase margin. 
Plot both the open-loop and closed-loop frequency response 
curves on Bode diagrams. 

Figure 9-64 
Control system. 

B-9-7. Consider the system shown in Figure 9-65. Design 
a compensator such that the static velocity error constant is 
4 sec-', phase margin is 50°, and gain margin is 10 dB or 
more. Plot unit-step and unit-ramp response curves of the 
compensated system with MATLAB. Also, draw a Nyquist 
plot of the compensated system with MATLAB. 

Problems 

Kp(l + Tds) 

Figure 9-62 Figure 9-65 
Block diagram of space vehicle attitude control system. Control system. 

4 k 1 - .  
s2 

- 
P GC(3) ---t s  + 0.1 

s2+ 1 



B-9-8. Consider the system shown in Figure 9-66. It is B-9-9. Consider the system shown in Figure 9-67. Design 
desired to design a compensator such that the static velocity a lag-lead compensator such that the static velocity error 
error constant is 4 sec-l, phase margin is 50", and gain margin constant K, is 20 sec-', phase margin is 60°, and gain margin 
is 8 dB or more. Plot the unit-step and unit-ramp response is not less than 8 dB. Plot the unit-step and unit-ramp 
curves of the compensated system with MATLAB. response curves of the compensated system with MATLAB. 

1 2s + 0.1 C 
G(s) - - * 7 s 2 + 0 . 1 s + 4  

Hydraulic servo Aircraft 

u 
Rate gyro 

Figure 9-66 
Control system. 

Figure 9-67 
Control system. 
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PID Controls and Two- 
Degrees-of-Freedom 

Control Systems 

10-1 IPI'TRODUCTION 

In previous chapters, we occasionally discussed the basic PID control schemes. For ex- 
ample, we presented electronic, hydraulic, and pneumatic PID controllers. We also de- 
signed control systems where PID controllers were involved. 

It is interesting to note that more than half of the industrial controllers in use today 
utilize PID or modified PID control schemes. 

Because most PID controllers are adjusted on-site, many different types of tuning 
rules have been proposed in the literature. Using these tuning rules, delicate and fine tun- 
ing of PID controllers can be made on-site. Also, automatic tuning methods have been 
developed and some of the PID controllers may possess on-line automatic tuning 
capabilities. Modified forms of PID control, such as I-PD control and two-degrees-of- 
freedom PID control, are currently in use in industry. Many practical methods for bump- 
less switching (from manual operation to automatic operation) and gain scheduling are 
commercially available. 

The usefulness of PID controls lies in their general applicability to most control sys- 
tems. In particular, when the mathematical model of the plant is not known and there- 
fore analytical design methods cannot be used, PID controls prove to be most useful. In 
the field of process control systems, it is well known that the basic and modified PID con- 
trol schemes have proved their usefulness in providing satisfactory control, although in 
many given situations they may not provide optimal control. 

In this chapter we first present the design of a PID controlled system. We next dis- 
cuss modified PID controls such as PI-D control and I-PD control. Then we introduce 



two-degrees-of-freedom control systems, which can satisfy conflicting requirements that 
single-degree-of-freedom control systems cannot. 

In practical cases, there may be one requirement on the response to disturbance 
input and another requirement on the response to reference input. Often these two re- 
quirements conflict with each other and cannot be satisfied in the single-degree-of- 
freedom case. By increasing the degrees of freedom, we are able to satisfy both. In this 
chapter we present two-degrees-of-freedom control systems in detail. 

By using PID controllers and a two-degrees-of-freedom configuration, we design 
control systems that satisfy two independent (or sometimes conflicting) requirements 
(such as the response characteristics to disturbance input and those to reference input). 
This chapter also presents a computational approach to the design of control systems. 
The approach can be used to design both single-degree-of-freedom and multiple-degrees- 
of-freedom control systems. 

Finally, we present a very powerful computational approach with MATLAB to search 
optimal sets of parameter values to satisfy given transient response specifications (such 
as that the maximum overshoot in the response to the unit-step reference input be less 
than a specified value and the settling time be less than a specified value).This approach 
can be directly applied to the design of high-performance control systems. 

Outline of the Chapter. Section 10-1 has presented introductory material for 
the chapter. Section 10-2 deals with tuning methods for the basic PID control, com- 
monly known as Ziegler-Nichols tuning rules. Section 10-3 discusses a computation- 
al approach to search optimal sets of parameter values of PID controllers. Section 
10-4 treats modified PID control schemes, such as PI-D control and I-PD control. 
Section 10-5 introduces two-degrees-of-freedom control schemes. Section 10-6 pres- 
ents the zero-placement approach to improve response characteristics and to design 
high-performance control systems. 

10-2 TUNING RULES FOR PID CONTROLLERS 

PID Control of Plants. Figure 10-1 shows a PID control of a plant. If a mathe- 
matical model of the plant can be derived, then it is possible to apply various design 
techniques for determining parameters of the controller that will meet the transient and 
steady-state specifications of the closed-loop system. However, if the plant is so com- 
plicated that its mathematical model cannot be easily obtained, then an analytical ap- 
proach to the design of a PID controller is not possible. Then we must resort to 
experimental approaches to the tuning of PID controllers. 

The process of selecting the controller parameters to meet given performance spec- 
ifications is known as controller tuning. Ziegler and Nichols suggested rules for tuning 
PID controllers (meaning to set values Kp,  T,, and T,) based on experimental step 
responses or based on the value of K, that results in marginal stability when only pro- 
portional control action is used. Ziegler-Nichols rules, which are briefly presented in 

Figure 10-1 
PID control 
of a plant. 
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Figure 10-2 
Unit-step response 
of a plant. 

the following, are useful when mathematical models of plants are not known. (These 
rules can, of course, be applied to the design of systems with known mathematical mod- 
els.) Such rules suggest a set of values of K,, T,, and T, that will give a stable operation 
of the system. However, the resulting system may exhibit a large maximum overshoot 
in the step response, which is unacceptable. In such a case we need series of fine tunings 
until an acceptable result is obtained. In fact, the Ziegler-Nichols tuning rules give an 
educated guess for the parameter values and provide a starting point for fine tuning, 
rather than giving the final settings for K,, T,, and T, in a single shot. 

Ziegler-Nichols Rules for Tuning PID Controllers. Ziegler and Nichols pro- 
posed rules for determining values of the proportional gain K,, integral time T,, and de- 
rivative time T ,  based on the transient response characteristics of a given plant. Such 
determination of the parameters of PID controllers or tuning of PID controllers can be 
made by engineers on-site by experiments on the plant. (Numerous tuning rules for PID 
controllers have been proposed since the Ziegler-Nichols proposal. They are available 
in the literature and from the manufacturers of such controllers.) 

There are two methods called Ziegler-Nichols tuning rules: the first method and the 
second method. We shall give a brief presentation of these two methods. 

First Method. In the first method, we obtain experimentally the response of the 
plant to a unit-step input, as shown in Figure 10-2. If the plant involves neither inte- 
grator(~) nor dominant complex-conjugate poles, then such a unit-step response curve 
may look S-shaped, as shown in Figure 10-3.This method applies if the response to a step 
input exhibits an S-shaped curve. Such step-response curves may be generated experi- 
mentally or from a dynamic simulation of the plant. 

The S-shaped curve may be characterized by two constants, delay time L and time 
constant T .  The delay time and time constant are determined by drawing a tangent line 
at the inflection point of the S-shaped curve and determining the intersections of the tan- 
gent line with the time axis and line c ( t )  = K, as shown in Figure 10-3. The transfer 

Tangent line at 
inflection point 

r 
t4 t )  

Figure 10.-3 
S-shaped response 
curve. 

Plant 
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Table 10-1 Ziegler-Nichols Tuning Rule Based on Step 
Response of Plant (First Method) 

Figure 10-4 
Closed-loop system 
with a proportional 
controller. 

function C(s)/U(s) may then be approximated by a first-order system with a transport 
lag as follows: 

Ziegler and Nichols suggested to set the values of K,, T,, and Td according to the formula 
shown in Table 10-1. 

Notice that the PID controller tuned by the first method of Ziegler-Nichols rules 
gives 

Td 

0 

0 

0.5L 

Thus, the PID controller has a pole at the origin and double zeros at s = -1/L, 

Ti 

CO 

L - 
0.3 

2 L 

Type of 
Controller 

P 

PI 

PID 

Second Method. In the second method, we first set T, = oo and Td = 0. Using the 
proportional control action only (see Figure 10-4), increase K, from 0 to a critical value 
Kcr at which the output first exhibits sustained oscillations. (If the output does not ex- 
hibit sustained oscillations for whatever value K,  may take, then this method does not 
apply.) Thus, the critical gain Kc, and the corresponding period PC, are experimentally 

KP 

T - 
L 

T 
0.9 - 

L 

T 
1.2 - 

L 

- 
u(t) 

Kp + Plant 
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Figure 10-5 
Sustained oscillation 
with period PC,. 

determined (see Figure 10-5). Ziegler and Nichols suggested that we set the values of 
the parameters K,, T,, and Td according to the formula shown in Table 10-2. 

Table 10-2 Ziegler-Nichols Tuning Rule Based on Critical Gain 
Kc, and Critical Period PC, (Second Method) 

Notice that the PID controller tuned by the second method of Ziegler-Nichols rules 
gives 

Type of 
Controller 

P 

PI 

PID 

Thus, the PID controller has a pole at the origin and double zeros at s = -4/Pcr. 
Note that if the system has a known mathematical model (such as the transfer func- 

tion), then we can use the root-locus method to find the critical gain Kc, and the fre- 
quency of the sustained oscillations wcr, where 2.rr/wC, = PC,. These values can be found 
from the crossing points of the root-locus branches with the jw axis. (Obviously, if the 
root-locus branches do not cross the jw axis, this method does not apply.) 
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Comments. Ziegler-Nichols tuning rules (and other tuning rules presented in the 
literature) have been widely used to tune PID controllers in process control systems 
where the plant dynamics are not precisely known. Over many years, such tuning rules 
proved to be very useful. Ziegler-Nichols tuning rules can, of course, be applied to plants 
whose dynamics are known. (If the plant dynamics are known, many analytical and 
graphical approaches to the design of PID controllers are available, in addition to 
Ziegler-Nichols tuning rules.) 

EXAMPLE 10-1 Consider the control system shown in Figure 10-6 in which a PID controller is used to control the 
system. The PID controller has the transfer function 

Although many analytical methods are available for the design of a PID controller for the pres- 
ent system, let us apply a Ziegler-Nichols tuning rule for the determination of the values of pa- 
rameters K,, T,, and T,I. Then obtain a unit-step response curve and check to see if the designed 
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive 
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap- 
proximately 25% or less. 

Since the plant has an integrator, we use the second method of Ziegler-Nichols tuning rules. 
By setting T, = ca and Td = 0, we obtain the closed-loop transfer function as follows: 

C(s) -- - KP 

R(s) s(s + l ) ( s  + 5) + K,, 

The value of K, that makes the system marginally stable so that sustained oscillation occurs can 
be obtained by use of Routh's stability criterion. Since the characteristic equation for the 
closed-loop system is 

s3 + 6s' + 5s + K,, = 0 

the Routh array becomes as follows: 

s3 1 5 
s2 6 K,, 

30 - K,, 
s1 - 

6 

so Kp 

Examining the coefficients of the first column of the Routh table, we find that sustained oscilla- 
tion will occur if K,, = 30. Thus, the critical gain Kc, is 

With gain K, set equal to Kc, (= 30), the characteristic equation becomes 

Figure 10-6 
PID-controlled 
system. 

t PID 
controller 
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Figure 10-7 
Block diagram of the 
system with PID 
controller designed 
by use of the 
Ziegler-Nichols 
tuning rule (second 
method). 

To find the frequency of the sustained oscillation, we substitute s = jw into this characteristic 
equation as follows: 

( j ~ ) ~  + 6(jw)' + 5(jw) + 30 = 0 

or 

6(5 - w2) + jo(5 - 02) = 0 

from which we find the frequency of the sustained oscillation to be w2 = 5 or w = fi. Hence, the 
period of sustained oscillation is 

Referring to Table 10-2, we determine Kp,  T,, and Td as follows: 

Kp = O.6Kcr = 18 

I;. = 0.5Pcr = 1.405 

Td = O.125Pc, = 0.35124 

The transfer function of the PID controller is thus 

The PID controller has a pole at the origin and double zero at s = -1.4235. A block diagram of 
the control system with the designed PID controller is shown in Figure 10-7. 

Next, let us examine the unit-step response of the system. The closed-loop transfer function 
C ( s ) / R ( s )  is given by 
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1 
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The unit-step response of this system can be obtained easily with MATLAB. See MATLAB 
Program 10-1. The resulting unit-step response curve is shown in Figure 10-8. The maximum 
overshoot in the unit-step response is approximately 62%.The amount of maximum overshoot is 
excessive. It can be reduced by fine tuning the controller parameters. Such fine tuning can be 
made on the computer. We find that by keeping I(, = 18 and by moving the double zero of the 
PID controller to s = -0.65, that is, using the PID controller 

the maximum overshoot in the unit-step response can be reduced to approximately 18% (see Fig- 
ure 10-9). If the proportional gain K,  is increased to 39.42, without changing the location of the 
double zero ( s  = -0.65), that is, using the PID controller 

then the speed of response is increased, but the maximum overshoot is also increased to approx- 
imately 28%, as shown in Figure 10-10. Since the maximum overshoot in this case is fairly close 
to 25% and the response is faster than the system with G,(s) given by Equation (10-I), we may 

num = [0 0 6.3223 18 12.81 I ] ;  
den = [I 6 11.3223 18 12.811 I; 
step(num,den) 
grid 
title('Unit-Step Response') 

Figure 10-8 
Unit-step response 
curve of PID- 
controlled system 
designed by use of 
the Ziegler-Nichols 
tuning rule (second 
method). 
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Figure 10-9 
Unit-step response of 
the system shown in 
Figure 10-6 with PID 
controller having 
parameters Kp = 18, 
T, = 3.077, and 
Td = 0.7'692. 

Figure 10-10 
Unit-step response of 
the system shown in 
Figure 3lO-6 with PID 
controller having 
parameters 
Kp = 39.42, 
T, = 3.0'77, and 
T, = 0.'7692. 

Unit-Step Response 

Time (sec) 

Unit-Step Response 

Time (sec) 

I 

consider G,(s) as given by Equation (10-2) as acceptable.Then the tuned values of Kp,  T i ,  and T, 
become 

Kp = 39.42, T, = 3.077, T, = 0.7692 

It is interesting to observe that these values respectively are approximately twice the values sug- 
gested by the second method of the Ziegler-Nichols tuning rule.The important thing to note here 
is that the Ziegler-Nichols tuning rule has provided a starting point for fine tuning. 

It is instructive to note that, for the case where the double zero is located at s = -1.4235, in- 
creasing the value of K p  increases the speed of response, but as far as the percentage maximum 
overshoot is concerned, varying gain K p  has very little effect. The reason for this may be seen 
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Figure 10-11 
Root-locus diagram 
of system when PID 
controller has double 
zero at s = -1.4235. 

from the root-locus analysis. Figure 10-11 shows the root-locus diagram for the system designed 
by use of the second method of Ziegler-Nichols tuning rules. Since the dominant branches of root 
loci are along the 5 = 0.3 lines for a considerable range of K ,  varying the value of K (from 6 to 
30) will not change the damping ratio of the dominant closed-loop poles very much. However, vary- 
ing the location of the double zero has a significant effect on the maximum overshoot, because 
the damping ratio of the dominant closed-loop poles can be changed significantly. This can also 
be seen from the root-locus analysis. Figure 10-12 shows the root-locus diagram for the system 
where the PID controller has the double zero at s = -0.65. Notice the change of the root-locus 
configuration. This change in the configuration makes it possible to change the damping ratio of 
the dominant closed-loop poles. 

In Figure 10-12, notice that, in the case where the system has gain K = 30.322, the closed-loop 
poles at s = -2.35 i 14.82 act as dominant poles.Two additional closed-loop poles are very near 
the double zero at s = -0.65, with the result that these closed-loop poles and the double zero al- 
most cancel each other. The dominant pair of closed-loop poles indeed determines the nature of 
the response. On the other hand, when the system has K = 13.846, the closed-loop poles at 
s = -2.35 f j2.62 are not quite dominant because the two other closed-loop poles near the dou- 
ble zero at s = -0.65 have considerable effect on the response. The maximum overshoot in the 
step response in this case (18%) is much larger than the case where the system is of second order 
and having only dominant closed-loop poles. (In the latter case the maximum overshoot in the step 
response would be approximately 6%.) 

It is possible to make a third, a fourth, and still further trials to obtain a better response. But 
this will take a lot of computations and time. If more trials are desired, it is desirable to use the 
computational approach presented in Section 10-3. Problem A-10-11 solves this problem with 
the computational approach with MATLAB. It finds sets of parameter values that will yield the 
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Figure 10-12 
Root-loc~~s diagram 
of system when PID 
controllelr has double 
zero at s = -0.65. 
K = 13.846 
corresponds to G,(s) 
given by Equation 
(10-1) and 
K = 30.322 
corresponds to G,(s) 
given by Equation 
(10-2). 

maximum overshoot of 10% or less and the settling time of 3 sec or 1ess.A solution to the present 
problem obtained in Problem A-10-11 is that for the PID controller defined by 

I the values of K and a are 

with the maximum overshoot equal to 9.52% and settling time equal to 1.78 sec. Another possible 
solution obtained there is that 

with the 5.5% maximum overshoot and 2.89 sec of settling time. See Problem A-10-11 for 
details. 
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10-3 COMPUTATIONAL APPROACH TO OBTAIN OPTIMAL SETS 
OF PARAMETER VALUES 

I n  this section we shall explore how t o  obtain a n  optimal se t  (or optimal sets) of 
parameter values to  satisfy the  transient response specification by use of MATLAB. 
We shall present two examples to  illustrate the  approach. 

/ EXAMPLE 10-2 Consider the PID-controlled system shown in Figure 10-13.The PID controller is given by 

It is desired to find a combination of K and a such that the closed-loop system is underdamped 
and the maximum overshoot in the unit-step response is less than 10%, but more than 5%, to 
avoid an overdamped or a close-to-overdamped response. (Other conditions can be included, 
such as that the settling time be less than a specified value and the rise time be less than a cer- 
tain specified value.) 

To solve this problem with MATLAB, it is necessary to write a program such that in the unit- 
step response it will find a combination of K and a which will satisfy the criterion that the maximum 
overshoot is less than lo%, but more than 5%. Assume that the region to search for K and a is 
bounded by 

I 2 5 K 5 5 and 0.5 5 a 5 1.5 

Figure 10-13 
PID-controlled 
system. 

To avoid an overly large amount of computation in this problem, let us choose the step size to be 
reasonable-say, 0.2 for both K and a. 

There may be more than one possible combination of K and a that will satisfy the given con- 
dition. In this problem, however, it is desired to obtain the first solution. (To find all possible sets 
of solutions in the search region, see Example 10-3.) We proceed by writing a MATLAB 
program such that the nested loops in the program begin with the highest values of K and a and 
step toward the lowest. It is also desired that the MATLAB program either automatically plot 
the unit-step response curve of the system using the first-found solution of K and a or else 
enable us to plot the unit-step response of the system with the first-found solution of K and a 
by use of the command 'plot'. (If no values of K and a are found, the MATLAB program should 
not plot a unit-step response curve.) 

To solve this problem, one may write many different MATLAB programs. We shall pres- 
ent two possible programs to solve this problem, MATLAB Program 10-2 and MATLAB 
Program 10-3. 

K -- 

controller 
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In MATLAB Program 10-2, notice that we use two 'for' loops. We start the program with the 
outer loop to vary the 'K' values. Then we vary the 'a' values in the inner loop. We define the nu- 
merator and denominator of the closed-loop system and obtain the unit-step response of the sys- 
tem. We define the maximum overshoot m in the response (m = maximum value in the response 
y). If the condition "m < 1.10 and m > 1.05" is satisfied, we break the inner loop and terminate 
the process of varying the 'a' values. Then we break the outer loop to finish up the searching 
process. When MATLAB finishes computation for the first-found set of 'K' and 'a' that satisfies 
the condition, we enter the 'plot' command to get a plot of the response (see Figure 10-14). Note 
that, depending on the system and the ranges of search for K and a and the step size, it may take 
from several seconds to a few minutes for MATLAB to compute the desired set of the values. In 
the program, the statement 

sol = [K; a; m] 

displays the chosen set of values of K, a, and m. 

I MATLAB Program 10-2 I 
t = 0:0.01:8; 
for K = 5:-0.2:2; % Starts the outer loop to vary the K values 

for a = 1.5:-0.2:0.5; % Starts the inner loop to vary the a values 
num = [O 0 1.2*K 2.4*K*a 1 .2*K*aA21; 
den = 10.36 1.86 2.5+1.2*K 1 +2.4*K*a 1 .2*K*aA21; 

y = step(num,den,t); 
m = max(y); 
i f m <  1.1 & m >  1.05 
break; % Breaks the inner loop 

end 
end 

i f m < 1 . 1  & m >  1.05 
break; % Breaks the outer loop 

end 
end 

plot(t,y) 
grid 
title('Unit-Step Response') 
xlabel('t Sec') 
ylabel('Outputl) 
KK = num2str(K); % String value of K to be printed on plot 
aa = num2str(a); % String value of a to be printed on plot 
text(4.25,0.54,'K = '1, text(4.75,0.54,KK) 
text(4.25,0.46,'a = '1, text(4.75,0.46,aa) 
sol = [K;a;m] 

Sol = 
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Figure 10-14 
Unit-step response 
curve obtained by 

Figure 10-15 
Unit-step response 
curve obtained by 
use of MATLAB 
Program 10-3. 

Unit-Step Response 

0 1 2 3 4 5 6 7 8 
t Sec 

MATLAB Program 10-3 is basically the same as MATLAB Program 10-2. We use two loops 
(the outer loop for varying 'K' values and the inner loop for varying 'a' values). In this program 
we define the PID controller by numl and den1 and obtain the transfer function expression tfl 
for the controller. Then we define the plant by num2 and den2 and obtain the transfer function 
expression tf2 for the plant.The open-loop transfer function for the system is obtained by multi- 
plying t f l  and tf2. Using the 'feedback' command, we get the closed-loop transfer function 'sys'. 
Then we get the unit-step response of the closed-loop system. If the maximum overshoot m is 
less than 1.10, but more than 1.05, MATLAB will plot the unit-step response curve of the first- 
found solution of K and n. (If no sets of values of K and n satisfy the condition, this program will 
not plot a response curve.) This MATLAB program automatically displays the first-found solu- 
tion of K ,  a, and m. Figure 10-15 is the unit-step response curve obtained by the program. 
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MATLAB Program 10-3 

t = 0:0.01:8; 
for K = 5:-0.2:2; % Starts the outer loop to vary the K values 

for a = 1.5:-0.2:0.5; % Starts the inner loop to vary the a values 
numl = K*[ l  2*a aA2]; 
denl = [O 1 01; 
t f l  = tf(num1, denl ); 
num2 = [O 0 0 1.21; 
den2 = [0.36 1.86 2.5 1 I; 
tf2 = tf(num2,den2); 
tf3 = t f l  *tf2; 
sys = feedback(tf3,l); 
y = step(sys,t); 
m = max(y); 
i f m < 1 . 1  &m>1.05;  
plot(t,y); 
grid; 
title('Unit-Step Response') 
xlabel('t Sec') 
ylabel('Outputl) 
sol = [K;a;ml 
break; % Breaks the inner loop 

end 
end 

if m < 1 .I & m > 1.05; 
break; % Breaks the outer loop 

end 
end 
sol = 

4.2000 
0.7000 
1.0962 

text(6.2, 0.35,'K = '1, text(6.65, 0.35,num2str(K)) 
text(6.2, 0.25,'a = '1, text(6.65, 0.25,num2str(a)) 

EXAMPLE 10-3 In Example 10-2 we wrote MATLAB programs to find the first set of parameters to satisfy the 
given specifications.There may be more than one set of parameters that satisfy the specifications. 
In this example, we shall obtain all sets of parameters that satisfy the given specifications. 

Consider the same system as in Example 10-2, except that the problem here is to find all sets . 
of K and a that will satisfy the given specification that the maximum overshoot in the unit-step 
response be less than 10%. (This means that overdamped systems are included.) Assume the 
search region to be 

2 5 K 5 3, 0.5 5 a 5 1.5 

In the actual design process, the step size should be sufficiently small. In this example problem, 
however, we choose a fairly large step size to make the total number of search points reasonable. 
Thus, we choose the step size for both K and a to be 0.2. 
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To solve this problem it is possible to write many different MATLAB programs. We present 
here one such program, MATLAB Program 10-4. 

In this program the statement 

will produce a table of K, a, rn values. (In the present system there are 15 sets of K and a that will 
exhibit rn < 1.10-that is, the maximum overshoot is less than lo%.) 

To sort out the solution sets in the order of the magnitude of the maximum overshoot (start- 
ing from the smallest value of rn and ending at the largest value of rn in the table), we use the 
command 

I sortsolution = sortrows(solution,3) 

To plot the unit-step response curve of the last set of the K and a values in the sorted table, 
we enter the commands 

K = sortsolution (k,l) 
a = sortsolution (k,2) 

and use the step command. (The resulting unit-step response curve is shown in Figure 10-16.) To 
plot the unit-step response curve with the smallest overshoot that is greater than 0% found in the 
sorted table. enter the commands 

K = sortsolution (1 1 ,I 
a = sortsolution (1 1,2) 

and use the step command. (The resulting unit-step response curve is shown in Figure 10-17.) To 
plot the unit-step response curve of the system with any set shown in the sorted table, we specify 
the K and a values by entering an appropriate sortsolution command. 

Figure 10-16 
Unit-step response of 
the system with 
K = 2.4 and a = 0.9. 
(The maximum 
overshoot is 9.23%.) 
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Steo Res~onse 

Figure 10-17 
Unit-step response of 
the system with 
K = 2.8 and a = 0.7. 
(The maximum 
overshoot is 0.24%.) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (sec) 

Note that for a specification that the maximum overshoot be between 10% and 5%, there 
would be three sets of solutions: 

Unit-step response curves for these three cases are shown in Figure 10-18. Notice that the 
system with a larger gain K has a smaller rise time and larger maximum overshoot. Which one of 
these three systems is best depends on the system's objective. 

MATLAB Program 10-4 

I % K '  and 'a' values to test I 

O/U Evaluate closed-loop unit-step response at each 'K '  and 'a' combination 
% that will yield the maximum overshoot less than 10% 

t = 0:0.01:5; 
g = tf([0 0 0 1.2],[0.36 1.86 2.5 I ] ) ;  
k = 0; 
for i = 1:6; 

for j= 1 :6; 
gc = tf(K(i)*[l 2*a(j) a(jIA2l, [O 1 01); % controller 

G = gc*g/(l + gc*g); "/o closed-loop transfer function 
y = step(G,t); 

(continues on next page) 
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m = max(y); 
if m < 1.10 
k =  k+l; 
solution(k,:) = [K(i) a(j) ml; 
end 

end 
end 

solution % Print solution table 

solution = 

2.0000 0.5000 0.9002 
2.0000 0.7000 0.9807 
2.0000 0.9000 1.061 4 
2.2000 0.5000 0.91 14 
2.2000 0.7000 0.9837 
2.2000 0.9000 1.0772 
2.4000 0.5000 0.9207 
2.4000 0.7000 0.9859 
2.4000 0.9000 1.0923 
2.6000 0.5000 0.9283 
2.6000 0.7000 0.9877 
2.8000 0.5000 0.9348 
2.8000 0.7000 1.0024 
3.0000 0.5000 0.9402 
3.0000 0.7000 1.01 77 

sortsolution = sortrows(solution,3) % Print solution table sorted by 
% column 3 

sortsolution = 

(continues on next page) 
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% Plot the response with the largest overshoot that is  less than 10% 

K = sortsolution(k,l) 

K = 

2.4000 

a = sortsolution(k,2) 

a = 

0.9000 

gc = tf(K*[l 2*a aA2], [O 1 01); 
G = gc*g/(l + gc*g); 
step(G,t) 
grid % See Figure 1 0-1 6 

% If you wish to plot the response with the smallest overshoot that is 
% greater than 0%, then enter the following values of 'K' and 'a' 

K = sortsolution(l1 ,I) 

K =  

2.8000 

a = sortsolution(1 I ,2) 

a = 

0.7000 

gc = tf(K*[l 2*a aA2], [O 1 01); 
G = gc*g/(l + gc*g); 
step(G,t) 
grid % See Figure 10-1 7 
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Figure 10-18 
Unit-step response 
curves of system with 
K = 2, a = 0.9; 
K = 2.2, u = 0.9; 
and K = 2.4, 
a = 0.9. 

10-4 MODIFICATIONS OF PID CONTROL SCHEMES 

Consider the basic PID control system shown in Figure 10-19(a), where the system is 
subjected to disturbances and noises. Figure 10-19(b) is a modified block diagram of 
the same system. In the basic PID control system such as the one shown in Fig- 
ure 10-19(b), if the reference input is a step function, then, because of the presence of 
the derivative term in the control action, the manipulated variable u ( t )  will involve an 
impulse function (delta function). In an actual PID controller, instead of the pure 
derivative term T,,s, we employ 

where the value of y is somewhere around O.l.Therefore, when the reference input is a 
step function, the manipulated variable u( t )  will not involve an impulse function, but will 
involve a sharp pulse function. Such a phenomenon is called set-point kick. 

PI-D Control. To avoid the set-point kick phenomenon, we may wish to oper- 
ate the derivative action only in the feedback path so that differentiation occurs 
only on the feedback signal and not on the reference signal. The control scheme 
arranged in this way is called the PI-D control. Figure 10-20 shows a PI-D-controlled 
system. 

From Figure 10-20, it can be seen that the manipulated signal U(s)  is given by 
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Disturbance 
D(s) 

Reference 1 Output 

Figure 1%-19 
(a) PID-controlled 
system; 
(b) equivalent block 
diagram. 

Figure 10-20 
PI-D-controlled 
system. 

t 1 Noise 

Plant 
controller Gp(s) 

I Observed signal B(s) 

(a) 

YO) - ' 

I 

Notice that in the absence of the disturbances and noises, the closed-loop transfer 
function of the basic PID control system [shown in Figure 10-19(b)] and the PI-D control 
system (shown in Figure 10-20) are given, respectively, by 
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and 

Figure 10-21 
I-PD-controlled 
system. 

It is important to point out that in the absence of the reference input and noises, the 
closed-loop transfer function between the disturbance D ( s )  and the output Y ( s )  in 
either case is the same and is given by 

I-PD Control. Consider again the case where the reference input is a step function. 
Both PID control and PI-D control involve a step function in the manipulated signal. 
Such a step change in the manipulated signal may not be desirable in many occasions. 
Therefore, it may be advantageous to move the proportional action and derivative action 
to the feedback path so that these actions affect the feedback signal only. Figure 10-21 
shows such a control scheme. It is called the I-PD control. The manipulated signal is 
given by 

Notice that the reference input R(s )  appears only in the integral control part. Thus, in 
I-PD control, it is imperative to have the integral control action for proper operation of 
the control system. 

The closed-loop transfer function Y ( s ) / R ( s )  in the absence of the disturbance input 
and noise input is given by 
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It is noted that in the absence of the reference input and noise signals, the closed-loop 
transfer function between the disturbance input and the output is given by 

This expression is the same as that for PID control or PI-D control. 

Two-Degrees-of-Freedom PID Control. We have shown that PI-D control is ob- 
tained by moving the derivative control action to the feedback path, and I-PD control 
is obtained by moving the proportional control and derivative control actions to the 
feedback path. Instead of moving the entire derivative control action or proportional 
control action to the feedback path, it is possible to move only portions of these control 
actions to the feedback path, retaining the remaining portions in the feedforward path. 
In the literature, PI-PD control has been proposed. The characteristics of this control 
scheme lie between PID control and I-PD control. Similarly, PID-PD control can be 
considered. In these control schemes, we have a controller in the feedforward path and 
another controller in the feedback path. Such control schemes lead us to a more gener- 
al two-degrees-of-freedom control scheme. We shall discuss details of such a two-degrees- 
of-freedom control scheme in subsequent sections of this chapter. 

10-5 TWO-DEGREES-OF-FREEDOM CONTROL 

Consider the system shown in Figure 10-22, where the system is subjected to the 
disturbance input D(s) and noise input N(s),  in addition to the reference input R(s). 
G,(s) is the transfer function of the controller and Gp(s) is the transfer function of the 
plant. We assume that Gp(s) is fixed and unalterable. 

For this system, three closed-loop transfer functions Y(s)/R(s) = G,,, 
Y (s) /D(s) = Gyd, and Y (s) /N (s) = G,, may be derived. They are 

Figure 10-22 
One-degree-of- 
freedom control 
system. 
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Y(s) - - GCG, 
G,,, = - - 

N(s) 1 + G,G,, 

Figure 10-23 
Two-degrees-of- 
freedom control 
system. 

[In deriving Y(s)/R(s), we assumed D(s) = 0 and N(s) = 0. Similar comments apply 
to the derivations of Y (s)/D(s) and Y (s)/N(s).] The degrees of freedom of the control 
system refers to how many of these closed-loop transfer functions are independent. In 
the present case, we have 

Among the three closed-loop transfer functions G,,, C,,, and Gvd, if one of them is 
given, the remaining two are fixed.This means that the system shown in Figure 10-22 is 
a one-degree-of-freedom control system. 

Next consider the system shown in Figure 10-23, where Gp(s) is the transfer func- 
tion of the plant. For this system, closed-loop transfer functions G,,, G,,, and Gyd are 
given, respectively, by 

Hence, we have 

In this case, if Gyd is given, then G,,, is fixed, but G,, is not fixed, because G,, is 
independent of G,,,. Thus, two closed:loop transfer functions among three closed-loop 
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Figure 10-24 
Two-degrees-of- 
freedom control 
system. 

transfer functions G,,, Gyd, and G,, are independent. Hence, this system is a two-degrees- 
of-freedom control system. 

Similarly, the system shown in Figure 10-24 is also a two-degrees-of-freedom control 
system, because for this system 

Y ( s )  - GdG, + G c *  Gp 
G", = ---- - 

- R ( s )  1 + G C I G ,  1 + G C I G ,  

Hence, 

Clearly, if G,, is given, then G,, is fixed, but G,, is not fixed, because GC2 is independ- 
ent of Gyd. 

It will be seen in Section 10-6 that, in such a two-degrees-of-freedom control system, 
both the closed-loop characteristics and the feedback characteristics can be adjusted 
independently to improve the system response performance. 

10-6 ZERO-PLACEMENT APPROACH TO IMPROVE 
,RESPONSE CHARACTERISTICS 

We shall show here that by use of the zero-placement approach presented later in this 
section, we can achieve the following: 

The responses to the ramp reference input and acceleration reference input exhibit 
no steady-state errors. 

In high-performance control systems it is always desired that the system output follow 
the changing input with minimum error. For step, ramp, and acceleration inputs, it is 
desired that the system output exhibit no steady-state error. 
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Figure 10-25 
Two-degrees-of- 
freedom control 
system. 

In what follows, we shall demonstrate how to design control systems that will exhibit 
no steady-state errors in following ramp and acceleration inputs and at the same time 
force the response to the step disturbance input to approach zero quickly. 

Consider the two-degrees-of-freedom control system shown in Figure 10-25. Assume 
that the plant transfer function G,(s) is a minimum-phase transfer function and is given by 

where 

where N may be O,1,2 and n r m. Assume also that G,, is a PID controller followed 
by a filter 1 / A ( s ) ,  or 

and GC2 is a PID, PI, PD, I, D, or P controller followed by a filter l / A ( s ) .  That is 

where some of a,, P2, and y2 may be zero. Then it is possible to write GC1 + G,, as 

as + p + ys2 1 
G,, + G,, = 

S 4 s )  

where a, p, and y  are constants. Then 

A ( s )  K -  
Y ( s >  - -- GP - - B ( s )  

D(s )  1 + (GI + Gc2)Gp as + p + ys2 K 1 + a- 

s  B ( s )  

- - 
s K A ( s )  

sB( s )  + (as  + /3 + y ~ 2 ) ~  
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Figure 16-24 
Typical response 
curve to a step 
disturbance input. 

Because of the presence of s  in the numerator, the response y ( t )  to a,step disturbance 
input approaches zero as t approaches infinity, as shown below. Since 

s K A ( s )  
Y ( s )  = 

sB(s)  + (as + p + y s 2 ) ~  D ( s )  

if the disturbance input is a step functioa of magnitude d, or 

and assuming the system is stable, then 

s K A ( s )  
y ( w )  = lims 

sB(s)  + (as + p + y s 2 ) ~  
sKA(0)d  

= lim 
s-0 sB(0) + PK 

The response y ( t )  to a step disturbance input will have the general form shown in 
Figure 10-26. 

Note that Y ( s ) / R ( s )  and Y ( s ) / D ( s )  are given by 

Notice that the denominators of Y ( s ) / R ( s )  and Y ( s ) / D ( s )  are the same. (This is 
always true for any system.There is only one characteristic equation for the system.) 

Before we choose the poles of Y ( s ) / R ( s ) ,  we need to place the zeros of Y ( s ) / R ( s ) .  

Zero Placement. Consider the system 

Y ( s )  - p(s)  
R ( s )  sn+' + ansn + an-,sn-' + + a2s2 + a,s + a, 

If we choose p(s)  as 

p(s)  = a2s2 + als + a. = a2(s + s l ) ( s  + s,) 
that is, choose the zeros s  = -s, and s  = -s2 such that, together with a2, the numerator 
polynomial p ( s )  is equal to the sum of the last three terms of the denominator 
polynomial-then the system will exhibit no steady-state errors in response to the step 
input, ramp input, and acceleration input. 
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Requirement Placed on System Response Characteristics. Suppose that it is 
desired that the maximum overshoot in the response to the unit-step reference input be 
between arbitrarily selected upper and lower limits-for example, 

2% < maximum overshoot < 10% 

where we choose the lower limit to be slightly above zero to avoid having overdamped 
systems. The smaller the upper limit, the harder it is to determine the coefficient a's. In 
some cases, no combination of the a's may exist to satisfy the specification, so we must 
allow a higher upper limit for the maximum overshoot. We use MATLAB to search at 
least one set of the a's to satisfy the specification. As a practical computational matter, 
instead of searching for the a's, we try to obtain acceptable closed-loop poles by search- 
ing a reasonable region in the left-half s  plane for each closed-loop pole. Once we 
determine all closed-loop poles, then all coefficients a,, a,-, , . . . , a,, a, will be determined. 

Determination of G,, . Now that the coefficients of the transfer function Y ( s ) / R ( s )  
are all known and Y ( s ) / R ( s )  is given by 

we have 

- - 
G,, s K A ( s )  

s B ( s )  + ( a s  + p + y s 2 ) ~  

Since G,, is a PID controller and is given by 

Y ( s ) / R ( s )  can be written as 

Therefore, we choose 

K y ,  = a2, Kal  = a,, KPI = a" 

so that 

a , s + a , , + a 2 s 2  1 
G,, = 

K s  4 s )  

The response of this system to the unit-step reference input can be made to exhibit the 
maximum overshoot between the chosen upper and lower limits, such as 

2% < maximum overshoot < 10% 
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EXAMPLE 1 0-4 

Figure 10-27 
Two-degrees- 
of-freedom control 
system. 

The response of the system to the ramp reference input or acceleration reference input 
can be made to exhibit no steady-state error. The characteristic of the system of Equa- 
tion (10-4) is that it generally exhibits a short settling time. If we wish to further short- 
en the settling time, then we need to allow a larger maximum overshoot-for example, 

2% < maximum overshoot < 20% 

The controller G,, can now be determined from Equations (10-3) and (10-5). Since 

we have 

The two controllers GC1 and G,, are given by Equations (10-5) and (10-6), respectively. 

Consider the two-degrees-of-freedom control system shown in Figure 10-27. The plant transfer 
function Gp(s)  is given by 

Design controllers Gcl(s) and Gc2(s) such that the maximum overshoot in the response to the 
unit-step reference input be less than 19%, but more than 2%, and the settling time be less than 
1 sec. It is desired that the steady-state errors in following the ramp reference input and acceler- 
ation reference input be zero.The response to the unit-step disturbance input should have a small 
amplitude and settle to zero quickly. 

To design suitable controllers GCl(s) and Gc2(s), first note that 

To simplify the notation, let us define 

GC = GCl + Gc2 
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Second, note that 

Notice that the characteristic equation for Y ( s ) / D ( s )  and the one for Y ( s ) / R ( s )  are identical. (The 
system always has only one characteristic equation.) 

We may be tempted to choose a zero of G,(s) at s  = -1 to cancel a pole at s  = -1 of the 
plant G,(s). However, the canceled pole s  = -1 becomes a closed-loop pole of the entire system, 
as seen below. If we define G,(s) as a PID controller such that 

then 

The closed-loop pole at s  = -1 is a slow-response pole, and if this closed-loop pole is included in 
the system, the settling time will not be less than 1 sec.Therefore, we should not choose Gc(s) as 
given by Equation (10-7). 

The design of controllers G,,(s) and G,,(s) consists of two steps. 

Design Step 1: We design G,(s) to satisfy the requirements on the response to the step- 
disturbance input D(s) .  In this design stage, we assume that the reference input is zero. 

Suppose that we assume that G,(s) is a PID controller of the form 

Then the closed-loop transfer function Y ( s ) / D ( s )  becomes 
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Figure 1.0-28 
Search regions for 
a, b, and c. 

Note that the presence of "s" in the numerator of Y(s)/D(s) assures that the steady-state response 
to the step disturbance input is zero. 

Let us assume that the desired dominant closed-loop poles are complex conjugates and are 
given by 

and the remaining closed-loop pole is real and is located at 

S = -c 

Note that in this problem there are three requirements. The first requirement is that the 
response to the step disturbance input damp out quickly.The second requirement is that the max- 
imum overshoot in the response to the unit-step reference input be between 19% and 2% and the 
settling time be less than 1 sec. The third requirement is that the steady-state errors in the re- 
sponses to both the ramp and acceleration reference inputs be zero. 

A set (or sets) of reasonable values of a, b, and c must be searched using a computational 
approach. To satisfy the first requirement, we choose the search region for a, 6 ,  and c to be 

This region is shown in Figure 10-28. If the dominant closed-loop poles s = -a f jb are located 
anywhere in the shaded region, the response to a step disturbance input will damp out quickly. (The 
first requirement will be met.) 

Notice that the denominator of Y(s)/D(s) can be written as 

j6 

Region for 

j4 

j2 
Region for c 

I 
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Since the denominators of Y(s)/D(s) and Y(s)/R(s) are the same, the denominator of Y(s)/D(5) 
determines also the response characteristics for the reference input. To satisfy the third require- 
ment, we refer to the zero-placement method and choose the closed-loop transfer function 
Y(s)/R(s) to be of the following form: 

in which case the third requirement is automatically satisfied. 
Our problem then becomes a search of a set or sets of desired closed-loop poles in terms 

of a. b, and c in the specified region, such that the system will satisfy the requirement on the re- 
sponse to the unit-step reference input that the maximum overshoot be between 19% and 2% and 
the settling time be less than 1 sec. (If an acceptable set cannot be found in the search region, we 
need to widen the region.) 

In the computational search, we need to assume a reasonable step size. In this problem, we 
assume it to be 0.2. 

MATLAB Program 10-5 produces a table of sets of acceptable values of a, b, and c. Using this 
program, we find that the requirement on the response to the unit-step reference input is met by 
any of the 23 sets shown in the table in MATLAB Program 10-5. Note that the last row in the table 
corresponds to the last search point.This point does not satisfy the requirement and thus it should 
simply be ignored. (In the program written, the last search point produces the last row in the table 
whether or not it satisfies the requirement.) 

- 

MATLAB Program 10-5 

t = 0:0.01:4; 
k = 0; 
for i = 1:21; 

a(i) = 6.2-i*0.2; 
for j = 1 :21; 

b(j) = 6.2-j*0.2; 
for h = 1:31; 

c(h) = 12.2-h*O.2; 
num = [O 2*a(i)+c(h) a(i)A2+b(j)A2+2*a(i)*c(h) (a(i)A2+b(j)A2)*c(h)]; 
den = [I 2*a(i)+c(h) a(i)A2+b(j)A2+2*a(i)*c(h) (a(i)A2+b(j)A2)*c(h)l; 

y = step(num,den,t); 
m = max(y1; 
s = 401 ; while y(s) > 0.98 & y(s) < 1.02; 
s = 5-1; end; 
ts = (5-1 )*0.01; 

ifm.: 1 . 1 9 & m >  1.02 & t s <  1.0; 
k =  k+l; 
table(k,:) = [a(i) b(j) c(h) m ts]; 
end 

end 
end 

end 

(contin~~es on next page) 
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table = 

As noted above, 23 sets of variables a, b, and c satisfy the requirement. Unit-step response 
curves of the system with any of the 23 sets are about the same.The unit-step response curve with 

is shown in Figure 10-29(a). The maximum overshoot is 18.96% and the settling time is 0.85 sec. 
Using these values of a, b, and c, the desired closed-loop poles are located at 

Using these closed-loop poles, the denominator of Y ( s ) / D ( s )  becomes 
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Figure 10-29 
(a) Response to unit- 
step reference input 
( a  = 4.2, b = 2, c = 12); 
(b) response to unit-step 
disturbance input 
( a  = 4.2, b = 2, c = 12). 

Unit-Step Response (a = 4.2, b = 2, c = 12) 

0 0.5 1 1.5 2 2.5 3 3.5 4 
t (sec) 

Response to Unit-Step Disturbance Input 

0 0.5 1 1.5 2 2.5 3 3.5 4 
t (sec) 

By equating the coefficients of equal powers of s on both sides of this last equation, we obtain 

1 + 10K = 20.4 

10K(a  + P )  = 122.44 

10KaP = 259.68 
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Hence 

Then G,(s) can be written as 

The closed-loop transfer function Y(s)/D(s) becomes 

Using this expression, the response y(t) to a unit-step disturbance input can be obtained as shown 
in Figure 10-29(b). 

Figure 10-30(a) shows the response of the system to the unit-step reference input when a, b, 
and c are chosen as 

Figure 10-30(b) shows the response of this system when it is subjected to a unit-step disturbance 
input. Comparing Figures 10-29(a) and Figure 10-30(a), we find that they are about the same. 
However, comparing Figures 10-29(b) and 1@30(b), we find the former to be a little bit better than 
the latter. Comparing the responses of systems with each set in the table, we conclude the first set 
of values (a = 4.2, b = 2, c = 12) to be one of the best. Therefore, as the solution to this prob- 
lem, we choose 

a = 4.2, b = 2, c = 12 

Design Step 2: Next, we determine G,, . Since Y (s)/R(s) can be given by 
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Figure 10-30 
(a) Response to unit-step 
reference input 
(a  = 3.2, b = 2, c = 12); 
(b) response to unit-step 
disturbance input 
(a = 3.2, b = 2, c = 12). 

our problem becomes that of designing G,,(s) to satisfy the requirements on the responses to the 
step, ramp, and acceleration inputs. 

Since the numerator involves "s", G,,(s) must include an integrator to cancel this "s". 
[Although we want "s" in the numerator of the closed-loop transfer function Y ( s ) / D ( s )  to obtain 
zero steady-state error to the step disturbance input, we do not want to;have "s" in the numera- 
tor of the closed-loop transfer function Y ( s ) /R ( s ) . ]  To eliminate the offset in the response to the 
step reference input and eliminate the steady-state errors in following the ramp reference input 

Un~t-Step Response (u = 3 2, b = 2, c = 12) 
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.04s + 12.244 + 

Figure 10-31 
Block diagram of the 
designed system. 

and acceleration reference input, the numerator of Y ( s ) / R ( s )  must be equal to the last three 
terms of the denominator, as mentioned earlier. That is, 

Thus, G,,(s) is a PID controller. Since G,(s) is given as 

we obtain 

Thus, G,,(s) is a derivative controller. A block diagram of the designed system is shown in 
Figure 10-31. 

The closed-loop transfer function Y ( s ) / R ( s )  now becomes 

The response to the unit-ramp reference input and that to the unit-acceleration reference input 
are shown in Figures 10-32(a) and (b), respectively.The steady-state errors in following the ramp 
input and acceleration input are zero. Thus, all the requirements of the problem are satisfied. 
Hence, the designed controllers G,,(s) and G,,(s) are acceptable. 
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Figure 10-32 
(a) Response to unit- 
ramp reference 
input; (b) response to 
unit-acceleration 
reference input. 

Unit-Acceleration Response 

t (sec) 
(b) 

EXANPLE 10-5 Consider the control system shown in Figure 10-33. This is a two-degrees-of-freedom system. In 
the design problem considered here, we assume that the noise input N ( s )  is zero. Assume that 
the plant transfer function G,,(s) is given by 

Assume also that the controller Gcl(s) is of PID type.That is, 

718 Chapter 10 / PID Controls and Two-Degrees-of-Freedom Control Sys tems 



Figure 10-33 
Tbo-degrees-of- 
freedom control 
system. 

Figure 10-34 
Control system. 

The controller Gc2(s) is of P or PD type. [If GC2(s) involves integral control action, then this will 
introduce a ramp component in the input signal, which is not desirable. Therefore, Gc2(s) should 
not include the integral control action.] Thus, we assume that 

where ?, may be zero. 
Let us design controllers G,,(s) and G,,(s) such that the responses to the step-disturbance 

input and the step-reference input are of "desirable characteristics" in the sense that 

1. The response to the step-disturbance input will have a small peak and eventually approach 
zero. (That is, there will be no steady-state error.) 

2. The response to the step reference input will exhibit less than 25% overshoot with a settling 
time less than 2 sec.The steady-state errors to the ramp reference input and acceleration ref- 
erence input should be zero. 

The design of this two-degrees-of-freedom control system may be carried out by following the 
steps 1 and 2 below. 

1. Determine G,,(s) so that the response to the step-disturbance input is of desirable characteristics. 
2. Design Gc2(s) so that the responses to the reference inputs are of desirable characteristics 

without changing the response to the step disturbance considered in step 1. 

Design of G,,(s): First, note that we assumed the noise input N ( s )  to be zero.To obtain the re- 
sponse to the step-disturbance input, we assume that the reference input is zero. Then the block 
diagram which relates Y ( s )  and D(s)  can be drawn as shown in Figure 10-34. The transfer func- 
tion Y ( s ) / D ( s )  is given by 

where 

Section 10-6 / Zero-Placement Approach to Improve Response Characteristics 719 



' " ~ i ~ u r e  10-35 
Root~locus plots of 
5K(s  + a)2/[s(s  + 1 )  
( s  + 5 ) ]  when a = 3, 
a = 4, a = 4.5, and 

Root-Locus Plots of (s + ~ ) ~ / ( s ~  + 6s' + 5s) 
with a  = 3, a  = 4, a = 4.5, and a = 6  

Real Axis 

This controller involves one pole at the origin and two zeros. If we assume that the two zeros are 
located at the same place (a double zero), then G,,(s) can be written as 

Then the characteristic equation for the system becomes 

which can be rewritten as 

If we place the double zero between s = -3 and s = -6, then the root-locus plot of G,,(s)G,(s) 
may look like the one shown in Figure 10-35. The speed of response should be fast, but not faster 
than necessary, because faster response generally implies larger or more expensive components. 
Therefore, we may choose the dominant closed-loop poles at 

s = -3 i j2 

(Note that this choice is not unique.There are infinitely many possible closed-loop poles that we 
may choose from.) 

Since the system is of third order, there are three closed-loop poles.The third one is located 
on the negative real axis to the left of point s = -5. 

Let us substitute s = -3 + j2 into Equation (10-8). 

which can be simplified to 
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By equating the real part and imaginary part to zero, respectively, we obtain 

24 + 25K - 30Ka + 5Ka2 = 0 

-16 - 60K + 20Ka = 0 

From Equation (10-lo), we have 

Substituting Equation (10-11) into Equation (10-9), we get 

a2 = 13 

or a = 3.6056 or -3.6056. Notice that the values of K become 

K = 1.3210 for a = 3.6056 

K = -0.1211 for a = -3.6056 

Since G,,(s) is in the feedforward path, the gain K should be positive. Hence, we choose 

Then G,,(s) can be given by 

To determine K,, T,, and Td, we proceed as follows: 

1.3210(s2 + 7.2112s + 13) 
Gc,(s) = 

S 

Thus, 

K, = 9.5260, T, = 0.5547, T,, = 0.1387 

To check the response to a unit-step disturbance input, we obtain the closed-loop transfer 
function Y ( s ) / D ( s ) .  

Y ( s )  -- - GP 
D ( J )  1 + GclGp 
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Figure 10-36 
Response to unit- 
step disturbance 
input. 

Unit-Step Response of Y(s)lD(s) 

The response to the unit-step disturbance input is shown in Figure 10-36. The response curve 
seems good and acceptable. Note that the closed-loop poles are located at s = -3 f j2 and 
s = -6.6051. The complex-conjugate closed-loop poles act as dominant closed-loop poles. 

Design of GC2(s): We now design G,,(s) to obtain the desired responses to the reference inputs. 
The closed-loop transfer function Y ( s ) / R ( s )  can be given by 

Zero placement. We place two zeros together with the dc gain constant such that the nurnera- 
tor is the same as the sum of the last three terms of the denominator. That is, 

By equating the coefficients of s2 terms and s terms on both sides of this last equation, 

from which we get 

Therefore, 
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Figure 10-37 
(a) Response to unit- 
step reference input; 
(b) response to unit- 
ramp reference 
input; (c) response to 
unit-acceleration 
reference input. 

With this controller Gc2(s), the closed-loop transfer function Y ( s ) / R ( s )  becomes 

Y ( s )  12.6051s' + 52.63s + 85.8673 -=  
R ( s )  s3 + 12.6051s2 + 52.63s + 85.8673 

The response to the unit-step reference input becomes as shown in Figure 10-37(a). 
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Response to Unit-Acceleration Reference Input 

Figure 10-37 
(continued) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
t (sec) 

The response exhibits the maximum overshoot of 21% and the settling time is approximately 
1.6 sec. Figures 10-37(b) and (c) show the ramp response and acceleration response. The steady- 
state errors in both responses are zero.The response to the step disturbance was satisfactory. Thus, 
the designed controllers G,,(s) and G,,(s) given by Equations (10-12) and (10-13), respectively, 
are satisfactory. 

If the response characteristics to the unit-step reference input are not satisfactory, we need to 
change the location of the dominant closed-loop poles and repeat the design process. The domi- 
nant closed-loop poles should lie in a certain region in the left-half s plane (such as 2 5 a r 6 ,  
2 5 b 5 6,6  5 c 5 12). If the computational search is desired, write a computer program (sim- 
ilar to MATLAB Program 10-5) and execute the search process.Then a desired set or sets of val- 
ues of a, b, and c may be found such that the system response to the unit-step reference input 
satisfies all requirements on maximum overshoot and settling time. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-10-1. Describe briefly the dynamic characteristics of the PI controller, PD controller, and PID 
controller. 

Solution. The PI controller is characterized by the transfer function 

The PI controller is a lag compensator. It possesses a zero at s = -1/T, and a pole at s = 0. Thus, 
the characteristic of the PI controller is infinite gain at zero frequency. This improves the 
steady-state characteristics. However, inclusion of the PI control action in the system increases the 
type number of the compensated system by 1, and this causes the compensated system to be less 
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stable or even makes the system unstable.Therefore, the values of K,, and T, must be chosen care- 
fully to ensure a proper transient response. By properly designing the PI controller, it is possible 
to make the transient response to a step input exhibit relatively small or no overshoot.The speed 
of response, however, becomes much slower. This is because the PI controller, being a low-pass 
filter, attenuates the high-frequency components of the signal. 

The PD controller is a simplified version of the lead compensator.The PD controller has the 
transfer function G,(s), where 

The value of K,, is usually determined to satisfy the steady-state requirement.The corner frequency 
1/T,, is chosen such that the phase lead occurs in the neighborhood of the gain crossover frequency. 
Although the phase margin can be increased, the magnitude of the compensator continues to 
increase for the frequency region l/Ki < o. (Thus, the PD controller is a high-pass filter.) Such 
a continued increase of the magnitude is undesirable, since it amplifies high-frequency noises that 
may be present in the system. Lead compensation can provide a sufficient phase lead, while the 
increase of the magnitude for the high-frequency region is very much smaller than that for PD con- 
trol. Therefore, lead compensation is preferred over PD control. 

Because the transfer function of the PD controller involves one zero, but no pole, it is not 
possible to electrically realize it by passive RLC elements only. Realization of the PD controller 
using op amps, resistors, and capacitors is possible, but because the PD controller is a high-pass 
filter, as mentioned earlier, the differentiation process involved may cause serious noise problems 
in some cases.There is, however, no problem if the PD controller is realized by use of the hydraulic 
or pneumatic elements. 

The PD control, as in the case of the lead compensator, improves the transient-response 
characteristics, improves system stability, and increases the system bandwidth, which implies fast 
rise time. 

The PID controller is a combination of the PI and PD controllers. It is a lag-lead compensator. 
Note that the PI control action and PD control action occur in different frequency regions. The 
PI control action occurs at the low-frequency region and PD control action occurs at the high- 
frequency region.The PID control may be used when the system requires improvements in both 
transient and steady-state performances. 

A-10-2. Show that the transfer function U ( s ) / E ( s )  of the PID controller shown in Figure 10-38 is 

Assume that the gain K is very large compared with unity, or K * 1. 

Solution. 

Figure 10-38 
PID controller. 
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Figure 10-39 
Modified PID 
controller. 

A-10-3. Consider the electronic circuit involving two operational amplifiers shown in Figure 10-39. This 
is a modified PID controller in that the transfer function involves an integrator and a first-order 
lag term. Obtain the transfer function of this PID controller. 

Solution. Since 

and 

we have 

Also, 

Chapter 10 / PID Controls and Two-Degrees-of-Freedom Control Systems 



Figure 10-40 
Approximate 
differentiator. 

Consequently, 

Notice that R, C1 and R2C2 determine the locations of the zeros of the controller, while R1,  R3, and 
C1 affect the location of the pole on the negative real axis. R5/R, adjusts the gain of the controller. 

A-10-4. In practice, it is impossible to realize the true differentiator. Hence, we always have to approxi- 
mate the true differentiator T,[s by something like 

One way to realize such an approximate differentiator is to utilize an integrator in the feedback path. 
Show that the closed-loop transfer function of the system shown in Figure 10-40 is given by the pre- 
ceding expression. (In the commercially available differentiator, the value of y may be set as 0.1). 

Solution. The closed-loop transfer function of the system shown in Figure 10-40 is 

Note that such a differentiator with first-order delay reduces the bandwidth of the closed-loop 
control system and reduces the detrimental effect of noise signals. 

A-10-5. Consider the system shown in Figure 10-41. This is a PID control of a second-order plant G(s) .  
Assume that disturbances D(s)  enter the system as shown in the diagram. It is assumed that the 
reference input R ( s )  is normally held constant, and the response characteristics to disturbances 
are a very important consideration in this system. 

Figure 10-41 
PID-controlled 
system. 

PID controller Plant G(s) I 
Example Problems and Solutions 



Design a control system such that the response to any step disturbance will be damped out 
quickly (in 2 to 3 sec in terms of the 2% settling time). Choose the configuration of the closed-loop 
poles such that there is a pair of dominant closed-loop poles. Then obtain the response to the 
unit-step disturbance input. Also, obtain the response to the unit-step reference input. 

Solution. The PID controller has the transfer function 

For the disturbance input in the absence of the reference input, the closed-loop transfer function 
becomes 

The specification requires that the response to the unit-step disturbance be such that the settling 
time be 2 to 3 sec and the system have a reasonable damping. We may interpret the specification 
as C = 0.5 and w, = 4 rad/sec for the dominant closed-loop poles. We may choose the third pole 
at 5 = -10 so that the effect of this real pole on the response is small. Then the desired charac- 
teristic equation can be written as 

( s  + 10)(s2 + 2 x 0.5 x 4s + 42) = ( s  + 10)(s2 + 4s + 16) = s3 + 14s' + 56s + 160 

The characteristic equation for the system given by Equation (10-14) is 

s3 + (3.6 + Kab)s2 + ( 9  + Ka + Kb)s  + K = 0 

Hence, we require 

3.6 + Kab = 14 

which yields 

The PID controller now becomes 

With this PID controller, the response to the disturbance is given by 
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Clearly, for a unit-step disturbance input, the steady-state output is zero, since 

s2 
lim c,(t) = liisCd(s) = lim 

1 - = 0  
1-m s-tO (S + 10)(s2 + 4s + 16) 

The response to a unit-step disturbance input can be obtained easily with MATLAB. MATLAB 
Program 10-6 produces a response curve as shown in Figure 10-42(a). From the response curve, 
we see that the settling time is approximately 2.7 sec.The response damps out quickly.Therefore, 
the system designed here is acceptable. 

I MATLAB Program 10-6 I 
I O/O ***** Response to unit-step disturbance input ***** / 

numd = [O 0 1 01; 
dend = [ l  14 56 1601; 
t = 0:0.01:5; 
[c l  ,xl,t] = step(numd,dend,t); 
plot(t,cl) 
grid 
title('Response to Unit-Step Disturbance Input') 
xlabel('t Sec') 
ylabel('0utput to Disturbance Input') 

1 O/O ***** Response to unit-step reference input ***** I 
numr = [O 10.4 47 1601; 
denr = [l 14 56 1601; 
[c2,x2,tl = step(numr,denr,t); 
plot(t,c2) 
grid 
title('Response to Unit-Step Reference Input') 
xlabel('t Sec') 
ylabel('0utput to Reference Input') 

For the reference input u ( t ) ,  the closed-loop transfer function is 

The response to a unit-step reference input can also be obtained by use of MATLAB Program 
10-6.The resulting response curve is shown in Figure 10-42(b).The response curve shows that the 
maximum overshoot is 7.3% and the settling time is 1.2 sec. The system has quite acceptable 
response characteristics. 
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Figure 10-42 
(a) Response to 
unit-step disturbance 
input; (b) response to 
unit-step reference 
input. 

10-3 
Response to Unit-Step Disturbance Input 

A-10-6. Consider the system shown in Figure 10-43. It is desired to design a PID controller G,(s) such that 
the dominant closed-loop poles are located at s = -1 f j f l .  For the PID controller, 
choose a = 1 and then determine the values of K and b. Sketch the root-locus diagram for the 
designed system. 

Solution. Since 
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Figure 10-43 
PID-controlled 
system. 

Figure 10-44 
Root-locus plot of 
the compensated 
system 

4 PID controller Plant I 

the sum of the angles at s = -1 + j f l ,  one of the desired closed-loop poles, from the zero at 
s = -1 and poles at s = 0, s = j, and s = - j  is 

90" - 143.794" - 120" - 110.104" = -283.898" 

Hence the zero at s = -b must contribute 103.898O.This requires that the zero be located at 

b = 0.5714 

The gain constant K can be determined from the magnitude condition. 

Then the compensator can be written as follows: 

(s  + 1)(s + 0.5714) 
G,(s) = 2.3333 

S 

The open-loap transfer function becomes 

From this equation a root-locus plot for the compensated system can be drawn. Figure 10-44 is a 
root-locus plot. 

Root-Locus Plot of Gc(s)G(s) 

(Problem A-10-6). Real Axis 
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Figure 10-45 
Unit-step response of 
the compensated 
system (Problem 
A-10-6). Time (sec) 

The closed-loop transfer function is given by 

The closed-loop poles are located at s = -I f j f l  and s = -0.3333. A unit-step response curve 
is shown in Figure 1045. The closed-loop pole at s = -0.3333 and a zero at s = -0.5714 produce 
a long tail of small amplitude. 

A-10-7. Show that the I-PD-controlled system shown in Figure 10-46(a) is equivalent to the PID-controlled 
system with input filter shown in Figure 11)-46(b). 

Figure 10-46 
(a) .I-PD-controlled 
system; 
(b) PID-controlled 
system with input 
filter. ('J) 
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Solution. The closed-loop transfer function C(s)/R(s) of the I-PD-controlled system is 

The closed-loop transfer function C(s)/R(s) of the PID-controlled system with input filter 
shown in Figure 10-46(b) is 

The closed-loop transfer functions of both systems are the same. Thus, the two systems are 
equivalent. 

A-10-8. The basic idea of the I-PD control is to avoid large control signals (which will cause saturation 
phenomenon) within the system. By bringing the proportional and derivative control actions to 
the feedback path, it is possible to choose larger values for Kp and Td than those possible by the 
PID control scheme. 

Compare, qualitatively, the responses of the PID-controlled system and I-PD-controlled system 
to the disturbance input and to the reference input. 

Solution. Consider first the response of the I-PD-controlled system to the disturbance input. 
Since, in the I-PD control of a plant, it is possible to select larger values for K, and Td than those 
of the PID-controlled case, the I-PD-controlled system will attenuate the effect of disturbance 
faster than the PID-controlled case. 

Next, consider the response of the I-PD-controlled system to a reference input. Since the 
I-PD-controlled system is equivalent to the PID-controlled system with input filter (refer to Prob- 
lem A-10-7), the PID-controlled system will have faster responses than the corresponding 
I-PD-controlled system, provided a saturation phenomenon does not occur in the PID-controlled 
system. 

A-10-9. In some cases it is desirable to provide an input filter as shown in Figure 10-47(a). Notice that the 
input filter Gf(s) is outside the loop. Therefore, it does not affect the stability of the closed- 
loop portion of the system. An advantage of having the input filter is that the zeros of the closed-loop 
transfer function can be modified (canceled or replaced by other zeros) so that the closed- 
loop response is acceptable. 

Show that the configuration in Figure 10-47(a) can be modified to that shown in Figure 
10-47(b), where Gd(s) = [Gf(s) - l ] ~ ,  (s). The compensation structure shown in Figure 1@47(b) 
is sometimes called command compensation. 

Solution. For the system of Figure 10-47(a), we have 
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Figure 10-47 
(a) Block diagram of 
control system with 
input filter; 
(b) modified block 
diagram. 

For the system of Figure 10-47(b), we have 

Thus 

By substituting G,,(s) = [Gf(s) - l]G,(s) into Equation (10-16), we obtain 

which is the same as Equation (10-15). Hence, we have shown that the systems shown in Figures 
10-47(a) and (b) are equivalent. 

It is noted that the system shown in Figure 10-47(b) has a feedforward controller Gd(s). In 
such a case, GCl(s) does not affect the stability of the closed-loop portion of the system. 

Chapter 10 / PID Controls and Two-Degrees-of-Freedom Control Systems 
i 



A-1040. A closed-loop system has the characteristic that the closed-loop transfer function is nearly equal 
to the inverse of the feedback transfer function whenever the open-loop gain is much greater 
than unity. 

The open-loop characteristic may be modified by adding an internal feedback loop with a 
characteristic equal to the inverse of the desired open-loop characteristic. Suppose that a 
unity-feedback system has the open-loop transfer function 

Determine the transfer function H(s) of the element in the internal feedback loop so that the inner 
loop becomes ineffective at both low and high frequencies. 

Solution. Figure 10-48(a) shows the original system. Figure 10-48(b) shows the addition of the 
internal feedback loop around G(s). Since 

if the gain around the inner loop is large compared with unity, then ~ ( s ) ~ ( s ) / [ l  + G(s)H(s)] 
is approximately equal to unity, and the transfer function C(s)/E(s) is approximately equal to 
l /H(s) .  

On the other hand, if the gain IG(s)H(s)~ is much less than unity, the inner loop becomes 
ineffective and C(s)/E(s) becomes approximately equal to G(s). 

To make the inner loop ineffective at both the low- and high-frequency ranges, we require that 

IG(jw)H(jw)l < 1, for w < 1 andw * 1 

Since, in this problem, 

the requirement can be satisfied if H(s) is chosen to be 

('J) 

Figure 10-48 
(a) Control system; (b) addition of the internal feedback loop to modify the closed-loop 
characteristic. 

Example Problems and Solutions 735 



Kkjw 
lim G(ju)H(jw) = lim = 0 

W+O w-0 (1 + jwT1)(1 + jw~,)  
Kkjw 

lim G(jw)H(jw) = lim = 0 
W-M w-- (1 + jwT,)(1 + jwT2) 

Thus, with H(s )  = ks (velocity feedback), the inner loop becomes ineffective at both the low- 
and high-frequency regions. It becomes effective only in the intermediate-frequency region. 

A-1-11 Consider the control system shown in Figure 1049. This is the same system as that considered in 
Example 10-1. In that example we designed a PID controller G,(s), starting with the second method 
of the Ziegler-Nichols tuning rule. Here we design a PID controller using the computational 
approach with MATLAB. We shall determine the values of K and a of the PID controller 

such that the unit-step response will exhibit the maximum overshoot between 10% and 2% 
(1.02 5 maximum output 5 1.10) and the settling time will be less than 3 sec.The search region is 

2 cr K 5 50, 0.05 5 a 5 2 

Let us choose the step size for K to be 1 and that for a to be 0.05. 
Write a MATLAB program to find the first set of variables K and n that will satisfy the given 

specifications. Also, write a MATLAB program to find all possible sets of variables K and a that 
will satisfy the given specifications. Plot the unit-step response curves of the designed system with 
the chosen sets of variables K and a. 

Solution. The transfer function of the plant is 

The closed-loop transfer function C(s)/R(s) is given by 

A possible MATLAB program that will produce the first set of variables I< and a that will satisfy 
the given specifications is given in MATLAB Program 10-7. In this program we use two 'for' 
loops. The specification for the settling time is interpreted by the following four lines: 

s = 501; while y(s) > 0.98 and y(s) < 1.02; 

ts = (s - 1 )  :".01 

ts < 3.0 

Note that for t = 0 :0.01: 5, we have 501 computing time points. s = 501 corresponds to the last 
computing time point. 

S(S + 1) (A + 5) 

controller 

Figure 10-49 
Control system. 
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The solution obtained by this program is 

with the maximum overshoot equal to 9.69% and the settling time equal to 2.64 sec.The resulting 
unit-step response curve is shown in Figure 10-50. 

MATLAB Program 10-7 

t = 0:0.01:5; 
for K = 50:-1:2; 

for a = 2:-0.05:0.05; 
num = [O 0 K 2*K*a K*aA21; 
den = [ I  6 5+K 2*K*a K*aA2]; 

y = step(num,den,t); 
m = max(y); 
s = 501; while y(s) > 0.98 & y(s) < 1.02; 
s = s-I; end; 
ts = (s-1)*0.01; 

i f m < 1 . 1 0 & m > 1 . 0 2 & t s < 3 . 0  
break; 
end 
end 

i f m < 1 . 1 0 & m > 1 . 0 2 & t s < 3 . 0  
break 
end 
end 

plot(t,y) 
grid 
title('Unit-Step Response') 
xlabel('t sec') 
ylabel('Outputl) 
solution = [K;a;m;tsl 

solution = I 

Next, we shall consider the case where we want to find all sets of variables that will satisfy 
the given specifications. A possible MATLAB program for this purpose is given in MATLAB 
Program 10-8. Note that in the table shown in the program, the last row should be ignored. 
(These are the last K and n values for searching purposes.) 

From the sorttable, it seems that 

K = 29, n = 0.25 (max overshoot = 9.52010,settling time = 1.78 sec) 
and 

K = 27, a = 0.2 (max overshoot = 5.5010, settling time = 2.89 sec) 
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Unit-Stev Res~onse 

Figure 10-50 
Unit-step response 
curve. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
t (sec) 

are two of the best choices. The unit-step response curves for these two cases are shown in Fig- 
ure 10-51. From these curves, we might conclude that the best choice depends on the system 
objective. If a small maximum overshoot is desired, K = 27, a = 0.2 will be the best choice. If the 
shorter settling time is more important than a small maximum overshoot, then K = 29, a = 0.25 
will be the best choice. 

MATLAB Program 10-8 

t = 0:0.01:5; 
k = 0; 
for i = 1 :49; 

K(i) = 51 4-1; 
for j = 1 :40; 
a(j) = 2.05-j*0.05; 
num = [O 0 K(i) 2*K(i)*a(j) K(i)*a(j)*a(j)l; 
den = 11 6 5+K(i) 2*K(i)*a(j) K(i)*a(j)*a(j)l; 

y = step(num,den,t); 
m = max(y); 
s = 501; while y(s) > 0.98 & y(s) < 1.02; 
s = s-I ; end; 
ts = (s-1)*0.01; 

i f m < 1 . l O & r n > 1 . 0 2 & t s < 3 . 0  
k =  k+l; 
table(k,:) = [K(i) a(j) m tsl; 
end 

end 
end 

table(k,:) = [K(i) a(j) m tsl 

table = 

(continues on next page) 
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32.0000 0.2000 1.0969 2.6400 
31 .OOOO 0.2000 1.0890 2.6900 
30.0000 0.2000 1.0809 2.7300 
29.0000 0.2500 1.0952 1.7800 
29.0000 0.2000 1.0726 2.7800 
28.0000 0.2000 1.0639 2.8300 
27.0000 0.2000 1.0550 2.8900 

2.0000 0.0500 0.3781 5.0000 

sorttable = sortrows(table,3) 

sorttable = 

2.0000 0.0500 0.3781 5.0000 
27.0000 0.2000 1.0550 2.8900 
28.0000 0.2000 1.0639 2.8300 
29.0000 0.2000 1.0726 2.7800 
30.0000 0.2000 1.0809 2.7300 
31 .OOOO 0.2000 1.0890 2.6900 
29.0000 0.2500 1.0952 1.7800 
32.0000 0.2000 1.0969 2.6400 

K = sorttable(7,I 1 

K = 

2 9 

a = sorttable(7,2) 

a= 

0.2500 

num = [O 0 K 2*K*a K*aA2]; 
den = [I 6 5+K 2*K*a K*aA2]; 
y = step(num,den,t); 
plot(t,y) 
grid 
hold 
Current plot held 
K = sorttable(2,I) 

K= 

a = sorttable(2,2) 

0.2000 

(continues on next page) 
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num = [O 0 K 2*K*a K*aA2]; 
den = [ I  6 5+K 2*K*a K*aA2]; 
y = step(num,den,t); 
plot(t,y) 
title('Unit-Step Response Curves') 
xlabel('t (sec)') 
ylabel('0utput') 
text(1.22,1.22,'K ~ 2 9 ,  a = 0.25') 
text(1.22,0.72,'K = 27, a = 0.2') 

Figure 10-51 
Unit-step response 
curves. 

A-10-12. Consider the two-degrees-of-freedom control system shown in Figure 10-52. The plant G,(s) is 
given by 

Assuming that the noise input N ( s )  is zero, design controllers G,,(s) and Gc2(3) such that the 
designed system satisfies the following: 

1. The response to the step disturbance input has a small amplitude and settles to zero quickly 
(on the order of 1 sec to 2 sec). 

2. The response to the unit-step reference input has a maximum overshoot of 25% or less, and 
the settling time is 1 sec or less. 

3. The steady-state errors in following ramp reference input and acceleration reference input 
are zero. 

740 Chapter 10 / PID Controls and Two-Degrees-of-Freedom Control Systems 



Figure 10-52 
Two-degrees-of- 
freedom control 
system. 

Solution. The closed-loop transfer functions for the disturbance input and reference input are 
given, respectively, by 

Y ( s )  -- - G,(s) 

D(s)  1 + Gc,(s)G,(s) 

Y ( s )  - [ ~ c l ( s )  + G,(s) l~, (s)  -- 
R(s)  1 + Gc,(s)G,(s) 

Let us assume that Gcl(s) is a PID controller and has the following form: 

The characteristic equation for the system is 

Notice that the open-loop poles are located at s = 0 (a double pole) and s = -1. The zeros are 
located at s = -a (a double zero). 

In what follows, we shall use the root-locus approach to determine the values of a and K.  Let 
us choose the dominant closed-loop poles at s = -5 f j5.Then, the angle deficiency at the desired 
closed-loop pole at s = -5 + j5 is 

-135" - 135" - 128.66" + 180" = -218.66" 

The double zero at s = -a must contribute 218.66". (Each zero must contribute 109.33O.) By a 
simple calculation, we find 

The controller G,,(s) is then determined as 

The constant K must be determined by use of the magnitude condition. This condition is 

JGcl(~)Gp(~)Is=-5+,5 = 1 

Since 
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we obtain 

Figure 10-53 
Response to unit- 
step disturbance 
input. 

The controller G,,(s) thus becomes 

0.11403(s + 3.2460)2 
Gc,(s) = 

S 

Then, the closed-loop transfer function Y ( s ) / D ( s )  is obtained as follows: 

Y ( s )  - Gp(s)  - - -- 
a s )  1 + Gcl(s)Gp(s) 

The response curve when D ( s )  is a unit-step disturbance is shown in Figure 10-53. 

t (sec) 
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Figure 10-54 
(a) Respoilse to unit- 
step reference input; 
(b) response to unit- 
ramp reference 
input; (c) response to 
unit-acceleration 
reference input. 

Next, we consider the responses to reference inputs. The closed-loop transfer function 
Y ( s ) / R ( s )  is 

Y ( s )  [ ~ , , ( s )  + G c 2 ( s ) l ~ p ( s )  -- - 
R ( s )  1 + Gc,(s)Gp(s) 

Let us define 

Gc,(s) + GC2(3) = Gc(s) 
Then 

Y ( s )  Gc(s)Gp(s) -- - 
R(s )  1 + Gc,(s)Gp(s) 

- - 100sGc(s) 

s3 + 12.403s2 + 74.0284s + 120.148 

To satisfy the requirements on the responses to the ramp reference input and acceleration 
reference input, we use the zero-placement approach. That is, we choose the numerator of 
Y ( s ) / R ( s )  to be the sum of the last three terms of the denominator, or 

lOOsG,(s) = 12.403s2 + 74.0284s + 120.148 

from which we get 

0.12403s2 + 0.740284s + 1.20148 
Gc(s) = 

S 

Hence, the closed-loop transfer function Y ( s ) / R ( s )  becomes as 

The response curves to the unit-step reference input, unit-ramp reference input, and unit- 
acceleration reference input are shown in Figures 10-54(a), (b), and (c), respectively.The maximum 
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Response to Unit-Ramp Reference Input 

Figure 10-54 
(continued) 

" 
0 0.5 1 1.5 2 2.5 3 

I (sec) 

Response to Unit-Acceleration Reference Input 

t (sec) 

(c) 

overshoot in the unit-step response is approximately 25% and the settling time is approximately 
1.2 sec. The steady-state errors in the ramp response and acceleration response are zero. There- 
fore, the designed controller G,(s) given by Equation (10-18) is satisfactory. 

Finally, we determine GC2(s). Noting that 

Gc2(~) = Gc(3) - G c l ( ~ )  
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Figure 10-55 
Block diagram of the 
designed system. 

and from Equation (10-17) 

1'20148 + 0.11403s G,,(s) = 0.7403 + --- 
S 

we obtain 

= 0.01s (10-19) 

Equations (10-17) and (10-19) give the transfer functions of the controllers Gcl ( s )  and Gc2(s) ,  
respectively. The block diagram of the designed system is shown in Figure 10-55. 

Note that if the maximum overshoot were much higher than 25% andlor the settling time 
were much larger than 1.2 sec, then we might assume a search region (such as 3 I a 5 6 ,  
3 5 b 5 6, and 6 5 c 5 12) and use the computational method presented in Example 10-4 to find 
a set or sets of variables that would give the desired response to the unit-step reference input. 

PROBLEMS 

Figure 10-56 
Electronic PID controller 

B-10-1. Consider the electronic PID controller shown in 
Figure 10-56. Determine the values of R,, R2, R,, R,, Cl, G,(s)  = 39.42 1 + - + 0.7692s) 

and C2 of the controller such that the transfer functlon 
( 3.077s 

= E,(s) /E,(s)  is = 30.3215 ( s  + 0.65)' 
S 

CI 

0 

Eh-1 E(s) 

Problems 

O-.------------c 

EoE,(s) 

0 



B-10-2. Consider the system shown in Figure 10-57. B-10-3. Show that the PID-controlled system shown ~ I I  

Assume that disturbances D ( s )  enter the system as shown Figure 10-%(a) is equivalent to the I-PD-controlled system 
in the diagram. Determine parameters K, a, and b such with feedforward control shown in Figure 10-58(b). 
that the response to the unit-step disturbance input and 

B-10-4. Consider the systems shown in Figures 10-59(a) the response to the unit-step reference input satisfy the 
following specifications: The response to the step distur- and (b).The system shown in Figure 10-59(a) is the system 

designed in Example 10-1. The response to the unit-step 
bance input should attenuate rapidly with no steady-state 

reference input in the absence of the disturbance input is 
error, and the response to the step reference input exhibits 

shown in Figure 10-10.The system shown in Figure 10-59(b) 
a maximum overshoot of 20% or less and a settling time 

is the I-PD-controlled system using the same K,, T,, and T, 
of 2 sec. 

as the system shown in Figure 10-59(a). 

Figure 10-57 
Control system. 

Figure 10-58 
(a) PID-controlled system; (b) I-PD-controlled system with 
feedforward control. 
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Obtain the response of the I-PD-controlled system to 
the unit-step reference input with MATLAB. Compare the 
unit-step reslponse curves of the two systems. 

B-10-5. Referring to Problem B-10-4, obtain the response 
of the PID-controlled system shown in Figure 10-59(a) to 
the unit-step disturbance input. 

Show that for the disturbance input, the responses of 
the PID-controlled system shown in Figure 10-59(a) and of 
the I-Po-controlled system shown in Figure 10-59(b) are 

exactly the same. [When considering D(s)  to be the input, as- 
sume that the reference input R(s )  is zero, and vice versa.] 
Also, compare the closed-loop transfer function C(s)/R(s) 
of both systems. 

B-10-6. Consider the system shown in Figure 10-60. This 
system is subjected to three input signals: the reference 
input,disturbance input, and noise input. Show that the char- 
acteristic equation of this system is the same regardless of 
which input signal is chosen as input. 

D(s) 

39.42 (1 + - + 0.7692s) 
3.077s s(s + 1)(s + 5) 

PID contoller 

Figure 10-59 
(a) PID-controlled system; (b) I-PD-controlled system. 

Disturbance 
D(s) 

Figure 10-60 
Control system. 

Problems 



B-10-7. Consider the system shown in Figure 10-61. Obtain components. The closed-loop transfer function for the 
the closed-loop transfer function C ( s ) / R ( s )  for the refer- disturbarice is 
ence input and the closed-loop transfer function C ( s ) / D ( s )  
for the disturbance input. When considering R ( s )  as the c ( s )  - - 1 
input, assume that D ( s )  is zero, and vice versa. W ( s )  1 + K G ( s ) H ( s )  

B-10-8' Consider the 'ystern shown in Figure 'u-62(a), To minimize the effect of disturbances, the gain 
where I< is an adjustable gain and G ( s )  and H ( s )  are fixed should be chosen as large as possible. 

Is this true for the system in Figure 10-62(b), too? 

Figure 10-61 
Control system. 

Figure 10-62 
(a) Control system with disturbance entering in the 
feedforward path; (b) control system with disturbance 
entering in the feedback path. 
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B-10-9. Show that the control systems shown in Fig- B-10-10. Show that the control system shown in Figure 
ures 10-6'3(a), (b), and (c) are two-degrees-of-freedom 10-64 is a three-degrees-of freedom system. The transfer 
systems. In the diagrams, GC1 and G,, are controllers and G, functions G,, , Gc2, and Gc3 are controllers.The plant consists 
is the plant. of transfer functions GI and G2. 

Figure 10-63 
(a), (b), (c:~ Two 
degrees-of-freedom 
systems. 

= Gc2 

Y(s) 
G2 

Figure 10-64 
Three-degrees-of- 
freedom system. 
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B-10-11. Consider the control system shown in Fig- overshoot of less than 8%, but more than 3%, and the settling 
ure 10-65. Assume that the PID controller is given by time is less than 2 sec. Choose the search region to be 

It is desired that the unit-step response of the system exhibit 
the maximum overshoot of less than lo%, but more than 2% 
(to avoid an almost overdamped system), and the settling 
time be less than 2 sec. 

Using the computational approach presented in Section 
10-3, write a MATLAB program to determine the values 
of K and a that will satisfy the given specifications. Choose 
the search region to be 

1 s K s 4 ,  0 . 4 5 ~ 5 4  

Choose the step size for K and a  to be 0.05. Write the 
program such that the nested loops start with the highest 
values of K and a  and step toward the lowest. 

Using the first-found solution, plot the unit-step 
response curve. 

B-10-12. Consider the same control system as treated in 
Problem B-10-11 (Figure 10-65). The PID controller is 
given by 

It is desired to determine the values of K  and a  such that 
the unit-step response of the system exhibits the maximum 

Choose the step size for K and a  to be 0.05. 
First, write a MATLAB program such that the nested 

loops in the program start with the highest values of K and 
a  and step toward the lowest and the computation stop when 
a successful set of K and a  is found for the first time. 

Next, write a MATLAB program that will find all pos- 
sible sets of K and a that will satisfy the given specifications. 

Among multiple sets of K and a  that satisfy the given 
specifications, determine the best choice.Then, plot the unit- 
step response curves of the system with the best choice 
of K and a. 

B-10-13. Consider the two-degrees-of-freedom control 
system shown in Figure 10-66. The plant G,(s) is given by 

Design controllers G,,(s) and GC2(s) such that the 
response to the unit-step disturbance input should have 
small amplitude and settle to zero quickly (in approximately 
2 sec).The response to the unit-step reference input should 
be such that the maximum overshoot is 25% (or less) and 
the settling time is 2 sec. Also, the steady-state errors in the 
response to the ramp and acceleration reference inputs 
should be zero. 

I controller 

Figure 10-65 
Control system. 

Figure 10-66 
Two-degrees-of-freedom control system. 
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B-10-14. Consider the system shown in Figure 10-67. The 
plant G,(s) is given by 

Determine the controllers G,,(s) and Gc2(s) such that, for 
the step disturbance input, the response shows a small am- 
plitude and approaches zero quickly (in a matter of 1 to 
2 sec). For the response to the unit-step reference input, it is 
desired that the maximum overshoot be 20% or less and the 
settling time 1 sec or less. For the ramp reference input and 
acceleration reference input, the steady-state errors should 
be zero. 

B-10-15. Consider the two-degrees-of-freedom control 
system shown in Figure 10-68. Design controllers Gcl(s) and 
G,,(s) such that the response to the step disturbance input 
shows a small amplitude and settles to zero quickly (in 1 to 
2 sec) and the response to the step reference input ex- 
hibits 25% or less maximum overshoot and the settling time 
be less than 1 sec. The steady-state error in following the 
ramp reference input or acceleration reference input should 
be zero. 

Figure 1 0 6 7  
Two-degrees-of-freedom control system. 

Figure 10-68 
Two-degrees-of-freedom control system. 

Problems 



Analysis of Control 
Systems in State Space 

1 1-1 INTRODUCTION* 

A modern complex system may have many inputs and many outputs, and these may be 
interrelated in a complicated manner. To analyze such a system, it is essential to reduce 
the complexity of the mathematical expressions, as well as to resort to computers for most 
of the tedious computations necessary in the analysis.The state-space approach to system 
analysis is best suited from this viewpoint. 

While co~iventional control theory is based on the input-output relationship, or trans- 
fer function, modern control theory is based on the description of system equations in 
terms of n first-order differential equations, which may be combined into a first-order 
vector-matrix differential equation.The use of vector-matrix notation greatly simplifies 
the mathematical representation of systems of equations.The increase in the number of 
state variables, the number of inputs. or the number of outputs does not increase the 
complexity of the equations. In fact, the analysis of complicated multiple-input-multiple- 
output systems can be carried out by the procedures that are only slightly more com- 
plicated than those required for the analysis of systems of first-order scalar differential 
equations. 

This chapter and the next deal with the state-space analysis and design of control sys- 
tems. Basic materials of state-space analysis, including the state-space representation of 

"It is noted that in this book an asterisk used as a superscript of matrix, such as A", implies that it is a conjtl- 
gate transpose of matrix A. The conjugate transpose is the conjugate of the transpose of a matrix. For a real 
matrix (a matrix whose elements are all real), the culljugate transpose A'[' is the same as the transpose AT. 



systems, controllability, and observability are presented in this chapter. Basic'design 
metl~ods based on state-feedback control are given in Chapter 12. 

Outline of the Chapter. Section 11-1 has presented an introduction to state-space 
analysis of control systems. Section 11-2 deals with the state-space representation of 
transfer-function systems. Here we present various canonical forms of state-space equa- 
tions. Section 11-3 discusses the transformation of system models (such as from trans- 
fer function to state-space models, and vice versa) with MATLAB. Section 11-4 presents 
the solution of time-invariant state equations. Section 11-5 gives some useful results in 
vector-matrix analysis that are necessary in studying the state-space analysis of control 
systems. Section 11-6 discusses the controllability of control systems and Section 11-7 
treats the observability of control systems. 

1 1-2 STATE-SPACE REPRESENTATIONS OF 
TRANSFER-FUNCTION SYSTEMS 

Many techniques are available for obtaining state-space representations of 
transfer-function systems. In Chapter 3 we presented a few such methods. This section 
presents state-space representations in the controllable, observable, diagonal, or Jordan 
canonical form. (Methods for obtaining such state-space representations from transfer 
functions are discussed in Problems A-11-1 through A-11-4.) 

State-Space Representation in Canonical Forms. Consider a system defined 
by 

( ~ ~ 1  (fl-11 ( / I )  (n -  1 )  
y + a l  y + . . .  + n,-,y + a,,y = bU LL f b1 LL + . * .  + b , - , i ~  + b,,u (11-1) 

where LL is the input and y is the output. This equation can also be written as 

In what follows we shall present state-space representations of the system defined by 
Equation (11-1) or (11-2) in controllable canonical form, observable canonical form, and 
diagonal (or Jordan) canonical form. 

Controllable Canonical Form. The following state-space representation is called 
a controllable canonical form: 
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albol 

x n  [il 
The controllable canonical form is important in discussing the pole-placement approach 
to the control systems design. 

Observable Canonical Form. The following state-space representation is called 
an observable canonical form: 

Note that the n X n state matrix of the state equation given by Equation (11-5) is the 
transpose of that of the state equation defined by Equation (11-3). 

Diagonal Canonical Form. Consider the transfer function system defined by Equa- 
tion (11-2). Here we consider the case where the denominator polynomial involves 
only distinct roots. For the distinct-roots case, Equation (11-2) can be written as 

The diagonal canonical form of the state-space representation of this system is given by 
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Jordan Canonical Form. Next we shall consider the case where the denominator 
polynomial of Equation (11-2) involves multiple roots. For this case, the preceding 
diagonal canonical form must be modified into the Jordan canonical form. Suppose, for 
example, that the p,'s are different from one another, except that the first three p,'s are 
equal, or p, = p2 = p,. Then the factored form of Y(s)/U(s) becomes 

Y(s) busn + blsn-' + ... + bn-,s + bn -- - 
U(s) (s + pJ3(s + p4)(s + p5) ... (s + p,) 

The partial-fraction expansion of this last equation becomes 

A state-space representation of this system in the Jordan canonical form is given by 
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EXAMPLE 1 1-1 Consider the system given by 

Y ( s )  -- - s + 3 

U ( s )  s2 + 3s + 2 

Obtain state-space representations in the controllable canonical form, observable canonical form, 
and diagonal canonical form. 

I Controllable Canonical Form: 

Observable Canonical Form: 

Diagonal Canonical Form: 

Eigenvalues of an n x n Matrix A. The eigenvalues of an n X n matrix A are the 
roots of the characteristic equation 

lhI - A/ = 0 

The eigenvalues are also called the characteristic roots. 
Consider, for example, the following matrix A: 

The eigenvalues of A are the roots of the characteristic equation, or -1, -2, and -3. 

Diagonalization of n x n Matrix. Note that if an n X n matrix A with distinct 
eigenvalues is given by 

The characteristic equation is 
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the transformation x = Pz, where 

A,, A 2 , .  . . , A,, = n distinct eigenvalues of A 

will transform P-' AP into the diagonal matrix, or 

If the matrix A defined by Equation (11-12) involves multiple eigenvalues, then 
diagonalization is impossible. For example, if the 3 X 3 matrix A, where 

has the eigenvalues A,, A,,  A,, then the transformation x = Sz, where 

will yield 

This is in the Jordan canonical form. 
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EXAMPLE 1 1-2 Consider the following state-space representation of a system. 

Equations (11-13) and (11-14) can be put in a standard form as 

where 

A = [ :  i ' 1  .=[!I, c=Li 0 01 
-6 -11 -6 

The eigenvalues of matrix A are 

Thus, three eigenvalues are distinct. If we define a set of new state variables z l ,  zz, and z3 by the 
transformation 

or 

where 

then, by substituting Equation (11-17) into Equation (11-15), we obtain 

By premultiplying both sides of this last equation by P - I ,  we get 
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Simplifying gives 

Equation (11-20) is also a state equation that describes the same system as defined by Equation 
(11-13). 

The output equation, Equation (11-16), is modified to 

Notice that the transformation matrix P, defined by Equation (11-18), modifies the coefficient 
matrix of z into the diagonal matrix. As is clearly seen from Equation (11-20), the three scalar state 
equations are uncoupled. Notice also that the diagonal elements of the matrix P-' AP in Equation 
(11-19) are identical with the three eigenvalues of A. It is very important to note that the eigen- 
values of A and those of P-I AP are identical. We shall prove this for a general case in what follows. 

Invariance of Eigenvalues. To prove the invariance of the eigenvalues under a 
linear transformation, we must show that the characteristic polynomials IAI - A/  and 
(A1 - P-'API are identical. 

Since the determinant of a product is the product of the determinants, we obtain 

Noting that the product of the determinants I P - ' ~  and /PI is the determinant of the prod- 
uct I P - ~ P I ,  we obtain 

I A I  - P - ~ A P ~  = I P - ~ P ~ / A I  - A( 

= /A1 - A1 

Thus, we have proved that the eigenvalues of A are invariant under a linear 
transformation. 

Nonuniqueness of a Set of State Variables. It has been stated that a set of state 
variables is not unique for a given system. Suppose that x, ,  x,, . . . , x, are a set of state 
variables. Then we may take as another set of state variables any set of functions 
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i n  = X,,(XI, X2, .. + , x,) 

provided that, for every set of values i , ,  i,, . . . , in, there corresponds a unique set of 
values x,, x2, . . . , x,, and vice versa. Thus, if x is a state vector, then i , where' 

i = Px 

is also a state vector, provided the matrix P is nonsingular. Different state vectors convey 
the same information about the system behavior. 

11-3 TRANSFORMATION OF SYSTEM MODELS WITH MATLAB 

In this section we shall consider the transformation of the system model from transfer 
function to state space, and vice versa. We shall begin our discussion with the 
transformation from transfer function to state space. 

Let us write the closed-loop transfer function as 

Y ( s )  numerator polynomial in s  num - - - -- - 
U ( s )  denominator polynomial in s  den 

Once we have this transfer-function expression, the MATLAB command 

[A, B, C, Dl = tf2ss(num,den) 

will give a state-space representation. It is important to note that the state-space repre- 
sentation for any system is not unique. There are many (indeed, infinitely many) state- 
space representations for the same system.The MATLAB command gives one possible 
such state-space representation. 

State-Space Formulation of Transfer-Function Systems.  Consider the 
transfer-function system 

There are many (again, infinitely many) possible state-space representations for this 
system. One possible state-space representation is 
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Another possible state-space representation (among infinitely many alternatives) is 

y = [0 10 101 [::I + [ O ~ U  (1 1-24) 

x3 

MATLAB transforms the transfer function given by Equation (11-22) into the 
state-space representation given by Equations (11-23) and (11-24). For the example 
system considered here, MATLAB Program 11-1 will produce matrices A, B, C, and D. 

Transformation from State Space to Transfer Function. To obtain the transfer 
function from state-space equations, use the following command: 

[num,denl = ss2tf(A,B,C,D,iu) 
iu must be specified for systems with more than one input. For example, if the system 
has three inputs (u l ,  u2, u3), then iu must be either 1 ,2 ,  or 3, where 1 implies u l ,  2 
implies u2, and 3 implies u3. 

If the system has only one input, then either 

may be used. (See Example 11-3 and MATLAB Program 11-2.) 

den = [ I  6 5 101; 
[A,B,C,D] = tf2ss(num,den) 
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For the case where the system has multiple inputs and multiple outputs, see 
Example 11-4. 

I EXAMPLE 1 1-3 Obtain the transfer function of the system defined by the following state-space equations: 

MATLAB Program 11-2 will produce the transfer function for the given system. The transfer 
function obtained is given by 

MATLAB Program 11-2 

A = [O 1 0;O 0 1;-5.008 -25.1026 -5.032471; 
B = [0;25.04; -1 21.0051; 
c = [ I  0 01; 
D = [O]; 
[num,den] = ss2tf(A,B,C,D) 

num = 

0 -0.0000 25.0400 5.0080 

den = 

1 .OOOO 5.0325 25.1 026 5.0080 

% ***** The same result can be obtained by entering the following command ***** 

[num,den] = ss2tf(A,B,C,D,I) 

num = 

0 -0.0000 25.0400 5.0080 

den = 

1 .OOOO 5.0325 25.1 026 5.0080 
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EXAMPLE 1 1-4 Consider a system with multiple inputs and multiple outputs. When the system has more than one 
output, the command 

produces transfer functions for all outputs to each input. (The numerator coefficients are returned 
to matrix NUM with as many rows as there are outputs.) 

Consider the system defined by 

This system involves two inputs and two outputs. Four transfer functions are involved: Yl ( s ) /U l ( s ) ,  
Y2(s ) /Ul(s ) ,  Y , ( s ) /U2(s) ,  and G(s ) /U2( s ) .  (When considering input u, ,  we assume that input u2 
is zero and vice versa.) See the output of MATLAB Program 11-3. 

I MATLAB Program 11-3 I 

NUM = 

den = 

1 4 25 

NUM = 

den = 

This is the MATLAB representation of the following four transfer functions: 
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1 1-4 SOLVING THE TIME-INVARIANT STATE EQUATION 

In this section, we shall obtain the general solution of the linear time-invariant state equa- 
tion. We shall first consider the homogeneous case and then the nonhomogeneous case. 

Solution of Homogeneous State Equations. Before we solve vector-matrix 
differential equations, let us review the solution of the scalar differential equation 

x = ax (11-25) 

In solving this equation, we may assume a solution x ( t )  of the form 

~ ( t )  = bo + b,t + b2t2 + .. .  + bktk + ... (1 1-26) 

By substituting this assumed solution into Equation (11-25), we obtain 

bl + 2b2t + 3b3t2 + ... + kbktk-I + .. .  
= a(bo + b,t + b2t2 + ... + bktk f ...) (1 1-27) 

If the assumed solution is to be the true solution, Equation (11-27) must hold for any t .  
Hence, equating the coefficients of the equal powers of t ,  we obtain 

1 
bk = - akbO 

k !  

The value of bo is determined by substituting t = 0 into Equation (11-26), or 

x (0 )  = bo 

Hence, the solution x ( t )  can be written as 

We shall now solve the vector-matrix differential equation 

x = Ax 

where x = n-vector 
A = n X n constant matrix 

By analogy with the scalar case, we assume that the solution is in the form of a vector 
power series in t ,  or 

~ ( t )  = bo f b l t  + bzt2 + . . . +  bktk +... (11-29) 
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By substituting this assumed solution into Equation (11-28), we obtain 

b, + 2b2t + 3b3t2 + ... + kbktk-' + ... 
= ~ ( b "  + b,t + b2t2 + ... + bktk + ... ) (1 1-30) 

If the assumed solution is to be the true solution, Equation (11-30) must hold for all t. Thus, 
by equating the coefficients of like powers oft on both sides of Equation (11-30), we obtain 

b, = Abo 
1 1 

b .- - Ab, = - A2bo 
2 - 2  2 

1 
A3b0 b - - A b  ---- 

3 - 3  2 - 3 ~ 2  

By substituting t = 0 into Equation (11-29), we obtain 

x(0) = bu 

Thus, the solution x(t) can be written as 

The expression in the parentheses on the right-hand side of this last equation is an n X n 
matrix. Because of its similarity to the infinite power series for a scalar exponential, we 
call it the matrix exponential and write 

In terms of the matrix exponential, the solution of Equation (11-28) can be written as 

x(t) = eA'x(0) (11-31) 

Since the matrix exponential is very important in the state-space analysis of linear 
systems, we shall next examine its properties. 

Matrix Exponential. It can be proved that the matrix exponential of an n X n 
matrix A,  

converges absolutely for all finite t .  (Hence, computer calculations for evaluating the 
elements of eA' by using the series expansion can be easily carried out.) 
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Because of the convergence of the infinite series X&,Aktk/k!, the series can be 
differentiated term by term to give 

The matrix exponential has the property that 

eA(r+s) = eAreAs 

This can be proved as follows: 

In particular, if s = -t, then 

eAre-Ar = ,,-A' At = eA( t - t )  = I e 

Thus, the inverse of eA' is e -At .  Since the inverse of eA' always exists, eA' is nonsingular. 
It is very important to remember that 

To prove this, note that 
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Hence, 

+ BA2 + ABA + B ~ A  + BAB - 2A2B - ~ A B ~  t3  + ... 
3! 

The difference between e(A+B)' and eA'eB' vanishes if A and B commute. 

Laplace Transform Approach to  the Solution of Homogeneous State 
Equations. Let us first consider the scalar case: 

x = ax (11-32) 

Taking the Laplace transform of Equation (11-32), we obtain 

sX(s)  - x(0) = aX(s) (1 1-33) 

where X ( s )  = %[XI. Solving Equation (11-33) for X(s)  gives 

The inverse Laplace transform of this last equation gives the solution 

~ ( t )  = eUrx(O) 

The foregoing approach to the solution of the homogeneous scalar differential 
equation can be extended to the homogeneous state equation: 

~ ( t )  = Ax(t) (11-34) 

Taking the Laplace transform of both sides of Equation (11-34), we obtain 

sX(s)  - x(0) = AX(s) 

where X(s) = 2[x]. Hence, 

(sI - A)X(s) = x(0) 

Premultiplying both sides of this last equation by (sI - A)-', we obtain 

X(s) = (sI - A)-'x(0) 

The inverse Laplace transform of X(s) gives the solution x(t). Thus, 

~ ( t )  = 2-'[(sI - A)-']x(o) 

Note that 

Hence, the inverse Laplace transform of (sI - A)-' gives 
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(The inverse Laplace transform of a matrix is the matrix consisting of the inverse Laplace 
transforms of all elements.) From Equations (11-35) and (11-36), the solution of 
Equation (11-34) is obtained as 

x(t) = eA'x(0) 

The importance of Equation (11-36) lies in the fact that it provides a convenient 
means for finding the closed solution for the matrix exponential. 

State-Transition Matrix. We can write the solution of the homogeneous state 
equation 

x = AX (11-37) 

where @(t) is an n X n matrix and is the unique solution of 

( t )  = A t ) ,  *(O) = I 

To verify this, note that 

and 

x(t) = d?(t)x(0) = A@(t)x(O) = Ax(t) 

We thus confirm that Equation (11-38) is the solution of Equation (11-37). 
From Equations (11-31), (11-35), and (11-38), we obtain 

Note that 

@-I ( t )  = e-A' = @(-t) 

From Equation (11-38), we see that the solution of Equation (11-37) is simply a 
transformation of the initial condition. Hence, the unique matrix @ ( t )  is called the state- 
transition matrix.The state-transition matrix contains all the information about the free 
motions of the system defined by Equation (11-37). 

If the eigenvalues A,, A,, . . . , A,, of the matrix A are distinct, than @(t) will contain 
the n exponentials 

In particular, if the matrix A is diagonal, then 
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If there is a multiplicity in the eigenvalues, for example, if the eigenvalues of A are 

then @ ( t )  will contain, in addition to the exponentials e"" eA4', ek t ,  . . . ,e"J, terms like 
tehl' and t2eAlt. 

Properties of State-Transition Matrices. We shall now summarize the important 
properties of the state-transition matrix @(t) .  For the time-invariant system 

for which 

@ ( t )  = eA' 

we have the following: 

1. @(0)  = eAo = I 
2. @ ( t )  = eA[ = (e-*I)-' = [@(-t)]-' or @-'(t) = @(-t) 
3. @(tl + t2) = eA('l+t2) = eArleAt2 = @(tl)@(t2) = @(t2)@(tl) 

4. [@(t)]"  = @(nt )  

5. @(t2 - t,)@(t, - to) = @(t2 - to) = @(t, - t,)@(t2 - t,) 

I EXAMPLE 1 1-5 Obtain the state-transition matrix 6 ( t )  of the following system: 

Obtain also the inverse of the state-transition matrix, W 1 ( t ) .  

For this system, 

The state-transition matrix @ ( t )  is given by 

@ ( t )  = eAf = Y- '[ (sI  - A)-'] 

Since 

I the inverse of ( s I  - A) is given by 

s + 3  1 

= 

( s f  1 ) ( ~ + 2 )  ( s f  l ) ( s + 2 )  
-2 S 

( s  + 1 ) ( s  + 2 )  ( s  + l ) ( s  + 2 )  1 
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2e-' - e-2' e-l - e-2' 

-2e-' + 2e-2' -e-' + ze-21 I 
Noting that @-'(t)  = @(-t), we obtain the inverse of the state-transition matrix as follows: 

Solution of Nonhomogeneous State Equations. We shall begin by considering 
the scalar case 

x = a n  + bu (1 1-39) 

Let us rewrite Equation (11-39) as 

x - ax = ~ L L  

Multiplying both sides of this equation by e-"', we obtain 

Integrating this equation between 0 and t gives 
P I  

The first term on the right-hand side is the response to the initial condition and the 
second term is the response to the input u( t ) .  

Let us now consider the nonhomogeneous state equation described by 

x = Ax + Bu (1 1-40) 

where x = n-vector 
u = r-vector 

A = n X n constant matrix 
B = n X u constant matrix 

By writing Equation (11-40) as 

x(t) - Ax(t) = Bu(t) 

and premultiplying both sides of this equation by e-*', we obtain 
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Integrating the preceding equation between 0 and t gives 
r 1 

Equation (11-41) can also be written as 

where @(t) = eA'. Equation (11-41) or (11-42) is the solution of Equation (11-40).The 
solution x(t) is clearly the sum of a term consisting of the transition of the initial state 
and a term arising from the input vector. 

Laplace Transform Approach to  the Solution of Nonhomogeneous State 
Equations. The solution of the nonhomogeneous state equation 

x = Ax + Bu 

can also be obtained by the Laplace transform approach. The Laplace transform of this 
last equation yields 

sX(s) - x(0) = AX(s) + BU(s) 

Premultiplying both sides of this last equation by (sI  - A)-', we obtain 

Using the relationship given by Equation (11-36) gives 

The inverse Laplace transform of this last equation can be obtained by use of the 
convolution integral as follows: 

x ( t )  = eA'x(0) + 

Solution in Terms of x(t,). Thus far we have assumed the initial time to be zero. 
If, however, the initial time is given by to instead of 0, then the solution to Equation 
(11-40) must be modified to 
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EXAMPLE 1 1-6 Obtain the time response of the following system: 

[s:] = [-; -:I [::I + [g 
where u ( t )  is the unit-step function occurring at t  = 0, or 

~ ( t )  = l ( t )  

For this system, 

The state-transition matrix @(t )  = eA' was obtained in Example 11-5 as 

The response to the unit-step input is then obtained as 

or 
ze-l - e-21 e-r - e-2r [::[:;I = [ -2e-1 + 2e-2r -e-I + 2e-2r 

If the initial state is zero, or x (0 )  = 0, then x ( t )  can be simplified to 
I 

11-5 SOME USEFUL RESULTS IN VECTOR-MATRIX ANALYSIS 

In this section we present some useful results in vector-matrix analysis that we use in 
Section 11-6. Specifically, we present the Cayley-Hamilton theorem, the minimal poly- 
nomial, Sylvester's interpolation method for calculating eAt, and the linear independence 
of vectors. 

Cayley-Hamilton Theorem. The Cayley-Hamilton theorem is very useful in 
proving theorems involving matrix equations or solving problems involving matrix 
equations. 

Consider an n X n matrix A and its characteristic equation: 

The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic 
equation, or that 

An + a l ~ " - '  + ... + an-lA + a,I = 0 (1 1-44) 

To prove this theorem, note that adj(A1 - A) is a polynomial in A of degree n - 1. 
That is, 

adj(A1 - A) = B,A"-' + B2hn-' + ... + Bn-,A + B, 
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where B, = I. Since 

(A1 - A) adj(A1 - A) = [adj(h1 - A)](AI - A) = / A 1  - A11 

we obtain 

IAI - A11 = IAn + a,lhn-' +... + a,-lIA + a n I  

= (A1 - A)(B,A"-' + + ... + Bn-I A + B,) 

= (B,A"-' + B,A"-~ + ... + B,-,A + B,)(AI - A) 

From this equation, we see that A and Bi (i = 1,2,. . . , n) commute. Hence, the product 
of (A1 - A) and adj(A1 - A) becomes zero if either of these is zero. If A is substitut- 
ed for A in this last equation, then clearly A 1  - A becomes zero. Hence, we obtain 

This proves the Cayley-Hamilton theorem, or Equation (11-44). 

Minimal Polynomial. Referring to the Cayley-Hamilton theorem, every n X n 
matrix A satisfies its own characteristic equation. The characteristic equation is not, 
however, necessarily the scalar equation of least degree that A satisfies.The least-degree 
polynomial having A as a root is called the minimal polynomial. That is, the minimal 
polynomial of an n X n matrix A is defined as the polynomial +(A) of least degree, 

such that +(A) = 0, or 

+(A) = Am + u,A"-' + .. .  + U , ~ - ~ A  + a,I = 0 

The minimal polynomial plays an important role in the computation of polynomials in 
an n X n matrix. 

Let us suppose that d(A), a polynomial in A, is the greatest common divisor of all the 
elements of adj(A1 - A). We can show that if the coefficient of the highest-degree term 
in A of d(A) is chosen as 1, then the minimal polynomial 4(A) is given by 

[See Problem A-11-8 for the derivation of Equation (11-45).] 
It is noted that the minimal polynomial +(A) of an n X n matrix A can be determined 

by the following procedure: 

1. Form adj (A1 - A) and write the elements of adj (A1 - A) as factored polynomials 
in A. 

2. Determine d(A) as the greatest common divisor of all the elements of 
adj(A1 - A). Choose the coefficient of the highest-degree term in A of d ( h )  to be 
1. If there is no common divisor, d(A) = 1. 

3. The minimal polynomial +(A) is then given as 1/11 - A\ divided by d(A). 

Matrix Exponential eAt. In solving control engineering problems, it often becomes 
necessary to compute eAf. If matrix A is given with all elements in numerical values, 
MATLAB provides a simple way to compute eAT, where T is a constant. 
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Aside from computational methods, several analytical methods are available for the 
computation of eA'. We shall present three methods here. 

Computation of eAt: Method 1. If matrix A can be transformed into a diagonal 
form, then eA' can be given by 

e A 1 r  

eA,[ 

e A  = P D P  = P[ . :Ip-' (11-46) 

where P is a diagonalizing matrix for A. [For the derivation of Equation (11-46), see 
Problem A-11-11.] 

If matrix A can be transformed into a Jordan canonical form, then eA' can be given 
by 

eAi = ~ ~ " s - 1  
As an example, consider the following matrix A: 

1 -3 3 

The characteristic equation is 

IhI - A1 = h3 - 3 ~ '  + 3h - 1 = ( A  - 1)3 = 0 

Thus, matrix A has a multiple eigenvalue of order 3 at h = 1. It can be shown that matrix 
A has a multiple eigenvector of order 3. The transformation matrix that will transform 
matrix A into a Jordan canonical form can be given by 

The inverse of matrix S is 

Then it can be seen that 

s - 'AS = 
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Noting that 

we find 

te' $t2e' 
- e J t -  [: et 51 

0 0 

e' - te' + it2e' te' - t2e' ~t e 
= [ i t 2 e [  e' - te' - t2e' te' + $t2e' 

tei + it2et -3tei - t2et ef + 2tei " + it2et I 
Computation of eAt: Method 2. The second method of computing eA' uses the 

Laplace transform approach. Referring to Equation (11-36), eA' can be given as follows: 

Thus, to obtain eA', first invert the matrix (sI - A). This results in a matrix whose 
elements are rational functions of s. Then take the inverse Laplace transform of each 
element of the matrix. 

EXAMPLE 1 1-7 Consider the following matrix A: 

Compute eA' by use of the two analytical methods presented previously. 

Method 1. The eigenvalues of A are 0 and -2 (A, = 0, A2 = -2). A necessary transformation 
matrix P may be obtained as 

Then, from Equation (1146), eA' is obtained as follows: 

Method 2. Since 

we obtain 
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Hence, 

Computation of eAt: Method 3. The third method is based on Sylvester's interpo- 
lation method. (For Sylvester's interpolation formula, see Problem A-11-12.) We shall 
first consider the case where the roots of the minimal polynomial $ ( A )  of A are dis- 
tinct. Then we shall deal with the case of n~ultiple roots. 

By solving Equation (11-47) for eA', eA' can be obtained in terms of the Ak (k  = 0,1, 
2,. . . , rn - 1) and the e"' (i = 1, 2, 3 , .  . . , m). [Equation (11-47) may be expanded, for 
example, about the last column.] 

Notice that solving Equation (11-47) for eA' is the same as writing 

Case I :  Minimal Polynomial of A Involves Only Distinct Roots. We shall assume 
that the degree of the minimal polynomial of A is m. By using Sylvester's interpolation 
formula, it can be shown that eA' can be obtained by solving the following determinant 
equation: 

eA' = ao( t ) I  + a , ( t ) A  + az( t )A2 + ... + ~ y , - ~ ( t ) A ~ - '  (1 1-48) 

and determining the a,<(t) ( k  = 0,  1, 2 , .  . . , rn - I) by solving the following set of rn 
equations for the a,<(t): 

a,(t) + crl(t)Al -t a2(t)h: + .. .  + a , , - l ( t ) ~ ~ - '  = eh' 

cuo(t) + al(t)hz + %(t)h; + .. .  + aN1-i ( t )~g ' - l  = eA2' 

1 A,  A: ... Am-' 
1 

1 A2 A; . . .  - 1  eA2' 

. . 

. . . 

. . 

1 A,,, . . . A e"iJ 
I A ~2 . . .  p - 1  e A' 

If A is an n X n matrix and has distinct eigenvalues, then the number of ak( t ) ' s  to be 
determined is rn = n. If A involves multiple eigenvalues, but its minimal polynomial has 
only simple roots, however, then the number m of a,(t) 's  to be determined is less than n. 

= o  (1 1-47) 

C~lse 2: Minimal Polynomial of A Involves Multiple Roots. As an example, consider 
the case where the minimal polynomial of A involves three equal roots ( A l  = A2 = h3) 
and has other roots (A,, A,, .. . , A,) that are all distinct. By applying Sylvester's 
interpolation formula, it can be shown that eA' can be obtained from the following 
determinant equation: 
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Equation (1149) can be solved for eA' by expanding it about the last column. 
It is noted that, just as in case 1, solving Equation (11-49) for eA' is the same as 

writing 

eA' = ao( t ) I  + a , ( t ) A  + a2(t)A2 + .. .  + a , , , - l ( t )~m- '  (11-50) 

and determining the a,'(t)'s (k  = 0,1,2,. . . , m - 1)  from 

The  extension to other cases where, for example, there are two or more sets of multiple 
roots will be apparent. Note that if the minimal polynomial of A is not found, it is possible 
to substitute the characteristic polynomial for the minimal polynomial. The number of 
computations may, of course, be increased. 

1 EXAMPLE 1 1-8 Consider the matrix 

Compute eAf using Sylvester's interpolation formula. 
From Equation (11-47), we get 
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Substituting 0 for A, and -2 for A2 in this last equation, we obtain 

Expanding the determinant, we obtain 

An alternative approach is to use Equation (11-48). We first determine ao(t)  and al ( t )  from 

Since A, = 0 and A2 = -2, the last two equations become 

Solving for ao(t)  and al ( t )  gives 

Then eA' can be written as 

Linear Independence of Vectors. The vectors x,, x2,. . . , x, are said to be linearly 
independent if 

where c,, c,, . . . , c, are constants, implies that 

Conversely, the vectors x, , x2,. . . , X, are said to be linearly dependent if and only if xi can 
be expressed as a linear combination of xj ( j  = 1,2, .  . . , n; j f i), or 
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for some set of constants c,. This means that if x, can be expressed as a linear combination 
of the other vectors in the set, it is linearly dependent on them or it is not an independent 
member of the set. 

EXAMPLE 1 1-9 The vectors 

are linearly dependent since 

The vectors 

are linearly independent since 

c,y1 + C2Y2 + C3Y3 = 0 

implies that 

Note that if an n x n matrix is nonsingular (that is, the matrix is of rank n or the determinant 
is nonzero) then n column (or row) vectors are linearly independent. If the n X n matrix is singular 
(that is, the rank of the matrix is less than n or the determinant is zero), then n column (or row) 
vectors are linearly dependent. To demonstrate this, notice that 

1 1-6 CONTROLLABILITY 

Controllability and Observability. A system is said to  be controllable at time t,, 
if it is possible by means of an unconstrained control vector to transfer the system from 
any initial state x(t,) to any other state in a finite interval of time. 

A system is said to be observable at time to if, with the system in state x(to), it is possible 
to determine this state from the observation of the output over a finite time interval. 

The concepts of controllability and observability were introduced by Kalman. They 
play an important role in the design of control systems in state space. In fact, the 
conditions of controllability and observability may govern the existence of a complete 
solution to the control system design problem. The solution to  this problem may not 
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exist if the system considered is not controllable. Although most physical systems are 
controllable and observable, corresponding mathematical models may not possess the 
property of controllability and observability.Then it is necessary to know the conditions 
under which a system is controllable and observable. This section deals with controlla- 
bility and the next section discusses observability. 

In what follows, we shall first derive the condition for complete state controllability. 
Then we derive alternative forms of the condition for complete state controllability 
followed by discussions of complete output controllability. Finally, we present the concept 
of stabilizability. 

Complete State Controllability of Continuous-Time Systems. Consider the 
continuous-time system. 

where x = state vector (n-vector) 
u = control signal (scalar) 

A = n X n matrix 
B = n X 1 matrix 

The system described by Equation (11-51) is said to be state controllable at t = to if it 
is possible to construct an unconstrained control signal that will transfer an initial state 
to any final state in a finite time interval to 5 t 5 t,. If every state is controllable, then 
the system is said to be completely state controllable. 

We shall now derive the condition for complete state controllability. Without loss of 
generality, we can assume that the final state is the origin of the state space and that the 
initial time is zero, or to = 0. 

The solution of Equation (11-51) is 

Applying the definition of complete state controllability just given, we have 

Referring to Equation (11-48) or (11-50), e-A' can be written 

Substituting Equation (11-53) into Equation (11-52) gives 
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Let us put 

Then Equation (11-54) becomes 

If the system is completely state controllable, then, given any initial state x(O), Equation 
(11-55) must be satisfied. This requires that the rank of the n X n matrix 

[B AB i ... / An-'B] 

be n. 
From this analysis, we can state the condition for complete state controllability as fol- 

1ows:The system given by Equation (11-51) is completely state controllable if and only 
if the vectors B, AB, . . . , K - l B  are linearly independent, or the n X n matrix 

[B i AB I ... i ~ ' 1 - ' B ]  

is of rank n. 
The result just obtained can be extended to the case where the control vector u is 

r-dimensional. If the system is described by 

x = Ax + Bu 
where u is an r-vector, then it can be proved that the condition for complete state 
controllability is that the n X nr matrix 

[B j AB j ... I An-'B] 

be of rank n, or contain n linearly independent column vectors. The matrix 

is commonly called the controlhbility matrix. 

I EXAMPLE 1 1-10 Consider the system given by 

Since 

[B A ~ I  = [i i] = singular 

I the system is not completely state controllable. 
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/ EXAMPLE 1 1-1 1 Consider the system given by 

I For this case, 

I The system is therefore completely state controllable. 

Alternative Form of the Condition for Complete State Controllability. Consider 
the system defined by 

where x = state vector (n-vector) 

u = control vector (r-vector) 

A = n X n matrix 

' *  - B = n X r matrix 

If the eigenvectors of A are distinct, then it is possible to find a transformation matrix 
P such that 

Note that if the eigenvalues of A are distinct, then the eigenvectors of A are distinct; how- 
ever, the converse is not true. For example, an n X n real symmetric matrix having 
multiple eigenvalues has n distinct eigenvectors. Note also that each column of the P 
matrix is an eigenvector of A associated with A, (i = 1,2, . . . , n). 

Let us define 

Substituting Equation (11-57) into Equation (11-56), we obtain 

By defining 

p-'B = F = (f..) 
' I  
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we can rewrite Equation (11-58) as 

i l  = A121 + fiiui + f12.u~ f + firur 

iz = A2z2 -+ fZ1u1 + f 2 2 ~ Z  + . . . + f 2 r ~ r  

If the elements of any one row of the n X r matrix Fare all zero, then the corresponding 
state variable cannot be controlled by any of the u,. Hence, the condition of complete 
state controllability is that if the eigenvectors of A are distinct, then the system is com- 
pletely state controllable if and only if no row of P-'B has all zero elements. It is im- 
portant to note that, to apply this condition for complete state controllability, we must 
put the matrix P-'AP in Equation (11-58) in diagonal form. 

If the A matrix in Equation (11-56) does not possess distinct eigenvectors, then 
diagonalization is impossible. In such a case, we may transform A into a Jordan canonical 
form. If, for example, A has eigenvalues A, ,A, ,A, ,A4,h4,h6, . . . , An and has n - 3 distinct 
eigenvectors, then the Jordan canonical form of A is 

The square submatrices on the main diagonal are called Jordan blocks. 
Suppose that we can find a transformation matrix S such that 

If we define a new state vector z by 

x = Sz 

then substitution of Equation (11-59) into Equation (11-56) yields 

i = S-IASZ + S-'Bu 

= Jz + S-'Bu (11-60) 

The condition for complete state controllability of the system of Equation (11-56) may 
then be stated as follows: The system is completely state controllable if and only if (1) 
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no two Jordan blocks in J of Equation (11-60) are associated with the same eigenval- 
ues, (2) the elements of any row of S-'B that correspond to the last row of each Jordan 
block are not all zero, and (3) the elements of each row of S-'B that correspond to 
distinct eigenvalues are not all zero. 

I EXAMPLE 1 1-12 The following systems are completely state controllable: 

The following systems are not completely state controllable: 

Condition for Complete State Controllability in the s Plane. The condition for 
complete state controllability can be stated in terms of transfer functions or transfer 
matrices. 

It can be proved that a necessary and sufficient condition for complete state con- 
trollability is that no cancellation occur in the transfer function or transfer matrix. If 
cancellation occurs, the system cannot be controlled in the direction of the canceled 
mode. 

/ EXAMPLE 1 1-1 3 Consider the following transfer function: 

Clearly, cancellation of the factor (s + 2.5) occurs in the numerator and denominator of this 
transfer function. (Thus one degree of freedom is lost.) Because of this cancellation, this system 
is not completely state controllable. 
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The same conclusion can be obtained by writing this transfer function in the form of a state 
equation. A state-space representation is 

Since 

the rank of the matrix [B j AB] is 1. Therefore, we arrive at the same conclusion: The system is 
not completely state controllable. 

Output Controllability. In the practical design of a control system, we may want 
to control the output rather than the state of the system. Complete state controllability 
is neither necessary nor sufficient for controlling the output of the system. For this 
reason, it is desirable to define separately complete output controllability. 

Consider the system described by 

where x = state vector (n-vector) 

u = control vector (r-vebtor) 

y = output vector (m-vector) 

A = n X n matrix 

B = n X r matrix 

C = m X n matrix 

D = m X v matrix 

The system described by Equations (11-61) and (11-62) is said to be completely output 
controllable if it is possible to construct an unconstrained control vector u(t) that will 
transfer any given initial o ~ t ~ u t . ~ ( t ~ )  to any final output y ( t , )  in a finite time interval 
to 5 t 5 t , .  

It can be proved that the condition for complete output controllability is as follows: 
The system described by Equations (11-61) and (11-62) is completely output control- 
lable if and only if the m X (n + 1)r  matrix 

[CB ! CAB j C A 2 ~  i . . .  / CAn-'B j D] 

is of rank m. (For a proof, see Problem A-11-16.) Note that the presence of the Du 
term in Equation (11-62) always helps to establish output controllability. 

Uncontrollable System. An uncontrollable system has a subsystem that is 
physically disconnected from the input. 
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Stabilizability. For a partially controllable system, if the uncontrollable modes are 
stable and the unstable modes are controllable, the system is said to be stabilizable. For 
example, the system defined by 

is not state controllable.The stable mode that corresponds to the eigenvalue of -1 is not 
controllable. The unstable mode that corresponds to the eigenvalue of 1 is controllable. 
Such a system can be made stable by the use of a suitable feedback. Thus this system is 
stabilizable. 

1 1-7 OBSERVABILITY 

In this section we discuss the observability of linear systems. Consider the unforced 
system described by the following equations: 

where x = state vector (n-vector) 
y = output vector (m-vector) 

A = n X n matrix 
C = m X n matrix 

The system is said to be completely observable if every state x(to) can be determined 
from the observation of y(t) over a finite time interval, to s t 5 t, . The system is, there- 
fore, completely observable if every transition of the state eventually affects every ele- 
ment of the output vector.The concept of observability is useful in solving the problem 
of reconstructing unmeasurable state variables from measurable variables in the mini- 
mum possible length of time. In this section we treat only linear, time-invariant systems. 
Therefore, without loss of generality, we can assume that to = 0. 

The concept of observability is very important because, in practice, the difficulty 
encountered with state feedback control is that some of the state variables are not 
accessible for direct measurement, with the result that it becomes necessary to estimate 
the unmeasurable state variables in order to construct the control signals. It will be 
shown in Section 12-5 that such estimates of state variables are possible if and only if 
the system is completely observable. 

In discussing observability conditions, we consider the unforced system as given by 
Equations (1163) and (11-64).The reason for this is as follows: If the system is described 
by 

x = Ax + Bu 

then 
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and y ( t )  is 

Since the matrices A, B, C, and D are known and w(t )  is also known, the last two terms 
on the right-hand side of this last equation are known quantities. Therefore, they may 
be subtracted from the observed value of y( t ) .  Hence, for investigating a necessary and 
sufficient condition for complete observability, it suffices to consider the system described 
by Equations (11-63) and (11-64). 

Complete Observability of Continuous-Time Systems. Consider the system 
described by Equations (11-63) and (11-64).The output vector y ( t )  is 

Referring to Equation (11-48) or (11-50), we have 

Hence, we obtain 

If the system is completely observable, then, given the output y ( t )  over a time interval 
0 5 t i t , ,  x (0 )  is uniquely determined from Equation (11-65). It can be shown that 
this requires the rank of the nm X n matrix 

to be n. (See Problem A-11-19 for the derivation of this condition.) 
From this analysis, we can state the condition for complete observability as follows: 

The system described by Equations (11-63) and (11-64) is completely observable if and 
only if the n X nm matrix 

is of rank n or has n linearly independent column vectors. This matrix is called the 
observability matrix. 
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EXAMPLE 1 1-1 4 Consider the system described by 

Is this system controllable and observable? 
Since the rank of the matrix 

is 2, the system is completely state controllable. 
For output controllability, let us find the rank of the matrix [CB j CAB]. Since 

the rank of this matrix is 1. Hence, the system is completely output controllable. 
To test the observability condition, examine the rank of [C* A*CY] . Since 

the rank of [c* j A*c*] is 2. Hence, the system is completely observable. 

Conditions for Complete Observability in the s Plane. The conditions for com- 
plete observability can also be stated in terms of transfer functions or transfer matrices. 
The necessary and sufficient conditions for complete observability is that no cancella- 
tion occur in the transfer function or transfer matrix. If cancellation occurs, the canceled 
mode cannot be observed in the output. 

I EXAMPLE 1 1-15 Show that the following system is not completely observable, 

where 

Note that the control function u does not affect the complete observability of the system. To 
examine complete observability, we may simply set u = 0. For this system, we have 

[c* j A*C* j ( ~ * ) ~ c ' b ]  = 

1 -1 -1 
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Note that 

Hence, the rank of the matrix [c* j A T *  j (A*)'c*] is less than 3.Therefore, the system is not 
completely observable. 

In fact, in this system, cancellation occurs in the transfer function of the system.The transfer 
function between X , ( s )  and U ( s )  is 

and the transfer function between Y ( s )  and X, ( s )  is 

Therefore, the transfer function between the output Y ( s )  and the input U ( s )  is 

Clearly, the two factors ( s  + 1) cancel each other.This means that there are nonzero initial states 
x(O), which cannot be determined from the measurement of y ( t ) .  

Comments. The transfer function has no cancellation if and only if the system is com- 
pletely state controllable and completely observable.This means that the canceled transfer 
function does not carry along all the information characterizing the dynamic system. 

Alternative Form of the Condition for Complete Observability. Consider the 
system described by Equations (11-63) and (11-64), rewritten 

Suppose that the transformation matrix P transforms A into a diagonal matrix, or 

P-~AP = D 

where D is a diagonal matrix. Let us define 

x = Pz 

Then Equations (11-66) and (11-67) can be written 

i = P-I APz = Dz 

y = CPz 

Hence, 

y(t) = CPeD'z(0) 
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The system is completely observable if none of the columns of the m X n matrix CP 
consists of all zero elements.This is because, if the ith column of CP consists of all zero 
elements, then the state variable z,(O) will not appear in the output equation and there- 
fore cannot be determined from observation of y(t). Thus, x(O), which is related to z(0) 
by the nonsingular matrix P, cannot be determined. (Remember that this test applies only 
if the matrix PU1AP is in diagonal form.) 

If the matrix A cannot be transformed into a diagonal matrix, then by use of a suitable 
transformation matrix S, we can transform A into a Jordan canonical form, or 

S-'AS = J 
where J is in the Jordan canonical form. 

Let us define 
X = Sz 

Then Equations (11-66) and (11-67) can be written 

i = S-'ASz = Jz 
y = c s z  

Hence, 

The system is completely observable if (1) no two Jordan blocks in J are associated with 
the same eigenvalues, (2) no columns of CS that correspond to the first row of each 
Jordan block consist of zero elements, and (3) no columns of CS that correspond to 
distinct eigenvalues consist of zero elements. 

To clarify condition ( 2 ) ,  in Example 11-16 we have encircled by dashed lines the 
columns of CS that correspond to the first row of each Jordan block. 

/ EXAMPLE 11-16 The following systems are completely observable. 

2 1 01 I]=[: ------.--------;---------.----.. : ;I -3 I$], ,;,=p ioi 1 1 1 ~ o ~ o , ~ ]  [lj 0 

~s 0 -3 x5 x5 
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The following systems are not completely observable. 

I;] = pi ioi 2  1 31[:;] 4 

0 0 2  .--. 
x3 

Principle of Duality. We shall now discuss the relationship between controllability 
and observability. We shall introduce the principle of duality, due to Kalman, to clarify 
apparent analogies between controllability and observability. 

Consider the system S, described by 

where x = state vector (n-vector) 

u = control vector (r-vector) 

y = output vector (m-vector) 

A = n X n matrix 

B = n X r matrix 

C = m X n matrix 

and the dual system S2 defined by 

z = A*z + C*v 

where z = state vector (n-vector) 

v = control vector (m-vector) 

n = output vector (r-vector) 

A* = conjugate transpose of A 

B* = conjugate transpose of B 

C* = conjugate transpose of C 

The principle of duality states that the system S1 is completely state controllable 
(observable) if and only if system S2 is completely observable (state controllable). 

To verify this principle, let us write down the necessary and sufficient conditions for 
complete state controllability and complete observability for systems S1 and S2. 
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For system S, : 

1. A necessary and sufficient condition for complete state controllability is that the 
rank of the n X nr matrix 

[B j AB j ... A"-'B] 

be n. 
2. A necessary and sufficient condition for complete observability is that the rank of 

the n X nm matrix 
[c* j A*C* j .. . j (A*)"-~c*] 

For system S2: 

1. A necessary and sufficient condition for complete state controllability is that the 
rank of the n X nm matrix 

[c* j A*C" j . . .  i ( ~ * ) n - l ~ * ]  

be n. 
2. A necessary and sufficient condition for complete observability is that the rank of 

the n X nr matrix 

By comparing these conditions, the truth of this principle is apparent. By use of this 
principle, the observability of a given system can be checked by testing the state con- 
trollability of its dual. 

Detectability. For a partially observable system, if the unobservable modes are 
stable and the observable modes are unstable, the system is said to be detectable. Note 
that the concept of detectability is dual to the concept of stabilizability. 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-111. Consider the transfer function system defined by Equation (11-2), rewritten 

Derive the following controllable canonical form of the state-space representation for this trans- 
fer function system: 
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Solution. Equation (11-68) can be written as 

(b, - albo)sR-I + ... + (b,-I - a,-lbo)s + (b, - a,bo) 
-= y ( s )  bo + 
u ( s )  sn + alsn-I + ... + a,-~s + a, 

which can be modified to 

where 

(b ,  - u,b,)stl-' + ..- + ( b  ,,-, - a,-,b,)s + (b,, - a,bo) 
L ( s )  = 

S" + C I ~ S " - '  + ... + a,,-,s + a, 
U ( s )  

Let us rewrite this last equation in the following form: 

?(s )  

(b, - a,b,)sn-' +. . .+  (b,-l - a,-,bo)s + (b, - a,b,) 

From this last equation, the following two equations may be obtained: 

Now define state variables as follows: 

Then, clearly, 
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which may be rewritten as 

Xn-l = X, 

Noting that snQ(s) = sX,(s) ,  we can rewrite Equation (11-72) as 

or 

x, = -anxl - an-,x2 - ..' - alx, + u (11-75) 

Also, from Equations (11-71) and (11-73), we obtain 

Y(s) = b,U(s) + (6, - alb,)sn- '~(s)  + ... + (bn-l - a,-,b,)sQ(s) 

+ (bN - anbo)Q(s) 

= b,U(s) + (b, - ~i ,b , , )~~~(s )  + ... + (b,-I - a,-lb,)X,(s) 

+ (6, - flnb,)X1(s) 

The inverse Laplace transform of this output equation becomes 

y = (b, - a,b,)x, + (6,-, - a,-,bo)x2 + ... + (bl - a,b,)x, + 6,u (11-76) 

Combining Equations (11-74) and (11-75) into one vector-matrix differential equation, we ob- 
tain Equation (11-69). Equation (11-76) can be rewritten as given by Equation (11-70). Equations 
(11-69) and (11-70) are said to be in the controllable canonical form. Figure 11-1 shows the block 
diagram representation of the system defined by Equations (11-69) and (11-70). 

A-11-2. Consider the following transfer function system: 

Y(s) - bas" + 6,s"-' + ... + bn-ls + b, 
- 

U(S) sfl + alsn-I + ... + a,-ls + a,, 

Figure 11-1 
Block diagram 
representation of the 
system defined by 
Equations (11-69) 
and (11-70) 
(controllable 
canonical form) 
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Derive the following observable canonical form of the state-space representation for this trans- 
fer function system: 

Solution. Equation (11-77) can be modified into the following form: 

s n [ y ( s )  - b,U(s)] + s n - ' [ a , ~ ( s )  - b,U(s)]  + ... 
+ s[an- ,Y(s )  - b,-,U(s)] + a n Y ( s )  - bnU(s)  = 0 

By dividing the entire equation by sn and rearranging, we obtain 

1  
Y ( s )  = b,U(s) + - [b ,U( s )  - a , ~ ( s ) ]  + ... 

S 

1  1  
+ 5, [bn - , u ( s )  - an-1y(s)I  + 7 [ b n w  - anY(s)I  (11-80) 

Now define state variables as follows: 

Then Equation (11-80) can be written as 

Y ( s )  = bOU(s)  + Xn( s )  
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Figure 11-2 
Block diagram 
representation of the 
system defined by 
Equations (11-78) 
and (11-79) 
(observable , 

canonical form). 

By substituting Equation (11-82) into Equation (11-81) and multiplying both sides of the 
equations by s, we obtain 

sX,(s) = X,l-l(s) - a,Xn(s) + (b, - a1bo)U(s) 

sX,-,(s) = Xn-2(s) - a,Xn(s) + (62 - a ,bo)~( s )  

,sX2(s) = X l ( s )  - a,-,X,(s) + (b,-I - a,-, b0)u ( s )  

sX l ( s )  = -ar,Xn(s) + (b, - a,Ibo)u(s) 

Taking the inverse Laplace transforms of the preceding n equations and writing them in the 
reverse order, we get 

il = -a,,x, + ( b ,  - a,bo)u 

x 2 =  x1 - a,-,x, + (b,-l - a,-,bo)u 

in = x , -~  - alx ,  + (bl - albo)u 

Also, the inverse Laplace transform of Equation (11-82) gives 

Rewriting the state and output equations in the standard vector-matrix forms gives Equations 
(11-78) and (11-79). Figure 11-2 shows a block diagram representation of the system defined by 
Equations (11-78) and (11-79). 
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A-11-3. Consider the transfer function system defined by 

where p, f pi. Derive the state-space representation of this system in the following diagonal 
canonical form: 

Solution. Equation (11-83) may be written as 

CI  c2 Y ( s )  = b,,U ( s )  + --- U ( S ) + - - - - - U ( S ) + . . . + ~ U ( S )  (11-86) 
s  + PI s + P2 s + Pn 

Define the state variables as follows: 

1 x, ( s )  = ---- 
S + Pi 

U ( s )  

1 
X2( s )  = - 

s + P2 
U ( s )  

which may be rewritten as 

sX, (s )  = - p ,X , ( s )  + U ( s )  

sXz(s )  = - p zXds )  + U(J-1 

Example Problems and Solutions 



The inverse Laplace transforms of these equations give 

Figure 11-3 
Block diagram 
representation of the 
system defined by 
Equations (11-84) 
and (11-85) ' 

(diagonal canonical 
form). 

These n equations make up a state equation. 
In terms of the state variables X,(s), X2(s), . . . , Xn(s), Equation (11-86) can be written as 

Y(s) = b,U(s) + c,X,(s) + c,X,(s) + ... + cnXn(s) 

The inverse Laplace transform of this last equation is 

which is the output equation. 
Equation (11-87) can be put in the vector-matrix equation as given by Equation (11-84). 

Equation (11-88) can be put in the form of Equation (11-85). 
Figure 11-3 shows a block diagram representation of the system defined by Equations (11-84) 

and (11-85). 
It is noted that if we choose the state variables as 
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then we get a slightly different state-space representation.This choice of state variables gives 

sX , ( s )  = - p , k l ( s )  + c,U(s) 

s k 2 ( s )  = -p222(~) + c2U(s)  

from which we obtain 

in = -pnin  + CnU 

Referring to Equation (11-86), the output equation becomes 

Y ( s )  = b,U(s) + k l ( s )  + 2 2 ( ~ )  + ... + k , ( s )  

from which we get 

y = iI + i2 + ... + in + bou (1 1-90) 

Equations (11-89) and (11-90) give the following state-space representation for the system: 

A-11-4. Consider the system defined by 

where the system involves a triple pole at s  = -p, .  (We assume that, except for the first three 
pi's being equal, the p,'s are different from one another.) Obtain the Jordan canonical form of the 
state-space representation for this system. 
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Solution. The partial-fraction expansion of Equation (11-91) becomes 

yo Cl C3 c4 
= b, + -------- 02 + ---- + - + ... + C" 

u ( s )  ( s  + pl)' ( s  + + S + p4 s  + P n  

which may be written as 

Define 

Notice that the following relationships exist among X I ( s ) ,  X2 ( s ) ,  and X3( s ) :  

Then, from the preceding definition of the state variables and the preceding relationships, we 
obtain 

sXn(s)  = -p,,X,,(s) + U ( s )  
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The inverse Laplace transforms of the preceding n equations give 

x, = -p,x,  + Ll 

The output equation, Equation (11-92), can be rewritten as 

Y ( s )  = b,U(s) + c ,X , ( s )  + cZXz(s) + cgXg(s) + c ~ X ~ ( S )  + ... + c , ~ , ( s )  

The inverse Laplace transform of this output equation is 

Thus, the state-space representation of the system for the case when the denominator polynomial 
involves a triple root - p ,  can be given as follows: 

The state-space representation in the form given by Equations (11-93) and (11-94) is said to be 
in the Jordan canonical form. Figure 11-4 shows a block-diagram representation of the system 
given by Equations (11-93) and (11-94). 

A - 1 . 5  Consider the transfer function system 

Y ( s )  - 
- 

25.04s + 5.008 

U ( s )  s3 + 5.03247s' + 25.1026s + 5.008 

Obtain a state-space representation of this system with MATLAB. 
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Figure 11-4 
Block diagram 
representation of the 
system defined by 
Equations (11-93) 
and (11-94) (Jordan 
canonical form). 

Solution. MATLAB command 

will produce a state-space representation for the system. See MATLAB Program 114. 

MATLAB Program 11-4 

num = [O 0 25.04 5.0081; 
den = [I 5.03247 25.1 026 5.0081; 
[A,B,C,D] = tf2ss(num1den) 
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This is the MATLAB representation of the following state-space equations: 

A-11-6 Consider the system defined by 

x = Ax + Bu 

where x = state vector (n-vector) 

u = control vector (r-vector) 

A = n X n constant matrix 

B = n X r constant matrix 

Obtain the response of the system to each of the following inputs: 

(a) The r components of u are impulse functions of various magnitudes. 

(b) The r components of u are step functions of various magnitudes. 

(c) The r components of u are ramp functions of various magnitudes. 

Solution. 

(a) Impulse response: Referring to Equation (11-43), the solution to the given state equation is 

Substituting to = 0- into this solution, we obtain 

Let us write the impulse input u(t) as 

where w is a vector whose components are the magnitudes of r impulse functions applied at 
t = O.The solution of the state equation when the impulse input 6 ( t )  w is given at t = 0 is 

(b) Step response: Let us write the step input u(t) as 
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where k is a vector whose components are the magnitudes of r  step functions applied at 
t  = 0 .  The solution to the step input at t  = 0 is given by 

If A is nonsingular, then this last equation can be simplified to give 

x ( t )  = eA1x(o)  + e * ' [ - ( ~ - ' ) ( e - ~ '  - I ) ] B ~  

= eA'x(0) + ~ - ' ( e ~ '  - 1)Bk (11-96) 

(c)  Ramp response: Let us write the ramp input u ( t )  as 

u ( t )  = t v  

where v is a vector whose components are magnitudes of ramp functions applied at t  = O.The 
solution to the ramp input t v  given at t  = 0 is 

If A is nonsingular, then this last equation can be simplified to give 

x ( t )  = eArx(0)  + ( ~ - ' ) ( e ~ '  - I - A ~ ) B V  

= eA'x(0) + [ ~ - ~ ( e ~ '  - 1) - A-'~]BY 

A-11-7. Obtain the response y ( t )  of the following system: 

where u ( t )  is the unit-step input occurring at t  = 0, or 

.(t) = l ( t )  

Solution. For this system 

The state transition matrix @ ( t )  = eAf can be obtained as follows: 
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Since 

we have 

e-0.5'(cos 0.5t - sin 0 3 )  -e-0.5r sin . 0.5t 
2e-0.51 sin 0 .3  e-0.5'(cos 0.5t + sin 0 3 )  I 

Since x(0) = 0, referring to Equation (11-96), we have 

x(t) = eA'x(0) + A-'(eA' - I ) B ~  

= ~ - ' ( e ~ '  - I)B 

= [-; -;I[ 0.5e-"~5r(cos 0.5t - sin0.5t) - 0.5 
e-0.5r sin 0.5t 

e-0.5' sin 0.5t 

I 
(cos0.5t + sin0.5t) + 1 I 

Hence, the output y(t) can be given by 
r- -7 

A-11-8. The Cayley-Hamilton theorem states that every n X n matrix A satisfies its own characteristic 
equation. The characteristic equation is not, however, necessarily the scalar equation of least 
degree that A satisfies. The least-degree polynomial having A as a root is called the minimal 
polynomial. That is, the minimal polynomial of an n x n matrix A is defined as the polynomial 
4(A) of least degree, 

&(A) = A" + a,~"- '  + ... + a,-,A + a,, m 5 n 

such that &(A) = 0, or 

The minimal polynomial plays an important role in the computation of polynomials in an n x n 
matrix. 

Let us suppose that d(A), a polynomial in A, is the greatest common divisor of all the elements 
of adj(AI - A). Show that, if the coefficient of the highest-degree term in A of d(A) is chosen as 
1, then the minimal polynomial &(A) is given by 

Solution. By assumption, the greatest common divisor of the matrix adj(A1 - A) is d(A).Therefore, 
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where the greatest common divisor of the n2 elements (which are functions of A) of B(A) is unity. 
Since 

we obtain 

d(A)(AI - A)B(A) = 1/11 - A11 

from which we find that IAI - A1 is divisible by d(A). Let us put 

1/11 - A] = d(A)$(A) 

Because the coefficient of the highest-degree term in A of d(A) has been chosen to be I ,  the 
coefficient of the highest-degree term in A of +(A) is also 1. From Equations (11-98) and (11-99), 
we have 

Hence, 

rb(A) = 0 

Note that +(A) can be written as 

*(A) = g(A)+(A) + ff(A) 

where a(A) is of lower degree than +(A). Since *(A) = 0 and +(A) = 0, we must have a (A)  = 0. 
Also, since +(A) is the minimal polynomial, a(A) must be identically zero, or 

*(A) = g(A)+(A) 

Note that because +(A) = 0, we can write 

+(A)I = (A1 - A)C(A) 

Hence, 

*(A11 = g(A)+(A)I = g(A)(AI - A)C(A) 

and we obtain 

B(A) = g(A)C(A) 

Note that the greatest common divisor of the n2 elements of B(A) is unity. Hence, 

Therefore, 

Then, from this last equation and Equation (11-99), we obtain 

A-11-9. If an n X n matrix A has n distinct eigenvalues, then the minimal polynomial of A is identical to 
the characteristic polynomial. Also, if the multiple eigenvalues of A are linked in a Jordan chain, 
the minimal polynomial and the characteristic polynomial are identical. If, however, the multiple 
eigenvalues of A are not linked in a Jordan chain, the minimal polynomial is of lower degree than 
the characteristic polynomial. 
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Using the following matrices A and B as examples, verify the foregoing statements about the 
minimal polynomial when multiple eigenvalues are involved: 

Soluti~n. First, consider the matrix A. The characteristic polynomial is given by 

Thus, the eigenvalues of A are 2,2, and 1. It can be shown that the Jordan canonical form of A is 

and the multiple eigenvalues are linked in the Jordan chain as shown. 
To determine the minimal polynomial, let us first obtain adj(A1 - A). It is given by 

(A - 2)(A - 1) (A + 11) 4(A - 2) 
adj(A1 - A) = (A - 2)(A - 1) 

3(A - 2) (A - 2)' 1 
Notice that there is no common divisor of all the elements of adj(A1 - A). Hence, d(A) = 1. 
Thus, the minimal polynomial +(A) is identical to the characteristic polynomial, or 

A simple calculation proves that 

but 

Thus, we have shown that the minimal polynomial and the characteristic polynomial of this matrix 
A are the same. 

Next, consider the matrix B. The characteristic polynomial is given by 

A simple computation reveals that matrix B has three eigenvectors, and the Jordan canonical 
form of B is given by 
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Thus, the multiple eigenvalues are not 1inked.To obtain the minimal polynomial, we first compute 
adj(A1 - B ) :  

from which it is evident that 

Hence, 

/ A 1  - BI ( A  - 2 ) 2 ( ~  - 1 )  4 ( A )  = ------- = = A 2 - 3 A + 2  
( l(A) A - 2  

As a check, let us compute +(B): 

For the given matrix B, the degree of the minimal polynomial is lower by 1 than that of the char- 
acteristic polynomia1.A~ shown here, if the multiple eigenvalues of an n x n matrix are not linked 
in a Jordan chain, the minimal polynomial is of lower degree than the characteristic polynomial. 

A-11-10 Show that by use of the minimal polynomial, the inverse of a nonsingular matrix A can be ex- 
pressed as a polynomial in A with scalar coefficients as follows: 

where a , ,  ~ 1 ? , ,  . . . , a,?, are coefficients of the minimal polynomial 

Then obtain the inverse of the following matrix A: 

1 2  

A = li 
Solotion. For a nonsingular matrix A ,  its minimal polynomial $(A) can be written as 

where a,, f 0. Hence, 

1 I = - - (A"' + LL,A"'-I + . . .  + n ,,,_ 2A2 + C I , ~ _ ~ A )  
"nl 

Premultipiying by A ' ,  we obtain 

which is Equation (11-100). 
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For the given matrix A, adj ( A 1  - A )  can be given as 
, . 

h 2 + 4 A + 3  2 A + 6  
A' + 2 A  - 3 -2A + 2  

2 h2 - 7 

Consequently, the minimal polynomial $ ( A )  is given by 

-' I 
Clearly, there is no common divisor d ( A )  of all elements of adj(A1 - A) .  Hence, d ( A )  = 1. 

Thus, the minimal polynomial g ( A )  is the same as the characteristic polynomial. 
Since the characteristic polynomial is 

IAI - A/ = h3 + 3 h 2  - 7 A  - 17 

we obtain 

+ ( A )  = + 3 h 2  - 7 A  - 17 

By identifying the coefficients a, of the minimal polynomial (which is the same as the characteristic 
polynomial in this case), we have 

The inverse of A can then be obtained from Equation (11-100) as follows: 

A-11-11 Show that if matrix A can be diagonalized, then 

eAf = peDip-I 

where P is a diagonalizing transformation matrix that transforms A into a diagonal matrix, or 
F L A P  = D, where D is a diagonal matrix. 

Show also that if matrix A can be transformed into a Jordan canonical form, then 

where S is a transformation matrix that transforms A into a Jordan canonical form J, or S-IAS = J, 
where J is in a Jordan canonical form. 

Solution. Consider the state equation 
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If a square matrix can be diagonalized, then a diagonalizing matrix (transformation matrix) exists 
and it can be obtained by a standard method. Let P be a diagonalizing matrix for A .  Let us define 

x = P i  

Then 

2 = P-'AP< = D i  

where D is a diagonal matrix. The solution of this last equation is 

i ( t )  = e D ' i ( 0 )  

Hence, 

x(t) = P<(t)  = PeD'P-'x(O) 

Noting that x ( t )  can also be given by 'the equation 

x ( t )  = eAtx(0)  

we obtain eA' = PeDtp-' ,  or 

Next, we shall consider the case where matrix A may be transformed into a Jordan canonical 
form. Consider again the state equation 

First obtain a transformation matrix S that will transform matrix A into a Jordan canonical form 
so that 

where J is a matrix in a Jordan canonical form. Now define 

Then 

The solution of this last equation is 

i f t )  = e " i ( 0 )  

Hence, 

x ( t )  = S i ( t )  = S e J ' S - ' ~ ( 0 )  

Since the solution x ( t )  can also be given by the equation 

~ ( t )  = eA'x(0)  

we obtain 
eAr = seJts-1 
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Note that eJ' is a triangular matrix [which means that the elements below (or above, as the case 
may be) the principal diagonal line are zeros] whose elements are e"', te", t2eA', and so forth. For 
example, if matrix J has the following Jordan canonical form: 

0 0 A,  

then 

Similarly, if 

then 

A-11-12 Consider the following polynomial in A of degree m - 1, where we assume A,,  A,, . . . , A, to be 
distinct: 

( A  - A l ) . . . ( A  - Ak- , ) (h  - h,+,)...(h - A,) 
~ k ( ~ )  = 

( h k  - hi) ... ( h k  - ~ k - l ) ( h k  - h k + l )  ( ~ k  - Am) 

where k = 1,2, .  . . , m. Notice that 

Then the polynomial f ( A )  of degree m - 1, 

f ( * )  = 5 f ( ~ k ) p k ( ~ )  
k = l  

( A  - A , ) . . . ( A  - hk-,)(h - hk+,). . .(h - A,) 
= 5 f (A,) 

k = ~  (A& - hl) " '  ( h k  - ~ k - l ) ( ~ k  - & + I )  .'. ( ~ k  - A,) 
takes on the values f ( A k )  at the points A k .  This last equation is commonly called Lagrange's 
interpolation formula.The polynomial f ( A )  of degree m - 1 is determined from m independent 
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data f ( A , ) ,  f ( h 2 ) ,  ... , f ( h , , ) .  That is, the polynomial f ( A )  passes through m points 
f  ( A , ) ,  f  (A,),  . . . , f  (A,,,). Since f  ( A )  is a polynomial of degree m - 1, it is uniquely determined. 
Any other representations of the polynomial of degree rn - 1 can be reduced to the Lagrange 
polynomial f  ( A ) .  

Assuming that the eigenvalues of an n x n matrix A are distinct, substitute A for A  in the 
polynomial pk(A).Then we get 

Notice that p k ( A )  is a polynomial in A of degree m - 1. Notice also that 

Now define 

Equation (11-102) is known as Sylvester's interpolation formula. Equation (11-102) is equivalent 
to the following equation: 

Equations (11-102) and (11-103) are frequently used for evaluating functions f ( A )  of matrix A ,  
for example, (A1 - A)-', eAt, and so forth. Note that Equation (11-103) can also be written as 

Show that Equations (11-102) and (11-103) are equivalent.To simplify the arguments, assume 
that m = 4. 
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Solution. Equation (11-103), where m = 4, can be expanded as follows: 

Since 

and 

we obtain 
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Solving this last equation for f (A), we obtain 

(A - A ~ I ) ( A  - A3 I)(A - ~ 4 1 )  (A - Al I)(A - A3 I)(A - A4 1) 
f (A)  = f (A1)  

(4 - - &)(A, ~ 4 )  '("' ((h - h1)(A2 - $)(h2 - 4) 
(A - Al I)(A - A ~ I ) ( A  - ~ 4 1 )  (A - A, I)(A - h21)(A - h3I) 

+ '("' (A3 - A1)(h3 - &)(A3 - A4) + f ( ~ 4 )  (A4 - A I ) ( A ~  - ~ 2 ) ( ~ / 1 4  - ~ 3 )  

(A - A11)...(A - A k - l ~ ) ( ~  - Ak+,l)... (A - A,I) 
= 5 f ( ~ k )  

k = l  ( ~ k  - hl)'.'(hk - hk-~)(hk - hk+l)".(hk - Am) 

where rn = 4.Thus, we have shown the equivalence of Equations (11-102) and (11-103).Although 
we assumed m = 4, the entire argument can be extended to an arbitrary positive integer in. (For 
the case when the matrix A involves multiple eigenvalues, refer to Problem A-11-13,) 

A-11-13 Consider Sylvester's interpolation formula in the form given by Equation (11-104): 

This formula for the determination off (A) applies to the case where the minimal polynomial of 
A involves only distinct roots. 

Suppose that the minimal polynomial of A involves multiple roots. Then the rows in the 
determinant that correspond to the multiple roots become identical, and therefore modification 
of the determinant in Equation (11-104) becomes necessary. 

Modify the form of Sylvester's interpolation formula given by Equation (11-104) when the 
minimal polynomial of A involves multiple roots. In deriving a modified determinant equation, 
assume that there are three equal roots (A, = A, = A,) in the minimal polynomial of A and that 
there are other roots (h4, As, . . . , hm) that are distinct. 

Solution. Since the minimal polynomial of A involves three equal roots, the minimal polynomial 
+(A) can be written as 

+(A) = A"' + n,Anl-' + ... + a ,,,- , A  + a,, 

= (A - A , ) ~ ( A  - h4)(h - hS) ... (A  - A,) 

An arbitrary function f (A) of an n X n matrix A can be written as 

f ( A )  = g(A)+(A) + ff(A) 

where the minimal polynomial +(A) is of degree m and a (A)  is a polynomial in A of degree 
m - 1 or less. Hence we have 

f (A) = g(A)dJ(A) + ff(A) 

where a(A) is a polynomial in A of degree m - 1 or less, which can thus be written as 

a(A) = a,, + alA + a2h2 + ... + (11-105) 
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In the present case we have 

f(A) = g(A)+(A) + a(A) 

= g ( ~ ) [ ( ~  - A , ) ~ ( A  - /\,)...(A - A , ) ]  + a(A) (11-106) 

By substituting A,, A,, . . . ,Am for A in Equation (11-106), we obtain the following m - 2 equations: 

/(A,) = f f ( ~ , )  

f ( ~ 4 )  = 4 ~ 4 )  

(11-107) 

f(ANZ) = f f ( ~ m )  

By differentiating Equation (11-106) with respect to A, we obtain 

d d 
- f (A) = (A  - ~ , ) ~ h ( h )  + - a(A) 
dA dh 

where 

Substitution of A, for A in Equation (11-108) gives 

Referring to Equation (11-105), this last equation becomes 

fl(hl) = a, + 2aZAl + ... + (m - l ) ( r , - ,~y-~ (11-109) 

Similarly, differentiating Equation (11-106) twice with respect to A and substituting A, for A, we 
obtain 

This last equation can be written as 

f"(hl) = 2a2 + 6a3A1 + ... + (m - l ) (m - 2 ) a , - , ~ y - ~  

Rewriting Equations (11-110), (11-log), and (11-107), we get 

a" + a l A ,  + a2h$ + ... + C X , - ~ A ~ - ~  = f (Am) 
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These rn simultaneous equations determine the ak values (where k = 0,1,2,. . . , m - 1). Noting 
that 4 ( A )  = 0 because it is a minimal polynomial, we have f  ( A )  as follows: 

Hence, referring to Equation (11-105), we have 

f ( A )  = a ( A )  = aoI + a ,  A + a2A2 + ... + a,-, (11-112) 

where the a, values are given in terms off ( A , ) ,  f 1 ( h 1 ) ,  f  " ( A , ) ,  f (A, ) ,  f ( A s ) , .  . . , f ( A , ~ ) .  In terms of 
the determinant equation, f  ( A )  can be obtained by solving the following equation: 

Equation (11-113) shows the desired modification in the form of the determinant.This equation 
gives the form of Sylvester's interpolation formula when the minimal polynomial of A involves 
three equal roots. (The necessary modification of the form of the determinant for other cases will 
be apparent.) 

A-11-14 Using Sylvester's interpolation formula, compute eA', where 

Solution. Referring to Problem A-11-9, the characteristic polynomial and the minimal polyno- 
mial are the same for this A.The minimal polynomial (characteristic polynomial) is given by 

&(A) = (A - 2j2(A - 1) 

Note that A, = A2 = 2 and A, = 1. Referring to Equation (11-112) and noting that f ( A )  in this 
problem is eA', we have 

eA1 = ao(t)I + a l ( t ) A  + a2(t)AZ 

where a,( t ) ,  a l ( t ) ,  and a2(t)  are determined from the equations 
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Substituting A, = 2, and A, = 1 into these three equations gives 

ao ( t )  + a , ( t )  + a2 ( t )  = er 

Solving for a,(t),  a l ( t ) ,  and a2 ( t ) ,  we obtain 

Hence, 

eA' = (4e' - 3e2' + 2te2') + (-4e' + 4e2' - 3te2') 

+ (e' - e2' + te2') 

e2' 12e' - 12e2' + 13te2' -4er + 4e2' 
e2' 

-3er + 3e2' e1 o 1 
A-11-15. Consider an n X n matrix A. Show that 

where the ai's are coefficients of the minimal polynomial of A: 

where a,  = 1 and rn is the degree of minimal polynolnial (rn 5 n).  

Solution. Let us put 

P = (sI - A)-' 

Then 

sP = AP + I 

By premultiplying both sides of this equation by (sI + A ) ,  we obtain 

Similarly, by premultiplying both sides of this last equation by (sI + A ) ,  we obtain 

s3P = A3P + A2 + S A  + s21 
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By repeating this process, we obtain the following set of equations: 

P = P  

where rn is the degree of the minimal polynomial of A. Then, by multiplying the sip's by a, - , 
(where i = 0, 1,2,  . . . , m)  in the preceding rn + 1 equations in the order given and adding the 
product together, we get 

+ sm-2 a,n-, A'-"+' + s^-' a0 I 
r=m-1 

Noting that 

we can simplify Equation (11-114) as follows: 

Therefore, 

If the minimal polynomial and characteristic polynomial of A are identical, then m = n. If m = n, 
then this last equation becomes 

where 

A-11-16 Show that the system described by 
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where x = state vector (n-vector) 

u = control vector (r-vector) 

y = output vector (m-vector) (m 5 n) 
A = n X n matrix 

B = n X r matrix 

C = m X n matrix 

is completely output controllable if and only if the composite m x nr matrix P, where 

P = [CB / CAB / CA2B j ... / CA"-'B] 

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for 
complete output controllability.) 

Solution. Suppose that the system is output controllable and the output y(t) starting from any y(O), 
the initial output, can be transferred to the origin of the output space in a finite time interval 
0 5 t 5 T.That is, 

Since the solution of Equation (11-116) is 

x(t) = eA'[x(0) + /'e-*'Bu(~)dr] o 

at t = T, we have 

Substituting Equation (11-119) into Equation (11-118), we obtain 

On the other hand, y(0) = Cx(0). Notice that the complete output controllability means that the 
vector Cx(0) spans the m-dimensional output space. Since eAr is nonsingular, if Cx(0) spans the 
m-dimensional output space, so does ceATx(0), and vice versa. From Equation (11-120) we obtain 

= -CITeATBu(T  - T) d r  

Note that JZeATBu(~  - T) d~ can be expressed as the sum of A'B,; that is, 
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where 

' 7 '  
Y i j  = 1 &(7)u j (T  - 7 ) d ~  = scalar 

and a i ( r )  satisfies 

P- 1 

eA' = 2 a i ( r )  A! (p: degree of the minimal polynomial of A) 
i=O 

and Bj is the jth column of B. Therefore, we can write CeATx(0)  as 

From this last equation, we see that c e A T x ( 0 )  is a linear combination of CALB,( i  = 0, 1 ,2 , .  . . , 
p - 1; j = 1 , 2  ,... , r ) .  Note that if the rank of Q, where 

is m, then so is the rank of P, and vice versa. [This is obvious if p = n. If p < n, then the C A ~ B ~  
(where p 5 h n - 1 )  are linearly dependent on CB,, C A B j , .  . . ,CAP - 'Bj. Hence, the rank of 
P is equal to that of Q.] If the rank of P is m, then CeATx(0)  spans the m-dimensional output 
space.This means that if the rank of P is m, then C x ( 0 )  also spans the m-dimensional output space 
and the system is completely output controllable. 

Conversely, suppose that the system is completely output controllable, but the rank of P is k, 
where k < m. Then the set of all initial outputs that can be transferred to the origin is of 
k-dimensional space. Hence, the dimension of this set is less than m. This contradicts the as- 
sumption that the system is completely output controllable. This completes the proof. 

Note that it can be immediately proved that, in the system of Equations (11-116) and (11-117), 
complete state controllability on 0 5 t 5 T implies complete output controllability on 0 5 t 5 T 
if and only if m rows of C are linearly independent. 

A-11-17 Discuss the state controllability of the following system: 

Solution. For this system, 

Since 

we see that vectors B and AB are not linearly independent and the rank of the matrix [B ! A B ]  
is 1. Therefore, the system is not completely state controllable. In fact, elimination of x2 from 
Equation (11-121), or the following two simultaneous equations, 

yields 
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or, in the form of a transfer function, 

Notice that cancellation of the factor ( s  + 2.5) occurs in the numerator and denominator of the 
transfer function. Because of this cancellation, this system is not completely state controllable. 
This is an unstable system. Remember that stability and controllability are quite different things. 
There are many systems that are unstable, but are completely state controllable. 

A-11--18. A state-space representation of a system in the controllable canonical form is given by 

The same system may be represented by the following state-space equation, which is in the 
observable canonical form: 

Show that the state-space representation given by Equations (11-122) and (11-123) gives a 
system that is state controllable, but not observable. Show, on the other hand, that the state-space 
representation defined by Equations (11-124) and (11-125) gives a system that is not completely 
state controllable, but is observable. Explain what causes the apparent difference in the 
controllability and observability of the same system. 

Solution. Consider the system defined by Equations (11-122) and (11-123). The rank of the 
controllability matrix 

[B AB] = [" 1 -1.3 ] 
is 2. Hence, the system is completely state controllable. The rank of the observability matrix 

[ C *  A*,*, = [ 0.8 -0.4 
1 -0.5 I 

is 1. Hence the system is not observable. 
Next consider the system defined by Equations (11-124) and (11-125). The rank of the 

controllability matrix 

0.8 -0.4 
[B i AB] = [ I  -0.5 ] 

is 1. Hence, the system is not completely state controllable.The rank of the observability matrix 

[C* i A*.*] = [" 1 -1.3 ] 
is 2. Hence, the system is observable: 
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The apparent difference in the controllability and observability of the same system is caused 
by the fact that the original system has a pole-zero cancellation in the transfer function. Referring 
to Equation (3-29), for D = 0 we have 

G(S) = C(SI - A)-IB 

If we use Equations (11-122) and (11-123), then 

[Note that the same transfer function can be obtained by using Equations (11-124) and (11-125).] 
Clearly, cancellation occurs in this transfer function. 

If a pole-zero cancellation occurs in the transfer function, then the controllability and observability 
vary, depending on how the state variables are chosen. Remember that, to be completely state con- 
trollable and observable, the transfer function must not have any pole-zero cancellations. 

A-11-19. Prove that the system defined by 

x = Ax 

where x = state vector (n-vector) 
y = output vector (m-vector) (m 5 n) 

A = n X n matrix 

C = m X n matrix 

is completely observable if and only if the composite mn X n matrix P, where 

is of rank n.  

Solution. We shall first obtain the necessary condition. Suppose that 

rank P < n 

Then there exists x(0) such that 

Px(0) = 0 
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Hence, we obtain, for a certain x(O), 

CA'x(0) = 0, for i = 0 , 1 , 2 ,  ... , n - 1 

Notice that from Equation (11-48) or (11-50), we have 

where m(m 5 n) is the degree of the minimal polynomial for A. Hence, for a certain x(O), we have 

Consequently, for a certain x(O), 

y ( t )  = Cx( t )  = CeALx(0) = 0 

which implies that, for a certain x(O), x(0)  cannot be determined from y(t).Therefore, the rank 
of matrix P must be equal to n. 

Next we shall obtain the sufficient condition. Suppose that rank P = n. Since 

y ( t )  = CeALx(0) 

by premultiplying both sides of this last equation by eA"C*, we get 

eA;"C* y ( t )  = eA*'C*CeA'x(0) 

If we integrate this last equation from 0 to t ,  we obtain 

Notice that the left-hand side of this equation is a known quantity. Define 

eA"'C* y ( t )  dt = known quantity (11-127) 

Then, from Equations (11-126) and (11-127), we have 

Q ( t )  = W(t )x (O)  

where 

It can be established that W ( t )  is a nonsingular matrix as follows: If I ~ ( t ) l  were equal to 0,  then 

x * ~ ( t , ) x  = /'11Ce*'xl12 dt = o 
0 

which means that 

ceA'x = 0, for 0 5 t 5 tl 

which implies that rank P < n.Therefore, ( ~ ( t ) l  # 0, or W ( t )  is nonsingular.Then, from Equa- 
tion (11-128), we obtain 

4 0 )  = [w(c ) ] - 'Q(~)  (11-129) 

and x(0)  can be determined from Equation (11-129). 
Hence, we have proved that x(0)  can be determined from y ( t )  if and only if rank P = n. Note 

that x(0)  and y ( t )  are related by 
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PROBLEMS 

B-11-1. Consider the following transfer function system: B-11-6. Consider the following matrix A: 

Obtain the state-space representation of this system in (a) Compute eA' by three methods. 
controllable canonical form and (b) observable canonical 
form. B-11-7. Given the system equation 

B-11-2. Consider the following system: 

Obtain a state-space representation of this system in a di- find the solution in terms of the initial 
agonal canonical form. 

x2(0) ,  and x3(O). 
B-11-3. Consider the system defined by 

B-11-8. Find x , ( t )  and x,(t) of the system described by 

where where the initial conditions are 

Transform the system equations into the controllable canon- 
ical form. B-11-9. Consider the following state equation and output 

equation: 
B-11-4. Consider the system defined by 

where 

A =  [-: - ", .= [;] 1 1 0: 
0 -3 Show that the state equation can be transformed into the 

Obtain the transfer function Y ( s ) / U ( s ) .  following form by use of a proper transformation matrix: 

B-11-5. Consider the following matrix A: 

y o  1 0 0 1  [ ]  = [ 0 I: 1 -;:][::] -6 

+ 

Then obtain the output y in terms of zl, z2, and z3 .  
L1 0 0 01 

B-11-10. Obtain a state-space representation of the fol- 
Obtain the eigenvalues A,, A,, A,, and A, of the matrix A. lowing system with MATLAB: 
Then obtain a transformation matrix P such that 

Y f s )  10.4s2 + 47s + 160 
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B-11-11. Obtain a transfer function representation of the 
following system with MATLAB: 

B-11-12. Obtain a transfer function representation of the 
following system with MATLAB: 

B-11-13. Consider the system defined by 

Is the system completely state controllable and completely 
observable? 

B-11-14. Consider the system given by [::I = [" 0 3 1  ':';-::I + [' 0  "[:I] 1 

- --. 

Is the system completely state controllable and completely 
observable? Is the system completely output controllablec? 

B-11-15. Is the following system completely state control- 
lable and completely observable'? 

B-11-16. Consider the system defined by 

Except for an obvious choice of c, = c, = c, = 0, find an 
example of a set of c,, c,, c3 that will make the system 
unobservable. 

B-11-17. Consider the system 

The output is given by 

(a) Show that the system is not completely observable. 

(b) Show that the system is completely observable if the 
output is given by 

Problems 



Design of Control Systems 
in State Space 

12-1 INTRODUCTION 

This chapter discusses state-space design methods based on the pole-placement method 
and the quadratic optimal regulator method. The pole-placement method is somewhat 
similar to the root-locus method in that we place closed-loop poles at desired locations. 
The basic difference is that in the root-locus design we place only the dominant closed- 
loop poles at the desired locations, while in the pole-placement design we place all 
closed-loop poles at desired locations. 

We begin by presenting the basic materials on pole placement in regulator systems. 
We then discuss the design of state observers, followed by the design of regulator sys- 
tems and control systems using the pole-placement-with-state-observer approach. Fi- 
nally, we present the quadratic optimal regulator systems. 

Outline of the Chapter. Section 12-1 has presented introductory material. Section 
12-2 discusses the pole-placement approach to the design of control systems. We begin 
with the derivation of the necessary and sufficient conditions for arbitrary pole place- 
ment. Then we derive equations for the state feedback gain matrix K for pole place- 
ment. Section 12-3 presents the solution of the pole-placement problem with MATLAB. 
Section 12-4 discusses the design of servo systems using the pole-placement approach. 
Section 12-5 presents state observers. We discuss both full-order and minimum-order 
state observers. Also, transfer functions of observer controllers are derived. Section 12-6 
presents the design of regulator systems with observers. Section 12-7 treats the design 
of control systems with observers. Finally, Section 12-8 discusses quadratic optimal 



regulator systems. Note that the state feedback gain matrix K can be obtained by both 
the pole-placement method and the quadratic optimal control method. 

12-2 POLE PL.ACEMENT 

In this section we shall present a design method commonly called the pole-placenzent or 
pole-assignment technique. We assume that all state variables are measurable and are 
available for feedback. It will be shown that if the system considered is completely state 
controllable, then poles of the closed-loop system may be placed at any desired locations 
by means of state feedback through an appropriate state feedback gain matrix. 

The present design technique begins with a determination of the desired closed-loop 
poles based on the transient-response andior frequency-response requirements, such as 
speed, damping ratio, or bandwidth, as well as steady-state requirements. 

Let us assume that we decide that the desired closed-loop poles are to be at s = p l ,  
s = p2,. . . , s = p,. By choosing an appropriate gain matrix for state feedback, it is pos- 
sible to force the system to have closed-loop poles at the desired locations, provided 
that the original system is completely state controllable. 

In this chapter we limit our discussions to single-input-single-output systems. That 
is, we assume the control signal u ( t )  and output signal y ( t )  to be scalars. In the deriva- 
tion in this section we assume that the reference input r ( t )  is zero. [In Section 12-7 we 
discuss the case where the reference input r ( t )  is nonzero.] 

In what follows we shall prove that a necessary and sufficient condition that the 
closed-loop poles can be placed at any arbitrary locations in the s plane is that the sys- 
tem be completely state controllable. Then we shall discuss methods for determining 
the required state feedback gain matrix. 

It is noted that when the control signal is a vector quantity, the mathematical aspects 
of the pole-placement scheme become complicated. We shall not discuss such a case in 
this book. (When the control signal is a vector quantity, the state feedback gain matrix 
is not unique. It is possible to choose freely more than n parameters; that is, in addition 
to being able to place n closed-loop poles properly, we have the freedom to satisfy some 
or all of the other requirements, if any, of the closed-loop system.) 

Design by Pole Placement. In the conventional approach to the design of a single- 
input-single-output control system, we design a controller (compensator) such that the 
dominant closed-loop poles have a desired damping ratio [ and an undamped natural 
frequency w,. In this approach, the order of the system may be raised by 1 or 2 unless 
pole-zero cancellation takes place. Note that in this approach we assume the effects on 
the responses of nondominant closed-loop poles to be negligible. 

Different from specifying only dominant closed-loop poles (the conventional design 
approach), the present pole-placement approach specifies all closed-loop poles. (There 
is a cost associated with placing all closed-loop poles, however, because placing all closed- 
loop poles requires successful measurements of all state variables or else requires the 
inclusion of a state observer in the system.) There is also a requirement on the part of 
the system for the closed-loop poles to be placed at arbitrarily chosen locations. The 
requirement is that the system be completely state controllable. We shall prove this fact 
in this section. 
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Consider a control system 

Figure 12-1 
Closed-loop control 
system with 
u = -Kx. 

where x = state vector (n-vector) 
y = output signal (scalar) 
u = control signal (scalar) 
A = n X n constant matrix 
B = n X 1 constant matrix 
C = 1 X n constant matrix 
D = constant (scalar) 

We shall choose the control signal to be 

u = -Kx 

This means that the control signal u is determined by an instantaneous state. Such a 
scheme is called state feedback. The 1 X n matrix K is called the state feedback gain 
matrix. We assume that all state variables are available for feedback. In the following 
analysis we assume that u is unconstrained. A block diagram for this system is shown in 
Figure 12-1. 

This closed-loop system has no input. Its objective is to maintain the zero output. 
Because of the disturbances that may be present, the output will deviate from zero.The 
nonzero output will be returned to the zero reference input because of the state feed- 
back scheme of the system. Such a system where the reference input is always zero is 
called a regulator system. (Note that if the reference input to the system is always a 
nonzero constant, the system is also called a regulator system.) 

Substituting Equation (12-2) into Equation (12-1) gives 

x(t) = (A - BK)x(t) 

The solution of this equation is given by 

where x(0) is the initial state caused by external disturbances.The stability and transient- 
response characteristics are determined by the eigenvalues of matrix A - BK. If matrix 
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K is chosen properly, the matrix A - BK can be made an asymptotically stable matrix, 
and for all x(0) # 0, it is possible to make x(t) approach 0 as t approaches infinity. The 
eigenvalues of matrix A - BK are called the regulator poles. If these regulator poles are 
placed in the left-half s plane, then x(t) approaches 0 as t approaches infinity.The prob- 
lem of placing the regulator poles (closed-loop poles) at the desired location is called a 
pole-placement problem. 

In what follows, we shall prove that arbitrary pole placement for a given system is 
possible if and only if the system is completely state controllable. 

Necessary and Sufficient Condition for Arbitrary Pole Placement We shall now 
prove that a necessary and sufficient condition for arbitrary pole placement is that the 
system be completely state controllable. We shall first derive the necessary condition. We 
begin by proving that if the system is not completely state controllable, then there are 
eigenvalues of matrix A - BK that cannot be controlled by state feedback. 

Suppose that the system of Equation (12-1) is not completely state controllable. 
Then the rank of the controllability matrix is less than n, or 

This means that there are q linearly independent column vectors in the controllability 
matrix. Let us define such q linearly independent column vectors as fl, f,,. . . , f,. Also, 
let us choose n - q additional n-vectors v, + ,, v, + ,, . . . , v, such that 

is of rank n. Then it can be shown that 

(See Problem A-12-1 for the derivation of these equations.) Now define 

Then we have 

= Is1, - All + Bll klj . Is1,-, - A,,[ = 0 

where I, is a q-dimensional identity matrix and I, - , is an (n - q)-dimensional identity 
matrix. 
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Notice that the eigenvalues of A,, do not depend on K. Thus, if the system is not 
completely state controllable, then there are eigenvalues of matrix A that cannot be 
arbitrarily placed.Therefore, to place the eigenvalues of matrix A - BK arbitrarily, the 
system must be completely state controllable (necessary condition). 

Next we shall prove a sufficient condition: that is, if the system is completely state 
controllable, then all eigenvalues of matrix A can be arbitrarily placed. 

In proving a sufficient condition, it is convenient to transform the state equation 
given by Equation (12-1) into the controllable canonical form. 

Define a transformation matrix T by 

where M is the controllability matrix 

M = [B ! AB j . . .  j A"-'B] 

and 

where the ai's are coefficients of the characteristic polynomial 

Define a new state vector i by 

x = T i  

If the rank of the controllability matrix M is n (meaning that the system is completely 
state controllable), then the inverse of matrix T exists, and Equation (12-1) can be 
modified to 

$ = T-I AT.? + T-'Bu (12-7) 

where 
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[See Problems A-12-2 and A-12-3 for the derivation of Equations (12-8) and (12-9).] 
Equation (12-7) is in the controllable canonical form. Thus, given a state equation, Equa- 
tion (12-l), it can be transformed into the controllable canonical form if the system is 
completely state controllable and if we transform the state vector x into state vector ? 
by use of the transformation matrix T given by Equation (12-4). 

Let us choose a set of the desired eigenvalues as pl, p2,. .. , p,. Then the desired 
characteristic equation becomes .A 

Let us write 

KT = [s, ... S1] 

When u = -KT? is used to control the system given by Equation (12-7), the system 
equation becomes 

The characteristic equation is 

This characteristic equation is the same as the characteristic equation for the system, 
defined by Equation (12-I), when u = -Kx is used as the control signal. This can be 
seen as follows: Since 

the characteristic equation for this system is 
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Now let us simplify the characteristic equation of the system in the controllable canonical 
form. Referring to Equations (12-8), (12-9), and (12-ll), we have 

= S" + (a l  + 6,)s"-' + ... + (a,-l + 6,-,)s + ( a ,  i- 6,) = 0 (12-12) 

This is the characteristic equation for the system with state feedback.Therefore, it must 
be equal to Equation (12-lo), the desired characteristic equation. By equating the 
coefficients of like powers of s, we get 

a1 + 61 = al  

a2 + S2 = a2 

a, + 6, = a ,  

Solving the preceding equations for the 8,'s and substituting them into Equation (12-ll), 
we obtain 

K = [S, 6,-, &IT- '  
= [ a ,  - a, i - anUl j ... a2 - a2 j LYI - a l ] ~ - l  (12-13) 

Thus, if the system is completely state controllable, all eigenvalues can be arbitrarily 
placed by choosing matrix K according to Equation (12-13) (sufficient condition). 

We have thus proved that a necessary and sufficient condition for arbitrary pole 
placement is that the system be completely state controllable. 

It is noted that if the system is not completely state controllable, but is stabilizable, 
then it is possible to make the entire system stable by placing the closed-loop poles at 
desired locations for q controllable modes. The remaining n - q uncontrollable modes 
are stable. So the entire system can be made stable. 

Chapter 12 / Design of Control Systems in State Space 



Determination of Matrix K Using Transformation Matrix T. Suppose that the 
system is defined by 

x = Ax + Bu 

and the control signal is given by 

The feedback gain matrix K that forces the eigenvalues of A - BK to be p, , p,, . . . , p, 
(desired values) can be determined by the following steps (if pi is a complex eigenvalue, 
then its conjugate must also be an eigenvalue of A - BK): 

Step 1: Check the controllability condition for the system. If the system is completely 
state controllable, then use the following steps: 

Step 2: From the characteristic polynomial for matrix A, that is, 

determine the values of a,, a2 , .  . . , a,. 

Step 3: Determine the transformation matrix T that transforms the system state equa- 
tion into the controllable canonical form. (If the given system equation is already in the 
controllable canonical form, then T = I.) It is not necessary to write the state equation 
in the controllable canonical form. All we need here is to find the matrix T. The 
transformation matrix T is given by Equation (12-4), or 

where M is given by Equation (12-5) and W is given by Equation (12-6). 

Step 4: Using the desired eigenvalues (desired closed-loop poles), write the desired 
characteristic polynomial: 

and determine the values of a , ,  a,, . . . , a,. 

Step 5: The required state feedback gain matrix K can be determined from Equation 
(12-13), rewritten thus: 

K = [a ,  - a, I a,-, - a,-, I ... I a, - a,  / a, - a l ] ~ - '  

Determination of Matrix K Using Direct Substitution Method. If the system 
is of low order (n 5 3), direct substitution of matrix K into the desired characteristic 
polynomial may be simpler. For example, if n = 3, then write the state feedback gain 
matrix K as 

K =  [kl k, k31 

Substitute this K matrix into the desired characteristic polynomial Is1  - A + BK/ and 
equate it to ( s  - p,)(s - p2)(s - p j ) ,  or 

Is1 - A + BKI = ( s  -  PI)(^ - p,)(s - ~ 3 )  
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Since both sides of this characteristic equation are polynomials in s, by equating the 
coefficients of the like powers of s on both sides, it is possible to determine the values 
of kl, k,, and k3.  This approach is convenient if n = 2 or 3. (For n = 4, 5 ,  6, ... , this 
approach may become very tedious.) 

Note that if the system is not completely controllable, matrix K cannot be determined. 
(No solution exists.) 

Determination of Matrix K Using Ackermann's Formula. There is a well-known 
formula, known as Ackermann's formula, for the determination of the state feedback 
gain matrix K. We shall present this formula in what follows. 

Consider the system 

where we use the state feedback control u = -Kx. We assume that the system is 
completely state controllable. We also assume that the desired closed-loop poles are at 
s = p l , s  = p2 ,..., S = p,. 

Use of the state feedback control 

modifies the system equation to 

x = (A - BK)x 

Let us define 

X = A - B K  

The desired characteristic equation is 

Is1 - A + BKI = Is1 - XI = (s - /L~)(s - p,,)...(s - /L,) 

2 Sn + alSn-l + ... + a!,-lS + a!, = 0 

Since the Cayley-Hamilton theorem states that A satisfies its own characteristic 
equation, we have 

We shall utilize Equation (12-15) to derive Ackermann's formula. To simplify the 
derivation, we consider the case where n = 3. (For any other positive integer n, the 
following derivation can be easily extended.) 

Consider the following identities: 

I = I 

A = A - B K  

A2 = (A - BK), = A2 - ABK - BKA 
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Multiplying the preceding equations in order by a,, a,, al ,  and a,, (where a, = I) ,  
respectively, and adding the results, we obtain 

a31 + a2X + a1X2 -I- X3 
= a,I + a2(A - BK) + al(A2 - ABK - BKX) + A3 - A2BK 

Referring to Equation (12-15), we have 

Also, we have 

Substituting the last two equations into Equation (12-16), we have 

Since $(X) = 0, we obtain 

Since the system is completely state controllable, the inverse of the controllability matrix 

[B AB j A2B] 

exists. Premultiplying both sides of Equation (12-17) by the inverse of the controllability 
matrix, we obtain 

r azK + a, KX + KX2 
[B i AB j A2B]-'+(A) = a l ~  + KX 

K 1 
Premultiplying both sides of this last equation by [0 O 11, we obtain 

[ 
a2K + a1 K& + KX2 

[0 0 1 ] [ ~  j AB i A~B]-~$(A) = [0 0 11 a l ~  + KX 
K 

which can be rewritten as 

K = [ O  O 1][B 1 AB j A2B]-'+(A) 

This last equation gives the required state feedback gain matrix K. 
For an arbitrary positive integer n, we have 

K =  [0 0 . . .  0 1 ] [ ~  j AB j . . .  j An-'B]-'c$(A) (12-18) 
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Figure 12-2 
Regulator system. 

Equation (12-18) is known as Ackermann's formula for the determination of the state 
feedback gain matrix K. 

Regulator Systems and Control Systems. Systems that include controllers can 
be divided into two categories: regulator systems (where the reference input is constant, 
including zero) and control systems (where the reference input is time varying). In what 
follows we shall consider regulator systems. Control systems will be treated in Section 
12-7. 

Choosing the Locations of Desired Closed-Loop Poles. The first step in the 
pole-placement design approach is to choose the locations of the desired closed-loop 
poles. The most frequently used approach is to choose such poles based on experience 
in the root-locus design, placing a dominant pair of closed-loop poles and choosing other 
poles so that they are far to the left of the dominant closed-loop poles. 

Note that if we place the dominant closed-loop poles far from the jw axis, so that the 
system response becomes very fast, the signals in the system become very large, with 
the result that the system may become nonlinear. This should be avoided. 

Another approach is based on the quadratic optimal control approach.This approach 
will determine the desired closed-loop poles such that it balances between the acceptable 
response and the amount of control energy required. (See Section 12-8.) Note that 
requiring a high-speed response implies requiring large amounts of control energy. Also, 
in general, increasing the speed of response requires a larger, heavier actuator, which will 
cost more. 

Consider the regulator system shown in Figure 12-2. The plant is given by 

where 

The system uses the state feedback control u = -Kx. Let us choose the desired closed-loop poles 
at 

s = -2 + j4, s = -2 - j4, s = -10 

(We make such a choice because we know from experience that such a set of closed-loop poles 
will result in a reasonable or acceptable transient response.) Determine the state feedback gain 
matrix K. 
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First, we need to check the controllability matrix of the system. Since the controllability matrix 
M is given by 

[O ; -:I M = [B j AB j A ~ B ]  = 0 
1 -6 31 

we find that /MI = -1, and therefore, rank M = 3. Thus, the system is completely state control- 
lable and arbitrary pole placement is possible. 

Next, we shall solve this problem. We shall demonstrate each of the three methods presented 
in this chapter. 

Method 1: The first method is to use Equation (12-13).The characteristic equation for the system is 

Hence, 
a,. = 6, a, = 5, a, = 1 

The desired characteristic equation is 

(s + 2 - j4)(s + 2 + j4)(s + 10) = s3 + 14s2 + 60s + 200 

Hence, 

Referring to Equation (12-13), we have 

K  = [a3 - a3 j a2 - a2 j a1 - a * ] ~ - '  

where T  = I for this problem because the given state equation is in the controllable canonical form. 
Then we have 

K = [200 - 1 i 60 - 5 j 14 - 61 

= [I99 55 81 

Method 2: By defining the desired state feedback gain matrix K as 

and equating Is1 - A + BKI with the desired characteristic equation, we obtain 
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Thus, 

6 + k3 = 14, 5 + k2 = 60, 1 + k ,  = 200 

from which we obtain 

Method 3: The third method is to use Ackermann's formula. Referring to Equation (12-18), we 
have 

K = [0 0 l ] [ B  A B  j A ~ B ] - ' ~ ( A )  

Since 

and 

we obtain 

As a matter of course, the feedback gain matrix K obtained by the three methods are the same. 
With this state feedback, the closed-loop poles are placed at s = -2 f j4 and s = -10, as desired. 

It is noted that if the order n of the system were 4 or higher, methods 1  and 3 are recom- 
mended, since all matrix computations can be carried out by a computer. If method 2 is used, 
hand computations become necessary because a computer may not handle the characteristic 
equation with unknown parameters k , ,  k,, . . , k,,. 
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Comments. It is important to note that matrix K is not unique for a given system, 
but depends on the desired closed-loop pole locations (which determine the speed and 
damping of the response) selected. Note that the selection of the desired closed-loop 
poles or the desired characteristic equation is a compromise between the rapidity of the 
response of the error vector and the sensitivity to disturbances and measurement nois- 
es. That is, if we increase the speed of error response, then the adverse effects of distur- 
bances and measurement noises generally increase. If the system is of second order, 
then the system dynamics (response characteristics) can be precisely correlated to the 
location of the desired closed-loop poles and the zero(s) of the plant. For higher-order 
systems, the location of the closed-loop poles and the system dynamics (response char- 
acteristics) are not easily correlated. Hence, in determining the state feedback gain ma- 
trix K for a given system, it is desirable to examine by computer simulations the response 
characteristics of the system for several different matrices K (based on several different 
desired characteristic equations) and to choose the one that gives the best overall system 
performance. 

12-3 SOLVING POLE-PLACEMENT PROBLEMS WITH MATLAB 

Pole-placement problems can be solved easily with MATLAB. MATLAB has two 
commands-acker and place-for the computation of feedback-gain matrix K. The 
command acker is based on Ackermann's formula.This command applies to single-input 
systems only.The desired closed-loop poles can include multiple poles (poles located at 
the same place). 

If the system involves multiple inputs, for a specified set of closed-loop poles the 
state-feedback gain matrix K is not unique and we have an additional freedom (or free- 
doms) to choose K. There are many approaches to constructively utilize this additional 
freedom (or freedoms) to determine K. One common use is to maximize the stability 
margin.The pole placement based on this approach is called the robust pole placement. 
The MATLAB command for the robust pole placement is place. 

Although the command place can be used for both single-input and multiple-input 
systems, this command requires that the multiplicity of poles in the desired closed-loop 
poles be no greater than the rank of B. That is, if matrix B is an n X 1 matrix, the 
command place requires that there be no multiple poles in the set of desired closed- 
loop poles. 

For single-input systems, the commands acker and place yield the same K. (But for 
multiple-input systems, one must use the command place instead of acker.) 

It is noted that when the single-input system is barely controllable, some computa- 
tional problem may occur if the command acker is used. In such a case the use of the 
place command is preferred, provided that no multiple poles are involved in the de- 
sired set of closed-loop poles. - 

To use the command acker or place, we first enter the following matrices in the 
program: 

A matrix, B matrix, J matrix 

where J matrix is the matrix consisting of the desired closed-loop poles such that 

J = [PI PZ . - -  ~ n ]  
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Then we enter 

It is noted that the command eig (A-B*K) may be used to verify that K thus obtained 
gives the desired eigenvalues. 

EXAMPLE 12-2 Consider the same system as treated in Example 12-1. The system equation is 

x = Ax + Bu 

where 

By using state feedback control LL = -Kx, it is desired to have the closed-loop poles at s = p, 
(i = 1,2,3),  where 

p, = -2 + j4, p2 = -2 - j4, p3 = -10 

Determine the state feedback-gain matrix K with MATLAB. 
MATLAB programs that generate matrix K are shown in MATLAB Programs 12-1 and 12-2. 

MATLAB Program 12-1 uses command acker and MATLAB Program 12-2 uses command place. 

MATLAB Program 12-1 

A = [0 1 0;O 0 1;-1 -5 -61; 
B = [0;0;1 I; 
J = [-2+j*4 -2-j*4 -1 01; 
K = acker(A,B,J) 

MATLAB Program 12-2 

A = [0 1 0;O 0 1;-1 -5 -61; 
B = [0;0;1 I; 
J = [-2+j*4 -2-j*4 -1 01; 
K = place(A,B,J) 
place: ndigits = 15 
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EXAMPLE 12-3 Consider the same system as discussed in Example 12-1. It is desired that this regulator system 
have closed-loop poles at 

The necessary state feedback gain matrix K was obtained in Example 12-1 as follows: 

Using MATLAB, obtain the response of the system to the following initial condition: 

xI0) = [s] 
Response to Initial Condition: To obtain the response to the given initial condition x(O), we 
substitute u = -Kx into the plant equation to get 

To plot the response curves (xi versus t ,  x, versus t ,  and x, versus t ) ,  we may use the command 
initial. We first define the state-space equations for the system as follows: 

where we included u (a three-dimensional input vector). This u vector is considered 0 in the 
computation of the response to the initial condition. Then we define 

SYS = ss(A - BK, eye(31, eye(31, eye(3)) 

and use the initial command as follows: 

where t is the time duration we want to use, such as 

Then obtain x l ,  x2, and x3 as follows: 

and use the plot command. This program is shown in MATLAB Program 12-3. The resulting 
response curves are shown in Figure 12-3. 
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MATLAB Program 12-3 

% Response to initial condition: 

A = [0 1 0;O O 1;-1 -5 -61; 
B = [0;0;1 I; 
K = [ I  99 55 81; 
sys = ss(A-B*K, eye(31, eye(31, eye(3)); 
t = 0:0.01:4; 
x = initial(sys,[l ;O;O],t); 
x l  = [ I  0 OI*x1; 
x2 = [0 1 OI*x1; 
x3 = [0 0 I l*xl; 

subplot(3,1,1); plot(t,xl), grid 
title('Response to Initial Condition') 
ylabel('state variable XI') 

subplot(3,1,2); plot(t1x2),grid 
ylabel('state variable x2') 

subplot(3,1,3); plot(t,x3),grid 
xlabel('t (sec)') 
ylabel('state variable x3') 

Response to Initial Condition 
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12-4 DESIGN OF SERVO SYSTEMS 

Figure 12-4 
Type 1 servo system 
when the plant has 
an integrator. 

In this section we shall discuss the pole-placement approach to the design of type 1 
servo systems. Here we shall limit our systems each to have a scalar control signal u and 
a scalar output y. 

In what follows we shall first discuss a problem of designing a type 1 servo system 
when the plant involves an integrator.Then we shall discuss the design of a type 1 servo 
system when the plant has no integrator. 

Design of Type 1 Servo System when the Plant Has An integrator. ,Assume 
that the plant is defined by 

where x = state vector for the plant (n-vector) 
LL = control signal (scalar) 
y = output signal (scalar) 
A = n X n constant matrix 
B = n X 1 constant matrix 
C = 1 X n constant matrix 

As stated earlier, we assume that both the control signal u and the output signal y are 
scalars. By a proper choice of a set of state variables, it is possible to choose the output 
to be equal to one of the state variables. (see the method presented in Chapter 3 for 
obtaining a state-space representation of the transfer function system in which the output 
y becomes equal to x, .) 

Figure 12-4 shows a general configuration of the type 1 servo system when the plant 
has an integrator. Here we assumed that y = x,. In the present analysis we assume that 
the reference input v is a step function. In this system we use the following state-feedback 
control scheme: 
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u = -[o k2 k3 ... k,] I] + kl(r - 

Xn 

where 

K =  [k, k2 ... k,] 

Assume that the reference input (step function) is applied at t = 0. Then, for t > 0, the 
system dynamics can be described by Equations (12-19) and (12-21), or 

We shall design the type 1 servo system such that the closed-loop poles are located at 
desired positions. The designed system will be an asymptotically stable system, y(m) 
will approach the constant value r, and u(m) will approach zero. (r is a step input.) 

Notice that at steady state we have 

Noting that r ( t )  is a step input, we have r(m) = r ( t )  =  constant) for t > 0. By 
subtracting Equation (12-23) from Equation (12-22), we obtain 

Define 

Then Equation (12-24) becomes 

Equation (12-25) describes the error dynamics. 
The design of the type 1 servo system here is converted to the design of an asymp- 

totically stable regulator system such that e(t) approaches zero, given any initial condi- 
tion e(0). If the system defined by Equation (12-19) is completely state controllable, 
then, by specifying the desired eigenvalues p, , p2,. . . , p, for the matrix A - BK, matrix 
K can be determined by the pole-placement technique presented in Section 12-2. 

The steady-state values of x(t) and u(t) can be found as follows: At steady state 
(t = m), we have, from Equation (12-22), 

Since the desired eigenvalues of A - BK are all in the left-half s plane, the inverse of 
matrix A - BK exists. Consequently, x(m) can be determined as 
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Also, u(w) can be obtained as 

~ ( m )  = -Kx(w) + klr  = 0 

(See Example 12-4 to verify this last equation.) 

EXAMPLE 1 ;!-4 Design a type 1 servo system when the plant transfer function has an integrator. Assume that the 
plant transfer function is given by 

The desired closed-loop poles are s = -2 + j 2 ~  and s = -10. Assume that the system 
configuration is the same as that shown in Figure 12-4 and the reference input r is a step function. 
Obtain the unit-step response of the designed system. 

Define state variables x , ,  x,, and x ,  as follows: 

Then the state-space representation of the system becomes 

where 

Referring to Figure 12-4 and noting that n = 3, the control signal u is given by 

u = - (k ,x ,  + k , x 3 )  + k, (r  - x, )  = -Kx + klr (12-28) 

where 

The state-feedback gain matrix K can be obtained easily with MATLAB. See MATLAB 
Program 12-4. 

MATLAB Program 12-4 

A =  [O 1 0;o 0 1;o -2 -31; 
B = [0;0; 1 I; 
j = [-2+j*2*sqrt(3) -2-j*2*sqrt(3) -1 01; 
K = acker(A,B,J) 
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The state feedback gain matrix K is thus 

Unit-Step Response of the Designed System: The unit-step response of the designed system can 
be obtained as follows: 

Since 
0 1 

A - B K =  [O 0 '1-[!][I60 54 "]=[ 0 0 '1 
0 -2 -3 -160 -56 -14 

from Equation (12-22) the state equation for the designed system is 

and the output equation is 

Solving Equations (12-29) and (12-30) for y ( t )  when r is a unit-step function gives the unit-step 
response curve y ( t )  versus t. MATLAB Program 12-5 yields the unit-step response. 
The resulting unit-step response curve is shown in Figure 12-5. 

MATLAB Program 12-5 

y, - - - - - - - - - - Unit-step response ---------- 

% ***** Enter the state matrix, control matrix, output matrix, 
% and direct transmission matrix of the designed system ***** 

AA = [0 1 0;O 0 1;-160 -56 -141; 
BB = [0;0;1601; 
cc = [ I  0 01; 
D D  = [O]; 

I % ***** Enter step command and plot command ***** I 
t = 0:0.01:5; 
y = step(AA,BB,CC,DD,I ,t); 
plot(t,y) 
grid 
title('Unit-Step Response') 
xlabel('t Sec') 
ylabel('0utput y') 
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Unit-Step Response 

Figure 12-5 
Unit-step resporwe 
curve y ( t )  versus t 
for the system 
designed in 
Example 12-4. 

Note that since 

we have 

t Sec 

At steady state the control signal LL becomes zero. 

Design of Type 1 Servo System when the Plant Has No Integrator. If the plant 
has no integrator (type 0 plant), the basic principle of the design of a type 1 servo sys- 
tem is to insert an integrator in the feedforward path between the error comparator 
and the plant, as shown in Figure 12-6. (The block diagram of Figure 12-6 is a basic 
form of the type 1 servo system where the plant has no integrator.) From the diagram, 
we obtain 

x = Ax + Bu (12-31) 
y = Cx (12-32) 

u = -Kx + k,( (12-33) 

t = r - y = r - C x  (12-34) 

where x = state vector of the plant (n-vector) 
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Figure 12-6 
Q p e  1 servo system. 

u = control signal (scalar) 

y = output signal (scalar) 

5 = output of the integrator (state variable of the system, scalar) 

r = reference input signal (step function, scalar) 

A = n X n constant matrix 

B = n X 1 constant matrix 

C = 1 X n constant matrix 

We assume that the plant given by Equation (12-31) is completely state controllable.The 
transfer function of the plant can be given by 

Gp(s) = C(s1 - A)-'B 

To avoid the possibility of the inserted integrator being canceled by the zero at the origin 
of the plant, we assume that Gp(s) has no zero at the origin. 

Assume that the reference input (step function) is applied at t = 0. Then, for t > 0, 
the system dynamics can be described by an equation that is a combination of Equations 
(12-31) and (12-34): 

We shall design an asymptotically stable system such that x(m), <(GO), and u(w) approach 
constant values, respectively.Then, at steady state, i ( t )  = 0, and we get y(w) = r. 

Notice that at steady state we have 

Noting that r(t) is a step input, we have r(m) = r( t)  = r (constant) for t > 0. By 
subtracting Equation (12-36) from Equation (12-35), we obtain 
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Define 

u(t) - ~ ( K l j  = u,(t) 

Then Equation (12-37) can be written as 

where 

~ e ( t )  = -Kxe(t) + k15,(t) 

Define a new ( n  + 1)th-order error vector e(t) by 

Then Equation (12-38) becomes 

where 

and Equation (12-39) becomes 

where 

K = [K j -k,] 

The state error equation can be obtained by substituting Equation (12-41) into 
Equation (12-40): 

e = (A - ~ k ) e  (12-42) 

If the desired eigenvalues of matrix A - BK (that is, the desired closed-loop poles) are 
specified as p,, p2,. . . , p, + , , then the state-feedback gain matrix K and the integral 
gain constant k,  can be determined by the pole-placement technique pesented in Section 
12-2, provided that the system defined by Equation (12-40) is completely state 
controllable. Note that if the matrix 

has rank n + 1, then the system defined by Equation (12-40) is completely state 
controllable. (See Problem A-12-12.) 
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Figure 12-7 
Type 1 servo system with state observer. 

As is usually the case, not ali state variables can be directly measurable. If this is the 
case, we need to use a state observer. Figure 12-7 shows a block diagram of a type 1 
servo system with a state observer. [In the figure, each block with an integral symbol 
represents an integrator (l/s).] Detailed discussions of state observers are given in 
Section 12-5. 

EXAMPLE 12-5 Consider the inverted-pendulum control system shown in Figure 12-8. In this example, we are 
concerned only with the motion of the pendulum and motion of the cart in the plane of the page. 

It is desired to keep the inverted pendulum upright as much as possible and yet control the 
position of the cart,for instance, move the cart in a step fashion.To control the position of the cart, 
we need to build a type 1 servo system. The inverted-pendulum system mounted on a cart does 
not have an integrator. Therefore, we feed the position signal y (which indicates the position of 
the cart) back to the input and insert an integrator in the feedforward path, as shown in Figure 

Figure 12-8 
Inverted-pendulum 
control system. 
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Figure 12-9 
Inverted-pendulum 
control system. ( Q p e  
1 servo system when 
the plant has no 
integrator.) 

12-9. We assume that the pendulum angle 8 and the angular velocity b are small, so that sin0 = 0, 
cos8 = 1, and 8b2 = 0. We also assume that the numerical values for M, m, and 1 are given as 

M = 2 kg, m = 0.1 kg, 1 = 0.5 m 

Referring to Equations (3-59) and (3-60), the equations for the inverted-pendulum control 
system are 

When the given numerical values are substituted, Equations (12-43) and (12-44) become 

ij = 20.6018 - u (12-45) 

Y = 0 . 5 ~  - 0.49058 (12-46) 

Let us define the state variables x,, x,, x3, and x, as 

Then, referring to Equations (12-45) and (12-46) and Figure 12-9 and considering the cart position 
x as the output of the system, we obtain the equations for the system as follows: 

x = Ax + Bu (12-47) 

y = C x  (12-48) 

u = -Kx + k,< (12-49) 

[ = r - y = r - C x  (12-50) 
* -  _ 
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I where 

1 For the type 1 servo system, we have the state error equation as given by Equation (12-40): 
I 

I where 

I and the control signal is given by Equation (12-41): 

I where 

K = [ K  j -k , ]  = [ k ,  k2 kS k4 -k,]  

To obtain a reasonable speed and damping in the response of the designed system @or 
example, the settling time of approximately 4 - 5 sec and the maximum overshoot of 15% - 16% 
in the step response of the cart), let us choose the desired closed-loop poles at s = p, 
(i = 1,2,3,4,5),  where 

We shall determine the necessary state-feedback gain matrix by the use of MATLAB. 
Before we proceed further, we must examine the rank of matrix P, where 

Matrix P is given by 

The rank of this matrix can be found to be S.Therefore, the system defined by Equation (12-51) 
is completely state controllable, and arbitrary* pole placement is possible. MATLAB Program 
12-6 produces the state feedback gain matrix K. 
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MATLAB Program 12-6 

A = [O 1 0 0; 20.601 0 0 0; 0 0 0 1; -0.4905 0 0 01; 
B = [0;-1;0;0.5]; 
C = [O 0 1 01; 
Ahat = [A zeros(4,l); -C 01; 
Bhat = [B;O]; 
J = [-I +j*sqrt(3) -1 -j*sqrt(3) -5 -5 -51; 
Khat = acker(Ahat,Bhat,J) 

Khat = 

-1 57.6336 -35.3733 -56.0652 -36.7466 50.9684 

Thus, we get 

K = [k ,  k2 k3 k,] = [-157.6336 -35.3733 -56.0652 -36.74661 

and 

Unit Step-Response Characteristics of the Designed System. Once we determine the feed- 
back gain matrix K and the integral gain constant k,, the step response in the cart position can 
be obtained by solving the following equation, which is obtained by substituting Equation (12-49) 
into Equation (12-35): 

The output of the system is x3(t), or - - 

Define the state matrix, control matrix, output matrix, and direct transmission matrix of the 
system given by Equations (12-53) and (12-54) as AA, BB, CC, and DD, respectively. MATLAB 
Program 12-7 may be used to obtain the step-response curves of the designed system. Notice 
that, to obtain the unit-step response, we entered the command 

Figure 12-10 shows curves x, versus t, x, versus t, x3 (= output y) versus t, x, versus t, and x, 
(= 5) versus I. Notice that ~ ( t )  [= x3(t)] has approximately 15% overshoot and the settling time 
is approximately 4.5 sec. [(t) [= x5(t)] approaches 1.l.This result can be derived as follows: Since 
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MATLAB Program 12-7 

%**** The following program is to obtain step response 
% of the inverted-pendulum system just designed ***** 

A =  [O 1 0 0;20.601 0 0 O;O 0 0 1;-0.4905 0 0 01; 
8 = @;-I ;0;0.5]; 
C= [O  0 1 01 
D = [Ol; 
K = [-I  57.6336 -35.3733 -56.0652 -36.74661; 
KI = -50.9684; 
AA = [A - B*K B*KI;-C 01; 
BB = [0;0;0;0;1 I ;  
cc = [C 01; 
D D  = [O]; 

%***** TO obtain response curves XI versus t, x2 versus t, 
% x3 versus t, x4 versus t, and x5 versus t, separately, enter 
% the following command ***** 

s~bpIot(3,2,1); plot(t,xl); grid 
title('x1 versus t ') 
xlabel('t Sec'); ylabel('x1 ') 

subplat(3,2,2); plot(t,x21; grid 
title('x2 versus t') 
xlabel('t Sec'); ylabel('x2') 

subplot(3,2,3); plot(t,x3); grid 
title('x3 versus t ' )  
xlabel('t Sect); ylabel('x3') 

subplot(3,2,4); plot(t,x4); grid 
title('x4 versus t ' )  
xlabel('t Sec'); ylabel('x4') 

subplot(3,2,5); plot(t,x5); grid 
title('x5 versus ti) 
xlabel('t Sec'); ylabel('x5') 
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x, ( = 5 )  versus 1'. 

we get 

~ ( 0 0 )  = 0 

Since u ( m )  = 0, we have, from Equation (12-33), 

U ( W )  = 0 = - K x ( m )  + klE(oo) 
and so 

Hence, for r = 1, we have 

( ( m )  = 1.1 

It is noted that, as in any design problem, if the speed and damping are not q~ite~satisfactory, 
then we must modify the desired characteristic equation and determine a new matrix K. Computer 
simulations must be repeated until a satisfactory result is obtained. 

12-5 STATE OBSERVERS 

In the pole-placement approach to the design of control systems, we assumed that all 
state variables are available for feedback. In practice, however, not all state variables are 
available for feedback. Then we need to estimate unavailable state variables. 
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Estimation of unmeasurable state variables is commonly called observation. A device (or 
a computer program) that estimates or observes the state variables is called a state 
observer, or simply an observer. If the state observer observes all state variables of the 
system, regardless of whether some state variables are available for direct measurement, 
it is called afull-order state observer.There are times when this will not be necessary, when 
we will need observation of only the unmeasurable state variables, but not of those that 
are directly measurable as well. For example, since the output variables are observable 
and they are linearly related to the state variables, we need not observe all state variables, 
but observe only n - m state variables, where n is the dimension of the state vector and 
m is the dimension of the output vector. 

An observer that estimates fewer than n state variables, where n is the dimension of 
the state vector, is called a reduced-order state observer or, simply, a reduced-order 
observer. If the order of the reduced-order state observer is the minimum possible, the 
observer is called a minimum-order state observer or minimum-order observer. In this 
section, we shall discuss both the full-order state observer and the minimum-order state 
observer. 

State Observer. A state observer estimates the state variables based on the 
measurements of the output and control variables. Here the concept of observability 
discussed in Section 11-7 plays an important role. As we shall see later, state observers 
can be designed if and only if the observability condition is satisfied. 

In the following discussions of state observers, we shall use the notation 2 to 
designate the observed state vector. In many practical cases, the observed state vector - 
x is used in the state feedback to generate the desired control vector. 

Consider the plant defined by 

The observer is a subsystem to reconstruct the state vector of the plant. The mathe- 
matical model of the observer is basically the same as that of the plant, except that we 
include an additional term that includes the estimation error to compensate for 
inaccuracies in matrices A and B and the lack of the initial error. The estimation error 
or observation error is the difference between the measured output and the estimated 
output.The initial error is the difference between the initial state and the initial estimated 
state. Thus, we define the mathematical model of the observer to be 

where 2 is the estimated state and C 2  is the estimated output.The inputs to the observer 
are the output y and the control input u. Matrix K,, which is called the observer gain 
matrix, is a weighting matrix to the correction term involving the difference between 
the measured output y and the estimated output C x .  This term continuously corrects 
the model output and improves the performance of the observer. Figure 12-11 shows the 
block diagram of the system and the full-order state observer. 
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Figure 12-11 
Block diagram of 
system and full-order 
state observer, when 
input it and outpu~t y 
are scalars. 
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Full-order state observer 

Full-Order State Observer. The order of the state observer that will be discussed 
here is the same as that of the plant. Assume that the plant is defined by Equations 
(12-55) and (12-56) and the observer model is defined by Equation (12-57). 

To obtain the observer error equation, let us subtract Equation (12-57) from 
Equation (12-55): 

Define the difference between x and 2 as the error vector e ,  or 

Then Equation (12-58) becomes 

e = (A - K , c ) ~  
From Equation (12-59), we see that the dynamic behavior of the error vector is deter- 
mined by the eigenvalues of matrix A - K, C. If matrix A - K, C is a stable matrix, 
the error vector will converge to zero for any initial error vector e(0) .  That is x ( t )  will 
converge to x(t) regardless of the values of x(0) and % (0). If the eigenvalues of matrix 
A - K,C are chosen in such a way that the dynamic behavior of the error vector is 
asymptotically stable and is adequately fast, then any error vector will tend to zero (the 
origin) with an adequate speed. 

If the plant is completely observable, then it can be proved that it is possible to 
choose matrix K, such that A - K, C has arbitrarily desired eigenvalues. That is, the 
observer gain matrix K, can be determined to yield the desired matrix A - K, C. We 
shall discuss this matter in what follows. 
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Dual Problem. The problem of designing a full-order observer becomes that of de- 
termining the observer gain matrix K, such that the error dynamics defined by Equation 
(12-59) are asymptotically stable with sufficient speed of response. (The asymptotic 
stability and the speed of response of the error dynamics are determined by the 
eigenvalues of matrix A - K, C.) Hence, the design of the full-order observer becomes 
that of determining an appropriate K, such that A - K, C has desired eigenvalues.Thus, 
the problem here becomes the same as the pole-placement problem we discussed in 
Section 12-2. In fact, the two problems are mathematically the same. This property is 
called duality. 

Consider the system defined by 

y = Cx 

In designing the full-order state observer, we may solve the dual problem, that is, solve 
the pole-placement problem for the dual system 

z = A*z  + C*v 

assuming the control signal v to be 

v = -Kz 

If the dual system is completely state controllable, then the state feedback gain matrix 
K can be determined such that matrix A *  - C*K will yield a set of the desired 
eigenvalues. 

If pl ,  p2, . . . , pn are the desired eigenvalues of the state observer matrix, then by 
taking the same pi's as the desired eigenvalues of the state-feedback gain matrix of the 
dual system, we obtain 

I S I  - ( A *  - C*K)I = (S - /.L,)(s - p2) ... (S - p,) 

Noting that the eigenvalues of A* - C*K and those of A - K* C are the same, we have 

Is1 - (A*  - c*K)I = /SI - ( A  - K*c)/ 

Comparing the characteristic polynomial Is1 - ( A  - K* C) I and the characteristic poly- 
nomial Is1 - (A - K, c)/ for the observer system [refer to Equation (12-57)], we find 
that K, and K* are related by 

K, = K* 

Thus, using the matrix K determined by the pole-placement approach in the dual system, 
the observer gain matrix K, for the original system can be determined by using the 
relationship K, = K*. (See Problem A-12-10 for the details.) 

Necessary and Sufficient Condition for State Observation. As discussed, a 
necessary and sufficient condition for the determination of the observer gain matrix K, 
for the desired eigenvalues of A - K, C is that the dual of the original system 
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be completely state controllable. The complete state controllability condition for this 
dual system is that the rank of 

be n. This is the condition for complete observability of the original system defined by 
Equations (12-55) and (12-56).This means that a necessary and sufficient condition for 
the observation of the state of the system defined by Equations (12-55) and (12-56) is 
that the system be completely observable. 

Once we select the desired eigenvalues (or desired characteristic equation), the full- 
order state observer can be designed, provided the plant is completely observable. The 
desired eigenvalues of the characteristic equation should be chosen so that the state 
observer responds at least two to five times faster than the closed-loop system 
considered. As stated earlier, the equation for the full-order state observer is 

It is noted that thus far we have assumed the matrices A, B, and C in the observer 
to be exactly the same as those of the physical plant. If there are discrepancies in A, B, 
and C in the observer and in the physical plant, the dynamics of the observer error are 
no longer governed by Equation (12-59). This means that the error may not approach 
zero as expected. Therefore, we need to choose K, so that the observer is stable and the 
error remains acceptably small in the presence of small modeling errors. 

Transformation Approach to  Obtain S ta te  Observer Gain Matrix K,. By 
following the same approach as we used in deriving the equation for the state feedback 
gain matrix K, we can obtain the following equation: 

where K, is an n x 1 matrix, 

Q = (WN")-' 
and 

N = [c*. i A*CM i . .  . i ( ~ : k ) f l - l ~ " ]  

[Refer to Problem A-12-10 for the derivation of Equation (12-61).] 
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Direct Substitution Approach to Obtain State Observer Gain Matrix K,. 
Similar to the case of pole placement, if the system is of low order, then direct substitution 
of matrix K, into the desired characteristic polynomial may be simpler. For example, if 
x is a 3-vector, then write the observer gain matrix K, as 

Substitute this K, matrix into the desired characteristic polynomial: 

By equating the coefficients of the like powers of s on both sides of this last equation, 
we can determine the values of k,, , ke2, and ke3. This approach is convenient if n = 1, 
2, or 3, where n is the dimension of the state vector x. (Although this approach can be 
used when n = 4,5,6,. . . , the computations involved may become very tedious.) 

Another approach to the determination of the state observer gain matrix K, is to 
use Ackermann's formula. This approach is presented in the following. 

Ackermann's Formula. Consider the system defined by 

In Section 12-2 we derived Ackermann's formula for pole placement for the system 
defined by Equation (12-62).The result was given by Equation (12-18), rewritten thus: 

For the dual of the system defined by Equations (12-62) and (12-63), 

z = A*z + C*v 

n = B'kz 

the preceding Ackermann's formula for pole placement is modified to 

As stated earlier, the state observer gain matrix K, is given by K*, where K is given by 
Equation (12-64). Thus, 
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where +(s) is the desired characteristic polynomial for the state observer, or 

where p , ,  p2,. . . , p,  are the desired eigenvalues. Equation (12-65) is called Ackermann's 
formula for the determination of the observer gain matrix.K,. 

Comments on Selecting the Best K,. Referring to Figure 12-11, notice that the 
feedback signal through the observer gain matrix K, serves as a correction signal to 
the plant model to account for the unknowns in the plant. If significant unknowns are 
involved, the feedback signal through the matrix K, should be relatively large. Howev- 
er, if the output signal is contaminated significantly by disturbances and measurement 
noises, then the output y is not reliable and the feedback signal through the matrix K, 
should be relatively small. In determining the matrix K,, we should carefully examine 
the effects of disturbances and noises involved in the output y. 

Remember that the observer gain matrix K, depends on the desired characteristic 
equation 

The choice of a set of pl, p2, . . . , p, is, in many instances, not unique. As a general rule, 
however, the observer poles must be two to five times faster than the controller poles 
to make sure the observation error (estimation error) converges to zero quickly. This 
means that the observer estimation error decays two to five times faster than does the 
state vector x. Such faster decay of the observer error compared with the desired 
dynamics makes the controller poles dominate the system response. 

It is important to note that if sensor noise is considerable, we may choose the observer 
poles to be slower than two times the controller poles, so that the bandwidth of the sys- 
tem will become lower and smooth the noise. In this case the system response will be 
strongly influenced by the observer poles. If the observer poles are located to the right 
of the controller poles in the left-half s plane, the system response will be dominated by 
the observer poles rather than by the control poles. 

In the design of the state observer, it is desirable to determine several observer gain 
matrices K, based on several different desired characteristic equations. For each of the 
several different matrices K,, simulation tests must be run to evaluate fhe resulting 
system performance. Then we select the best K, from the viewpoint of overall system 
performance. In many practical cases, the selection of the best matrix K, boils down to 
a compromise between speedy response and sensitivity to disturbances, and noises. 

EXAMPLE 12-6 Consider the system 

where 

We use the observed state feedback such that 

u = - K %  
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Design a full-order state observer, assuming that the system configuration is identical to that 
shown in Figure 12-11. Assume that the desired eigenvalues of the observer matrix are 

p, = -10, p2 = -10 

The design of the state observer reduces to the determination of an appropriate observer gain 
matrix K,. 

Let us examine the observability matrix. The rank of 

is 2. Hence, the system is completely observable and the determination of the desired observer gain 
matrix is possible. We shall solve this problem by three methods. 

Method 1: We shall determine the observer gain matrix by use of Equation (12-61).The given 
system is already in the observable canonical form. Hence, the transformation matrix 
Q = (WN*)-' is I. Since the characteristic equation of the given system is 

we have 

a ,  = 0, n2 = -20.6 

The desired characteristic equation is 

Hence, 

a, = 20, a, = 100 

Then the observer gain matrix K, can be obtained from Equation (12-61) as follows: 

Method 2: Referring to Equation (12-59): 

e = (A - K , c ) ~  

the characteristic equation for the observer becomes 

Is1 - A + K,CI = 0 

Define 

Then the characteristic equation becomes 
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Since the desired characteristic equation is 

by comparing Equation (12-66) with this last equation, we obtain 

k,, = 120.6, kn = 20 

Method 3: We shall use Ackermann's formula given by Equation (12-65): 

where 

$(s) = (S - /L1)(s - /L2) = s2 + 20s + 100 

Thus, 

4(A) = A2 + 20A + 1001 

and 

As a matter of course, we get the same K, regardless of the method employed. 
The equation for the full-order state observer is given by Equation (12-57), 

Finally, it is noted that, similar to the case of pole placement, if the system order n is 4 or 
higher, methods 1 and 3 are preferred, because all matrix computations can be carried out by a 
computer, while method 2 always requires hand computation of the characteristic equation 
involving unknown parameters k,, , k,,, . . . , k,,. 

Effects of the Addition of the Observer on a Closed-Loop System. In the 
pole-placement design process, we assumed that  the actual state x(t) was available for 
feedback. In practice, however, the actual state x ( t )  may not be measurable, so we will 
need to design an observer and use the observed state 2 ( t )  for feedback as shown in Fig- 
ure 12-12. The design process, therefore, becomes a two-stage process, the first stage 
being the determination of the feedback gain matrix K to yield the desired characteristic 
equation and the second stage being the determination of the observer gain matrix K, 
to yield the desired observer characteristic equation. 

Let us now investigate the effects of the use of the observed state % ( t ) ,  rather than 
the actual state x ( t ) ,  on the characteristic equation of a closed-loop control system. 
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Figure 12-12 
Observed-state 
feedback control 
system. 

Consider the completely state controllable and completely observable system defined 
by the equations 

x = Ax + Bu 

y = Cx 

For the state-feedback control based on the observed state 2 ,  

u = -Kg 

With this control, the state equation becomes 

i = A X  - BKx = ( A -  BK)x + B K ( x -  2 )  (12-67) 

The difference between the actual state x(t) and the observed state 2 (t) has been 
defined as the error e(t): 

e(t)  = x(t) - % ( t )  

Substitution of the error vector e(t)  into Equation (12-67) gives 

x = (A  - BK)x -t BKe (12-68) 

Note that the observer error equation was given by Equation (12-59), repeated here: 

e = (A - K , c ) ~  (12-69) 

Combining Equations (12-68) and (12-69), we obtain 
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Equation (12-70) describes the dynamics of the observed-state feedback control system. 
The characteristic equation for the system is 

Notice that the closed-loop poles of the observed-state feedback control system consist 
of the poles due to the pole-placement design alone and the poles due to the observer 
design alone. This means that the pole-placement design and the observer design are 
independent of each other. They can be designed separately and combined to form the 
observed-state feedback control system. Note that, if the order of the plant is n, then the 
observer is also of nth order (if the full-order state observer is used), and the resulting 
characteristic equation for the entire closed-loop system becomes of order 2n. 

Transfer Function of the Observer-Based Controller. Consider the plant defined by 

Assume that the plant is completely observable. Assume that we use observed-state 
feedback control u = - K i .  Then, the equations for the observer are given by 

where Equation (12-71) is obtained by substituting u = -Kg into Equation (12-57). 
By taking the Laplace transform of Equation (12-71), assuming a zero initial 

condition, and solving for ~ ( s ) ,  we obtain 

By substituting this ~ ( s )  into the Laplace transform of Equation (12-72), we obtain 

U(S) = -K(SI - A + K,C + BK)-'K,Y(s) (12-73) 

Then the transfer function U(s)/Y(s) can be obtained as 

Figure 12-13 shows the block diagram representation for the system. Notice that the 
transfer function 

K(SI - A + K,C + BK)-'K, 

acts as a controller for the system. Hence, we call the transfer function 

U ( s )  num -- - -- - K(SI - A + K,C + BK)-IK, 
-Y(s) den 
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, Figure 12-13 
Block diagram 
representation of 
system with a 
controller-observer. 

the observer-based controller transfer function or, simply, the observer-controller transfer 
function. 

Note that the observer-controller matrix 

may or may not be stable, although A - BK and A - K, C are chosen to be stable. In 
fact, in some cases the matrix A - K, C - BK may be poorly stable or even unstable. 

- 
K(s1 - A  + K,C + BK)-IK, 

EXAMPLE 12-7 Consider the design of a regulator system for the following plant: 

x = Ax + Bu 

y = Cx 

Plant 
U(sj 

----t 

where 

Y(s) - 

Suppose that we use the pole-placement approach to the design of the system and that the 
desired closed-loop poles for this system are at s = pi (i = 1, 2), where = -1.8 + j2.4 and 
p2 = -1.8 - j2.4. The state-feedback gain matrix K for this case can be obtained as follows: 

Using this state-feedback gain matrix K, the control signal u is given by 
7 - 

Suppose that we use the observed-state feedback control instead of the actual-state feedback 
control, or 

where we choose the observer poles to be at 

Obtain the observer gain matrix K, and draw a block diagram for the observed-state feedback 
control system.Then obtain the transfer function U ( s ) / [ - Y ( s ) ]  for the observer controller, and 
draw another block diagram with the observer controller as a series controller in the feedforward 
path. Finally, obtain the response of the system to the following initial condition: 

Chapter 12 / Design of Control Systems in State Space 

----- ..- 



For the system defined by Equation (12-75), the characteristic polynomial is 

Thus, 

a, = 0, a, = -20.6 

The desired characteristic polynomial for the observer is 

( S  - pl)(s - p2) = ( S  + 8 ) ( s  + 8 )  = 92 + 16s + 64 

= s2 + f f l S  + a2 
Hence, 

For the determination of the observer gain matrix, we use Equation (12-61), or 
- - 

where 

Hence, 

Equation (12-77) gives the observer gain matrix K,. The observer equation is given by Equation 
(12-60): 

$ = ( A  - K,c)% + Bu + Key 

Since 

u = -K% 

Equation (12-78) becomes 

The block diagram of the system with observed-state feedback is shown in Figure 12-14(a). 
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Figure 12-14 
(a) Block diagram of 
system with 
observed-state 
feedback; (b) block 
diagram of transfer 
function system. 

Referring to Equation (12-74), the transfer function of the observer-controller is 

The same transfer function can be obtained with MATLAB. For example, MATLAB Program 12-8 
produces the transfer function of the observer controller when the observer is of full order. 
Figure 12-14(b) shows a block diagram of the system. 
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- 
MATLAB Program 12-8 

% Obtaining transfer function of observer controller --- full-order observer 

A = [O 1 ;20.6 01; 
B = [0;1 I; 
c = I1 01; 
K = [29.6 3.61; 
Ke = [ I  6;84.6]; 
AA = A-Ke*C-B*K; 
BB = Ke; 
CC = K; 
D D  = 0; 
[num,den] = ss2tf(AA,BB,CC,DD) 

num = 

1.0e+003* 

0 0.7782 3.6907 

den = 

1 .OOOO 19.6000 151.2000 

The dynamics of the observed-state feedback control system just designed can be described 
by the following equations: For the plant, 

For the observer, 

The system, as a whole, is of fourth order. The characteristic equation for the system is 

Figure 12-14(b). Since the closed-loop transfer function is 
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the characteristic equation is 

As a matter of course, the characteristic equation is the same for the system in state-space 
representation and in transfer-function representation. 

Finally, we shall obtain the response of the system to the following initial condition: 

Referring to Equation (12-70), the response to the initial condition can be determined from 

A MATLAB Program to obtain the response is shown in MATLAB Program 12-9.The resulting 
response curves are shown in Figure 12-15. 

/ MATLAB Program 12-9 I 
A = [0 1; 20.6 01; 
B = [0;1 I; 
C = [ I  01; 
K = [29.6 3.61; 
Ke = [I 6; 84.61; 
sys = ss([A-B*K BXK; zeros(2,2) A-Ke*C],eye(4),eye(4),eye(4)); 
t = 0:0.01:4; 
z = initial(sys,[l;0;0.5;0],t); 
XI = [I 0 0 0]*z1; 
x2 = [O 1 0 0]*z1; 
e l  = [O 0 1 O1*z1; 
e2=[O 0 0 I lXz';  

subplot(2,2,1); plot(t,xl ),grid 
title('Response to Initial Condition') 
ylabel('state variable x l  '1 

subplot(2,2,2); plot(t,x2),grid 
title('Resp0nse to Initial Condition') 
ylabel('state variable x2') 

subplot(2,2,3); plot(t,el ),grid 
xlabel('t (sec)'), ylabel('error'state variable e l  ') 

subplot(2,2,4); plot(t,e2),grid 
xlabel('t (sec)'), ylabel('error state variable e2') 
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Figure 12-16 
Observed-state 
feedback control 
system with a 
minimum-order 
observer. 

Minimum-Order Observer, The observers discussed thus far are designed to 
reconstruct all the state variables. In practice, some of the state variables may be accu- 
rately measured. Such accurately measurable state variables need not be estimated. 

Suppose that the state vector xis an n-vector and the output vector y is an m-vector 
that can be measured. Since m output variables are linear combinations of the state 
variables, m state variables need not be estimated. We need to estimate only n - m 
state variables. Then the reduced-order observer becomes an (n - m)th-order observ- 
er. Such an (n - m)th-order observer is the minimum-order observer. Figure 12-16 
shows the block diagram of a system with a minimum-order observer. 
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It is important to note, however, that if the measurement of output variables involves 
significant noises and is relatively inaccurate, then the use of the full-order observer 
may result in a better system performance. 

To present the basic idea of the minimum-order observer, without undue mathe- 
matical complications, we shall present the case where the output is a scalar (that is, 
m = 1) and derive the state equation for the minimum-order observer. Consider the 
system 

where the state vector x can be partitioned into two parts x, (a scalar) and xb [an 
( n  - 1)-vector]. Here the state variable x, is equal to the output y and thus can be 
directly measured, and xb is the unmeasurable portion of the state vector. Then the 
partitioned state and output equations become 

where A,,, = scalar 

A,,,, = 1 X ( n  - 1 )  matrix 

Abo = ( n  - 1) X 1 matrix 

A,, = ( n  - 1) X ( n  - 1) matrix 

B, = scalar 

B, = ( n  - 1 )  X 1 matrix 

From Equation (12-81), the equation for the measured portion of the state becomes 

or 

~o - A , ~ , x u  - B ~ "  = Arrbxb (12-83) 

The terms on the left-hand side of Equation (12-83) can be measured. Equation (12-83) 
acts as the output equation. In designing the minimum-order observer, we consider the 
left-hand side of Equation (12-83) to be known quantities. Thus, Equation (12-83) relates 
the measurable quantities and unmeasurable quantities of the state. 

From Equation (12-81), the equa'tion for the unmeasured portion of the state 
becomes 

Noting that terms AbL1x, and Bbu are known quantities, Equation (12-84) describes the 
dynamics of the unmeasured portion of the state. 
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In what follows we shall present a method for designing a minimum-order observer. 
The design procedure can be simplified if we utilize the design technique developed for 
the full-order state observer. 

Let us compare the state equation for the full-order observer with that for the 
minimum-order observer. The state equation for the full-order observer is 

and the "state equation" for the minimum-order observer is 

The output equation for the full-order observer is 

and the "output equation" for the minimum-order observer is 

The design of the minimum-order observer can be carried out as follows: First, note that 
the observer equation for the full-order observer was given by Equation (12-57), which 
we repeat here: 

$ = ( A  - K,c)% + Bu + Key (12-85) 

Then, making the substitutions of Table 12-1 into Equation (12-85), we obtain 

where the state observer gain matrix K, is an (n - 1) X 1 matrix. In Equation (12-86), 
notice that in order to estimate % ,, we need the derivative of x,. This presents a diffi- 
culty, because differentiation amplifies noise. If x, (= y) is noisy, the use of xu is unac- 
ceptable. To avoid this difficulty, we eliminate xu in the following way. First rewrite 
Equation (12-86) as 

Table 12-1 List of Necessary Substitutions for Writing 
the Observer Equation for the Minimum-Order 
State Observer 

Full-Order State Observer 1 Minimum-Order State Observer I 
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i 

x b - K e x a  = ( A b b  - K e ~ a b ) g  b + ( A b a  - ~ e ~ a a ) ~  + ( B b  - ~ e B a ) u  

= ( ~ b b  - KeAab)(gb - K ~ Y )  

+ [(A,, - K e ~ a b ) ~ ,  + A b a  - ~ e ~ a a ] ~  

+ ( ~ b  - ~ e ~ , ) u  (12-87) 

Define 

and 
- 
X b  - Key = g b  - K e x a =  5 

Then Equation (12-87) becomes 

= ( ~ b b  - K e A a b ) G  + [ ( ~ b b  - ~ e A a b ) ~ e  

+ A b a  - ~ e ~ a a ] ~  + ( B b  - ~ e ~ a ) u  

Define 

A = Abb - KeAab 

k = AK, + Aba - K,Aa, 
fi 

F = Bb - KeBa 

Then Equation (12-89) becomes 

;I" = AG + BY + FU 

Equation (12-90) and Equation (12-88) together define the minimum-order observer. 
Since 

where 0 is a row vector consisting of (n - 1) zeros, if we define 

then we can write in terms of r)  and y as follows: 
- 
x = e.~j + D~ 

This equation gives the transformation from 6 to i . 
Figure 12-17 shows the block diagram of the observed-state feedback control system 

with the minimum-order observer, based on Equations (12-79), (12-80), (12-W), (12-91) 
and u = - K g .  

Next we shall derive the observer error equation. Using Equation (12-83), Equation 
(12-86) can be modified to 
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Figure 12-17 
System with 
observed-state 
feedback, where the 
observer is the 
minimum-order 
observer. 

By subtracting Equation (12-92) from Equation (12-84), we obtain 
- - 

Xb - b = ( ~ b b  - ~ e ~ a b ) ( ~ b  - b )  

Define 
- 

e = x b -  x , = q - - . S j  

Then Equation (12-93) becomes 

e = (A,, - K , A , , ) ~  (12-94) 

This is the error equation for the minimum-order observer. Note that e is an (n - 1)- 
vector. 

The error dynamics can be chosen as desired by following the technique developed 
for the full-order observer, provided that the rank of matrix 

is n - 1. (This is the complete observability condition applicable to the minimum-order 
observer.) 
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The characteristic equation for the minimum-order observer is obtained from 
Equation (12-94) as follows: 

where pl, pz, . . . , pnP1 are desired eigenvalues for the minimum-order observer. The 
observer gain matrix K, can be determined by first choosing the desired eigenvalues for 
the minimum-order observer [that is, by placing the roots of the characteristic equation, 
Equation (12-95), at the desired locations] and then using the procedure developed for 
the full-order observer with appropriate modifications. For example, if the formula for 
determining matrix K, given by Equation (12-61) is to be used, it should be modified to 

K, = Q 

'Yl - a1 'Y1 - a1 

where K, is an ( n  - 1) X 1 matrix and 

N = [Aab* j Abb*Aab* ! " '  / ( A ~ ~ * ) ~ - ~ A ~ ~ * ]  = ( ~ 1  - 1) X ( ~ 1  - 1) matrix 

j + =  = ( n  - 1) X ( n  - I )  matrix 

... 0 0 

... 0 0 

Note that ii,, ii,, . . . , iinP2 are coefficients in the characteristic equation for the state 
equation 

Also, if Ackermann's formula given by Equation (12-65) is to be used, then it should be 
modified to 
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where 

Observed-State Feedback Control System with Minimum-Order Observer. 
For the case of the observed-state feedback control system with full-order state observer, 
we have shown that the closed-loop poles of the observed-state feedback control system 
consist of the poles due to the pole-placement design alone, plus the poles due to the 
observer design alone. Hence, the pole-placement design and the full-order observer 
design are independent of each other. 

For the observed-state feedback control system with minimum-order observer, the 
same conclusion applies. The system characteristic equation can be derived as 

(See Problem A-12-1 for the details.) The closed-loop poles of the observed-state feed- 
back control system with a minimum-order observer comprise the closed-loop poles 
due to pole placement [the eigenvalues of matrix (A - BK)] and the closed-loop poles 
due to the minimum-order observer [the eigenvalues of matrix (Abb - K, A ~ ~ ) ] .  There- 
fore, the pole-placement design and the design of the minimum-order observer are 
independent of each other. 

Determining Observer Gain Matrix K, with MATLAB. Because of the duality 
of pole-placement and observer design, the same algorithm can be applied to both the 
pole-placement problem and the observer-design problem. Thus, the commands acker 
and place can be used to determine the observer gain matrix K,. 

The closed-loop poles of the observer are the eigenvalues of matrix A - K, C. The 
closed-loop poles of the pole-placement are the eigenvalues of matrix A - BK. 

Referring to the duality problem between the pole-placement problem and observer- 
design problem, we can determine K, by considering the pole-placement problem for the 
dual system. That is, we determine K, by placing the eigenvalues of A* - C*K, at the 
desired place. Since K, = K*, for the full-order observer we use the command 

where L is the vector of the desired eigenvalues for the observer. Similarly, for the full- 
order observer, we may use 

provided I does not include multiple poles. [In the above commands, prime (I) indicates 
the transpose.] For the minimum-order (or reduced-order) observers, use the following 
commands: 
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EXAMPLE 12-8 Consider the system 

x = Ax + Bu 

where 

I Let us assume that we want to place the closed-loop poles a t  

I Then the necessary state-feedback gain matrix K can be obtained as follows: 

(See MATLAB Program 12-10 for a MATLAB computation of this matrix K.) 
Next, let us assume that the output y can be measured accurately so that state variable xi 

(which is equal to y) need not be estimated. Let us design a minimum-order observer. (The 
minimum-order observer is of second order.) Assume that we choose the desired observer poles 
to be at 

I Referring to Equation (12-95); the characteristic equation for the minimum-order observer is 

I In what follows, we shall use Ackermann's formula given by Equation (12-97). 

i where 

Since 

-6 '  -11 -6 

we have 

Equation (12-99) now becomes 
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(A MATLAB computation of this K,  is given in MATLAB Program 12-10.) 

MATLAB Program 12-1 0 

A = [O 1 0;O 0 1 ;-6 -1 1 -61; 
B = [0;0;1 I; 
J = [-2+j*2*sqrt(3) -2-j*2*sqrt(3) -61; 
K = acker(A,B,J) 

K = 

90.0000 29.0000 4.0000 

Abb = [O 1 ;-I 1 -61; 
Aab = [ I  01; 
L = [-I  0 -1 01; 
Ke = acker(Abbl,Aab',L)' 

Ke = 

14 
5 

Referring to Equations (12-88) and (12-89), the equation for the minimum-order observer can 
be given by 

G = (Abb - ~ , A a b ) i i  + [(A,, - KeAab)Ke + Aha - K , A , ~ ] Y  + ( ~ b  - KeBa)u (12-100) 

where 
- % = X b  - K e y  = X b  - Kenl 

Noting that 

the equation for the minimum-order observer, Equation (12-loo), becomes 
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where 

[::I = + Kex1 

If the observed-state feedback is used, then the control signal u becomes 

u = K I  = -.[;.I 
where K is the state feedback gain matrix. Figure 12-18 is a block diagram showing the configu- 
ration of the system with observed-state feedback, where the observer is the minimum-order 
observer. 

, -  - 

Figure 12-18 Transformation 

System with observed state feedback, where the observer is the minimum-order observer designed in 
Example 12-8. 

11 X * B I I Y 

i 
? 

A * 
- c  I 

I I 
L J 

Plant 

_.___-_p.___--  

-K 
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Transfer Function of Minimum-Order Observer-Based Controller. In the 
minimum-order observer equation given by Equation (12-89): 

define, similar to the case of the derivation of Equation (12-90), 
A 

A = Abb - KeAub 

B = AK, + A,, - K,A,, 

Then, the following three equations define the minimum-order oberver: 

6 = A.F~ + fjY + FU (12-101) 

ij = X h  - Key (12-102) 

' u  = -Kg (12-103) 

Since Equation (12-103) can be rewritten as - -7 

by substituting Equation (12-104) into Equation (12-101), we obtain 
6 = AG + fjy + F[-K~.F~  - (K,  + K ~ K , ) ~ ]  

= (A - F K ~ ) ~  -I- [B - F(K[~ + K ~ K , ) ] ~  
Define 

= A - 

Then Equations (12-105) and (12-104) can be written as 

Equations (12-106) and (12-107) define the minimum-order observer-based controller. 
By considering u as the output and -y as the input, U ( s )  can be written as 

U ( s )  = [ ~ ( S I  - X)-lB + E ] Y ( s )  
= - [ E ( ~ I  - A)-'B + D ] [ - Y ( S ) I  

Since the input to the observer controller is - Y ( s ) ,  rather than Y ( s ) ,  the transfer function 
of the observer controller is 

U ( s )  num 
-- - -- 
- Y ( s )  den 

- - [ ~ ( s I  - X)-'B + 51 
This transfer function can be easily obtained by using the following MATLAB statement: 

[num,den] = ss2tf(Atilder Btilde, -Ctilde, -Dtilde) (12-109) 
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12-6 DESIGN OF REGULATOR SYSTEMS WITH OBSERVERS 

Figure 12-19 
Regulator system. 

In this section we shall consider a problem of designing regulator systems by using the 
pole-placement-with-observer approach. 

Consider the regulator system shown in Figure 12-19. (The reference input is zero.) 
The plant transfer function is 

Using the pole-placement approach, design a controller such that when the system is 
subjected to the following initial condition: 

where x is the state vector for the plant and e is the observer error vector, the maximum 
undershoot of y ( t )  is 25 to 35% and the settling time is about 4  sec.Assume that we use 
the minimum-order observer. (We assume that only the output y is measurable.) 

We shall use the following design procedure: 
I. Derive a state-space model of the plant. 
2. Choose the desired closed-loop poles for pole placement. Choose the desired 

observer poles. 
3. Determine the state feedback gain matrix K and the observer gain matrix Kc. 
4. Using the gain matrices K and K, obtained in step 3, derive the transfer function of 

the observer controller. If it is a stable controller, check the response to the given ini- 
tial condition. If the response is not acceptable, adjust the closed-loop pole location 
andior observer pole location until an acceptable response is obtained. 

Design step I:  We shall derive the state-space representation of the plant. Since the 
plant transfer function is 

Y ( s )  - 10(s + 2 )  

U ( s )  s ( s  + 4 ) ( s  + 6 )  

the corresponding differential equation is 

Referring to Section 3-5, let us define the state variables xl, x2, and x, as follows: 

Controller Plant 
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where 

[See Equation (3-35) for the calculation of P's.] Then the state-space equation and out- 
put equation can be obtained as 

= Ol[r:] + [O1u 

Design step 2: As the first trial, let us choose the desired closed-loop poles at 

and choose the desired observer poles at 
s = -10, s = -10 

Design step 3: We shall use MATLAB to compute the state feedback gain matrix K and 
the observer gain matrix K,. MATLAB Program 12-11 produces matrices K and K,. In the 
program, matrices J and L represent the desired closed-loop poles for pole placement and 
the desired poles for the observer, respectively. The matrices K and K, are obtained as 

MATLAB Program 12-1 1 

% Obtaining the state feedback gain matrix K 

/ % Obtaining the observer gain matrix Ke I 
Aaa = 0; Aab = [I 01; Aba = [0;0]; Abb = [0 1;-24 -1 0l;Ba = 0; Bb = [I 0;-801; 
L = I-1 0 -1 01; 
Ke = acker(Abb',Aabl,L)' 
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Design step 4: We shall determine the transfer function of the observer controller. 
Referring to Equation (12-108), the transfer function of the observer controller can be 
given by 

U ( s )  num G , ( ~ )  = - = - - - -[C(SI - X)-'B + 51 
- Y ( s )  den 

We shall use MATLAB to calculate the transfer function of the observer controller. 
MATLAB Program 12-12 produces this transfer function. The result is 

Define the system with this observer controller as System 1. Figure 12-20 shows the 
block diagram of System 1. 

- 

MATLAB Program 12-1 2 

O/O Determination of transfer function of observer controller 

A = [0 1 0;O 0 1 ;0 -24 -1 01; 
B = [0;10;-801; 
Aaa = 0; Aab = [I 01; Aba = [O;O]; Abb = [O 1;-24 -1 01; 
Ba = 0; Bb = [I 0;-801; 
Ka = 1.25; Kb = [I .25 0.193751; 
Ke = [ I  0;-241; 
Ahat = Abb - Ke*Aab; 
Bhat = AhatYKe + Aba - Ke*Aaa; 
Fhat = Bb - Ke*Ba; 
Atilde = Ahat - Fhat*Kb; 
Btilde = Bhat - Fhat*(Ka + Kb*Ke); 
Ctilde = -Kb; 
Dtilde = -(Ka + Kb*Ke); 
Inum,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde) 

num = 
9.1 000 73.5000 125.0000 

den = 

1 .0000 17.0000 -30.0000 
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Figure 12-20 
Block diagram of 
System 1. 

s(s + 4) (s + 6 )  

Observer controller 

The observer controller has a pole in the right-half s plane (s = 1.6119). The exis- 
tence of an open-loop right-half s plane pole in the observer controller means that the 
system is open-loop unstable, although the closed-loop system is stable. The latter can 
be seen from the characteristic equation for the system: 

IsI - A + BKI . /SI - Abh + K ~ A ~ ~ ~ ~  
= s5 + 27s4 + 255s3 + 1025s2 + 2000s + 2500 
= (S + 1 + j2)(s + 1 - j2)(s + 5)(s + 10)(s -t 10) = O  

(See MATLAB Program 12-13 for the calculation of the characteristic equation.) 
A disadvantage of using an unstable controller is that the system becomes unstable 

if the dc gain of the system becomes small. Such a control system is neither desirable nor 
acceptable. Hence, to get a satisfactory system, we need to modify the closed-loop pole 
location and/or observer pole location. 

I MATLAB Program 12-1 3 I 
% Obtaining the characteristic equation 

[num 1 ,den 1 I = ss2tf(A-B*K,eye(3),eye(3),eye(3), 1 ); 
[num2,den21 = ss2tf(Abb-Ke*Aab,eye(2),eye(2),eye(2),1 ); 
charact-eq = conv(den1 ,den2) 

charact-eq = 

Second trial: Let us keep the desired closed-loop poles for pole placement as before, 
but modify the observer pole locations as follows: 

s = -4.5, s = -4.5 

Thus, 

L = [-4.5 -4.51 

Using MATLAB, we find the new K, to be 
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Next, we shall obtain the transfer function of the observer controller. MATLAB 
Program 12-14 produces this transfer function as follows: 

MATLAB Program 12-1 4 

% Determination of transfer function of observer controller. 

A = [0 1 0;O 0 1 ;0 -24 -1 01; 
B = [0;10;-801; 
Aaa = 0; Aab = [ I  01; Aba = [O;O]; Abb = [O 1;-24 -1 01; 
Ba = 0; Bb = [I 0;-801; 
Ka = 1.25; Kb = [I .25 0.1 93751; 
Ke = [-I ;6.25]; 
Ahat = Abb - KeCAab; 
Bhat = Ahat*Ke + Aba - Ke*Aaa; 
Fhat = Bb - KeCBa; 
Atilde = Ahat - FhatWKb; 
Btilde = Bhat - Fhat*(Ka + KbCKe); 
Ctilde = -Kb; 
Dtilde = -(Ka + Kb*Ke); 
[num,den] = ss2tf(~tiIde,BtiIde,-CtiIde,-DtiIde) 

/ num = I 
1 den = 
I I 

Notice that this is a stable controller. Define the system with this observer controller as 
System 2. We shall proceed to obtain the response of System 2 to the given initial 
condition: 

By substituting u = -Kx  into the state-space equation for the plant, we obtain 
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The error equation for the minimum-order observer is 
e = (A,, - K,A, , )~  

By combining Equations (12-110) and (12-Ill), we get 

with the initial condition 

MATLAB Program 12-15 produces the response to the given initial condition. The 
response curves are shown in Figure 12-21.They seem to be acceptable. 

MATLAB Program 12-1 5 

% Response to initial condition. 

A = [0 1 0;O 0 1;O -24 -1 01; 
B = [0;10;-801; 
K = [I .25 1.25 0.1 93751; 
Kb = [ I  .25 0.1 93751; 
Ke = [-1;6.25]; 
Aab = [I 01; Abb = [0 1 ;-24 -1 01; 
AA = [A-B*K B*Kb; zeros(2,3) ~bb-Ke*Aab]; 
sys = ss(AAreye(5),eye(5),eye(5)); 
t = 0:0.01:8; 
x = initial(sys,I1;0;0;1;0l,t); 
xl = [I 0 0 0 OI*x1; 
x2 = [O 1 0 0 OI*x1; 
x3 = [O 0 1 0 OI*x1; 
el = [O 0 0 1 Ol*xl; 
e2=[O 0 0 0 l]*xl; 

~ubplot(3,2,1); plot(t,xl); grid 
xlabel ('t (sec)'); ylabel('x1 0 

subplot(3,2,2); plot(t,x2); grid 
xlabel ('t (sec)'); ylabel('x2') 

subplot(3,2,3); plot(t,x3); grid 
xlabel (It (sec)'); ylabel('x3') 

subplot(3,2,4); plot(t,el); grid 
xlabel('t (set)'); ylabel('e1 I )  

subplot(3,2,5); plot(t,e2); grid 
xlabel('t (sec)'); ylabel('e2') 
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Figure 12~21  
Response to the 
given initial -2 
cond~tion; x,  ( 0 )  = 1, 

x2(0)  e,(O) = = 1, 0, e2(0) x3(0)  = = 0. 0, 
-t!IIl -3 0 2 t (see) 4 6 8 

Next, we shall check the frequency-response characteristics. The bode diagram of 
the open-loop system just designed is shown in Figure 12-22.The phase margin is about 
40" and the gain margin is +co dB.The Bode diagram of the closed-loop system is shown 
in Figure 12-23. The bandwidth of the system is approximately 3.8 radlsec. 

Bode Diagram of System 2 -Open Loop 

Figure 12-22 
Bode diagram for the 
open-loop transfer 
function of System 2. Frequency (radlsec) 
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- - Bode Diagram of System 2 - Closed Loop 

Figure 12-23 
Bode diagram for ithe 
closed-loop transfer 
function of System 2. 

1 o0 10' 
Frequency (radlsec) 

Finally, we shall compare the root-locus plots of the first system with L = [-I0 -101 
and the second system with L = [-4.5 -4.51. The plot for the first system given in Fig- 
ure12-24(a) shows that the system is unstable for small dc gain and becomes stable for 
large dc gain. The plot for the second system given in Figure 12-24(b), on the other 
hand, shows that the system is stable for any positive dc gain. 

Root-Locus Plot of (91s3 + 9 1 7s2 + 2720s + 2500)l 
(s5 + 27s4 + I 64s3 + 108s' - 720s) 

Real Axis 
(a) 

Root-Locus Plot of (12.109s3 + 136.343s' + 477.375s + 506 
(s5 + 16s4 + 86. 1406s3 + 165.406s2 + 5 1.3744s) 

Real Axis 
(b) 

Figure 12-24 
(a) Root-Locus plot of the system with observer poles at s = -10 and s = -10; (b) root-locus plot of the 
system with observer poles at s = -4.5 and s = -4.5. 

Section 12-6 / Design of Regulator Systems with Observers 889 



Comments 
1. In designing regulator systems, note that if the dominant controller poles are placed 

far to the left from the jw axis, the elements of the state feedback gain matrix K 
will become large. Large gain values will make the actuator output become large, 
so that saturation may take place. Then the designed system will not behave as 
designed. 

2. Also, by placing the observer poles far to the left of the j o  axis, the observer 
controller becomes unstable, although the closed-loop system is stable. An unstable 
observer controller is not acceptable. 

3. If the observer controller becomes unstable, move the observer poles to the right 
in the left-half s plane until the observer controller becomes stabie. Also, the desired 
closed-loop pole locations may need to be modified. 

4. Note that if the observer poles are placed far to the left of the j o  axis, the band- 
width of the observer will increase and will cause noise problems. If there is a 
serious noise problem, the observer poles should not be placed too far to the left 
of the j o  axis.The general requirement is that the bandwidth should be sufficiently 
low that the sensor noise will not become a problem. 
The bandwidth of the system with the minimum-order observer is higher than that 
of the system with the full-order observer, provided that the multiple observer 
poles are placed at the same place for both observers. If the sensor noise is a seri- 
ous problem, use of a full-order observer is recomnended. 

12-7 DESIGN OF CONTROL SYSTEMS WITH OBSERVERS 

In Section 12-6 we discussed the design of regulator systems with observers. (The systems 
did not have reference or command inputs.) In this section we consider the design of 
control systems with observers when the systems have reference inputs or command 
inputs. The output of the control system must follow the input that is time varying. In 
following the command input, the system must exhibit satisfactory performance (a 
reasonable rise time, overshoot, settling time, and so on). 

In this section we consider control systems that are designed by use of the pole- 
placement-with-observer approach. Specifically, we consider control systems using 
observer controllers. In Section 12-6 we discussed regulator systems, whose block 
diagram is shown in Figure 12-25. This system has no reference input, or r = 0. When 
the system has a reference input, several different block diagram configurations are 
conceivable, each having an observer controller. Two of these configurations are shown 
in Figures 12-26 (a) and (b); we shall consider them in this section. 

Figure 12-25 
Regulator system. 
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Figure 12-26 
(a) Control system 
with observer 
controller in the 
feedforward path;, 
(b) Control system 
with observer 
controller in the 
feedback path. 

Figure 12-27 
Control system with 
observer controller 
in the feedforward 
path. 

Plant 

Observer 
controller 0 (b) 

Configur~ltion 1: Consider the system shown in Figure 12-27. In this system the refer- 
ence input is simply added at the summing point. We would like to design the observer 
controller such that in the unit-step response the maximum overshoot is less than 30% 
and the settling time is about 5 sec. 

In what follows we first design a regulator system.Then, using the observer controller 
designed, we simply add the reference input r at the summing point. 

Before we design the observer controller, we need to obtain a state-space represen- 
tation of the plant. Since 

r -Y  

we obtain 

Observer 
controller 

By choosing the state variables as 

Y - 
7 

- " 
: - 

we get 

Plant 

controller s(s2 + 1 )  

Plant I 
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where 

Next, we choose the desired closed-loop poles for pole placement at 

and the desired observer poles at 

The state feedback gain matrix K and the observer gain matrix K, can be obtained as 
follows: 

See MATLAB Program 12-16. 
The transfer function of the observer controller is obtained by use of MATLAB 

Program 12-17. The result is 

MATLAB Program 12-1 6 

A =  [0 1 0;o 0 1;o -1 01; 
B = [0;0;1 I;  
J = [-I +j -1-j -81; 
K = acker(A,B,J) 

Aab = [ I  01; 
Abb = [O 1 ;-I 01; 
L = [-4 -41; 
Ke = acker(Abb1,Aab',L)' 
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I MATLAB Program 12-1 7 I 

Figure 12-28 
Regulator system 
with observer 
controller. 

Figure 12-29 
Control system with 
observer controller 
in the feedforward 
path. 

% Determination of transfer function of observer controller 

A = [0 1 0;o 0 1 ;0 -1 01; 
B = [0;0;1 I;  
Aaa = 0; Aab = [I 01; Aba = [0;0]; Abb = [O 1 ;-I 01; 
Ba= 0; Bb= [0;1]; 
Ka = 16; Kb=[17 lo]; 
Ke = [8;15]; 
Ahat = Abb - Ke*Aab; 
Bhat = Ahat*Ye + Aba - Ke*Aaa; 
Fhat = Bb - Ke*Ba; ' 
Atilde = Ahat - Fhat*Kb; 
Btilde = Bhat - Fhat*(Ka + Kb*Ke); 
Ctilde = -Kb; 
Dtilde = -(Ka + Kb*Ke); 
[num,den] = ss2tf(Atilde,BtiIde,-CtiIde,-Dtilde) 

nurn = 

302.0000 303.0000 256.0000 
den = 

Figure 12-28 shows the block diagram of the regulator system just designed. Figure 
12-29 shows the block diagram of a possible configuration of the control system based 
on the regulator system shown in Figure 12-28. The unit-step response curve for this 
control system is shown in Figure 12-30.The maximum overshoot is about 28% and the 
settling time is about 4.5 sec.Thus, the designed system satisfies the design requirements. 
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Figure 12-30 
Unit-step response of 
the control system 
shown in Figure 
12-29. 

Figure 12-31 
Control system with 
observer controller 
in the feedback path. 

Unit-Step Response of 
(302s' + 303s + 256)/(s5 +18s4 + 1 14s3 + 320s2 + 416s + 256) 

1.4 

0 1 2 3 4 5 6 7 8 9 1 0  
t (sec) 

Configuration 2: A different configuration of the control system is shown in Figure 
12-31. The observer controller is placed in the feedback path.The input r is introduced 
into the closed-loop system through the box with gain N. From this block diagram, the 
closed-loop transfer function is obtained as 

We determine the value of constant N such that for a unit-step input r, the output y is 
unity as t approaches infinity. Thus we choose 

The unit-step response of the system is shown in Figure 12-32. Notice that the maxi- 
mum overshoot is very small, approximately 4%.The settling time is about 5 sec. 
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Figure 12-32 
The unit-step 
response of the 
system shown in 
Figure 12-31. (The 
closed-loop poles for 
pole placement are 
at s = ,-1 f j ,  
s = -8. The observer 
poles are at s = --4, 
s = -4.) 

Figure 12-33 
The unit-step 
response of the 
control system 
designed by the pole 
placement approach 
without observer. 
(The closed-loop 
poles are at 
s = -1 f j, s = -8.) 

Unit-Step Response of 
(2.2655s2 + 40.779s + 256)i(s5 + 18s4 + 1 14s3 + 3202 + 416s + 256) 

V 

0 1 2 3 4 5 6 7 8 9 1 0  
t (sec) 

Comments. We considered two possible configurations for the closed-loop control 
systems using observer controllers. As stated earlier, other configurations are possible. 

The first configuration, which places the observer controller in the feedforward path, gen- 
erally gives a fairly large overshoot.The second configuration, which places the observer con- 
troller in the feedback path, gives a smaller overshoot.This response curve is quite similar to 
that of the system designed by the pole-placement approach without using the observer con- 
troller. See the unit-step response curve of the system, shown in Figure 12-33, designed by the 
pole-placement approach without observer. Here the desired closed-loop poles used are 

Unit-Step Response of System without Observer 

0 1 2 3 4 5 6 7 8 9 1 0  
t (sec) 
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Bode Diagrams of Closed-Loop Systems 

Figure 12-34 
Bode diagrams of 
closed-loop system 1 
(shown in Figure 
12-29) and closed- 
loop system 2 (shown 
in Figure 12-31). 

4 
100 
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5! 
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z 
-100 

-200 

-300 
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Note that, in these two systems, the rise time and settling time are determined primari- 
ly by the desired closed-loop poles for pole placement. (See Figures 12-32 and 12-33.) 

The Bode diagrams of closed-loop system 1 (shown in Figure 12-29) and closed- 
loop system 2 (shown in Figure 12-31) are shown in Figure 12-34. From this figure, we 
find that the bandwidth of system 1 is 5 rad/sec and that of system 2 is 1.3 rad/sec. 

Summary of State-Space Design Method 

1. The state-space design method based on the pole-placement-combined-with- 
observer approach is very powerful. It is a time-domain method.The desired closed- 
loop poles can be arbitrarily placed, provided the plant is completely state 
controllable. 

2. If not all state variables can be measured, an observer must be incorporated to 
estimate the unmeasurable state variables. 

3. In designing a system using the pole-placement approach, several different sets of 
desired closed-loop poles need be considered, the response characteristics 
compared, and the best one chosen. 

4. The bandwidth of the observer controller is generally large, because we choose 
observer poles far to the left in the s plane. A large bandwidth passes high- 
frequency noises and causes the noise problem. 

5. Adding an observer to the system generally reduces the stability margin. In some 
cases, an observer controller may have zero(s) in the right-half s plane, which 
means that the controller may be stable but of nonminimum phase. In other cases, 
the controller may have pole(s) in the right-half s plane-that is, the controller is 
unstable. Then the designed system may become conditionally stable. 

6. When the system is designed by the pole-placement-with-observer approach, it is 
advisable to check the stability margins (phase margin and gain margin), using a 
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frequency-response method. If the system designed has poor stability margins, it 
is possible that the designed system may become unstable if the mathematical 
model involves uncertainties. 

7. Note that for nth-order systems, classical design methods (root-locus and 
frequency-response methods) yield low-order compensators (first or second order). 
Since the observer-based controllers are nth-order (or mth-order if the minimum- 
order observer is used) for an nth-order system, the designed system will become 
2nth order [or (n  + m)th order]. Since lower-order compensators are cheaper 
than higher-order ones, the designer should first apply classical methods and, if no 
suitable compensators can be determined, then try the pole-placement-with- 
observer design approach presented in this chapter. 

12-8 QUADRATIC OPTIMAL REGULATOR SYSTEMS 

An advantage of the quadratic optimal control method over the pole-placement method 
is that the former provides a systematic way of computing the state feedback control gain 
matrix. 

Quadratic Optimal Regulator Problems. We shall now consider the optimal 
regulator problem that, given the system equation 

x = AX + BU (12-112) 

determines the matrix K of the optimal control vector 

~ ( t )  = -Kx(t) 

so as to minimize the performance index 

where Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric 
matrix and R is a positive-definite Hermitian or real symmetric matrix. Note that the 
second term on the right-hand side of Equation (12-114) accounts for the expenditure 
of the energy of the control signals. The matrices Q and R determine the relative 
importance of the error and the expenditure of this energy. In this problem, we assume 
that the control vector u(t) is unconstrained. 

As will be seen later, the linear control law given by Equation (12-113) is the optimal 
control law. Therefore, if the unknown elements of the matrix K are determined so as 
to minimize the performance index, then u(t) = -Kx(t) is optimal for any initial state 
x(0). The block diagram showing the optimal configuration is shown in Figure 12-35. 

Figure. 12-35 
Optimal regulator 
system. 
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Now let us solve the optimization problem. Substituting Equation (12-113) into 
Equation (12-112), we obtain 

In the following derivations, we assume that the matrix A - BK is stable, or that the 
eigenvalues of A - BK have negative real parts. 

Substituting Equation (12-113) into Equation (12-114) yields 

Let us set 

where P is a positive-definite Hermitian or real symmetric matrix. Then we obtain 

x*(Q + vRK)x = -x*Px - x*Px = -x* [ (A - BK)*P + P(A - BK)]X 

Comparing both sides of this last equation and noting that this equation must hold true 
for any x, we require that 

(A - BK)*P + P(A - BK) = -(Q + K*RK) (12-115) 

It can be proved that if A - BK is a stable matrix, there exists a positive-definite ma- 
trix P that satisfies Equation (12-115). (See Problem A-12-15.) 

Hence our procedure is to determine the elements of P from Equation (12-115) and 
see if it is positive definite. (Note that more than one matrix P may satisfy this equation. 
If the system is stable, there always exists one positive-definite matrix P to satisfy this 
equation.This means that, if we solve this equation and find one positive-definite matrix 
P, the system is stable. Other P matrices that satisfy this equation are not positive definite 
and must be discarded.) 

The performance index J can be evaluated as 

Since all eigenvalues of A - BK are assumed to have negative real parts, we have 
X(W) -+ 0. Therefore, we obtain 

J = xX(0)Px(O) (12-116) 

Thus, the performance index J can be obtained in terms of the initial condition x(0) 
and P. 

To obtain the solution to the quadratic optimal control problem, we proceed as 
follows: Since R has been assumed to be a positive-definite Hermitian or real symmetric 
matrix, we can write 
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where T is a nonsingular matrix. Then Equation (12-115) can be written as 

(A" - K*B*)P + P(A - BK) + Q + K*T*TK = 0 

which can be rewritten as 

A"P + PA + [TK - (T*)-'B*P]*[TK - (T*)-'B"P] - PBR-'B*P + Q 0 

The minimization of J with respect to K requires the minimization of 

with respect to K. (See Problem A-12-16.) Since this last expression is nonnegative, the 
minimum occurs when it is zero, or when 

Equation (12-117) gives the optimal matrix K.Thus, the optimal control law to the quad- 
ratic optimal control problem when the performance index is given by Equation (12-114) 
is linear and is given by 

The matrix P in Equation (121117) must satisfy Equation (12-115) or the following 
reduced equation: 

Equation (12-118) is called the reduced-matrix Riccati equation. The design steps may 
be stated as follows: 

1. Solve Equation (12-118), the reduced-matrix Riccati equation, for the matrix P. 
[If a positive-definite matrix P exists (certain systems may not have a positive- 
definite matrix P), the system is stable, or matrix A - BK is stable.] 

2. Substitute this matrix P into Equation (12-117). The resulting matrix K is the 
optimal matrix. 

A design example based on this approach is given in Example 12-9. Note that if the 
matrix A - BK is stable, the present method always gives the correct result. 

Finally, note that if the performance index is given in terms of the output vector 
rather than the state vector, that is, 

then the index can be modified by using the output equation 

and the design steps presented in this section can be applied to obtain the optimal 
matrix K. 
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I EXAMPLE 12-9 Consider the system shown in Figure 12-36. Assuming the control signal to be 

Figure 12-36 
Control system. 

determine the optimal feedback gain matrix K such that the following performance index is 
minimized: 

I = ~ m ( x ~ Q x  + u2)dt 

where 

From Figure 12-36, we find that the state equation for the plant is 

where 

We shall demonstrate the use of the reduced-matrix Riccati equation in the design of the 
optimal control system. Let us solve Equation (12-118), rewritten as 

Noting that matrix A is real and matrix Q  is real symmetric, we see that matrix F is a real sym- 
metric matrix. Hence, this last equation can be written as 

This equation can be simplified to 

Plant 
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I Plant 

Figure 1237 
Optimal control of 
the plant shown in 
Figure 12-36. 

from which we obtain the following three equations: 

1 - p:, = 0 

Pll - P12P22 = 0 

P +. 2~12  - pi2 = 0 

Solving these three simultaneous equations for p,, , p,,, and pz2, requiring P to be positive definite, 
we obtain 

Referring to Equation (12-117), the optimal feedback gain matrix K is obtained as 

Thus, the optimal control signal is 

u = -Kx = -xl - x2 (12-120) 

Note that the control law given by Equation (12-120) yields an optimal result for any initial state 
under the given performance index. Figure 12-37 is the block diagram for this system. 

Since the characteristic equation is 

I s I - A + B K I = s 2 + m s + 1 = 0  

if p = 1, the two closed-loop poles are located at 

These correspond to the desired closed-loop poles when p = 1. 

Solving Quadratic Optimal Regulator Problems with MATLAB. In MATLAB, 
the command 
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solves the continuous-time, linear, quadratic regulator problem and the associated Riccati 
equation. This command calculates the optimal feedback gain matrix K such that the 
feedback control law 

minimizes the performance index 

subject to the constraint equation 

Another command 

returns the gain matrix K, eigenvalue vector E, and matrix P, the unique positive-definite 
solution to the associated matrix Riccati equation: 

PA + A*P - PBR-'B*P + Q = 0 

If matrix A - BK Is a stable matrix, such a positive-definite solution P always exists.The 
eigenvalue vector E gives the closed-loop poles of A - BK. 

It is important to note that for certain systems matrix A - BK cannot be made a sta- 
ble matrix, whatever K is chosen. In such a case, there does not exist a positive-definite 
matrix P for the matrix Riccati equation. For such a case, the commands 

do not give the solution. See MATLAB Program 12-18. 

1 EXAMPLE 12-10 Consider the system defined by 

Show that the system cannot be stabilized by the state-feedback control scheme 

whatever matrix K is chosen. (Notice that this system is not state controllable.) 
Define 

Then 
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Hence, the characteristic equation becomes 

= (s + 1 + k, ) ( s  - 2) = 0 

The closed-loop poles are located at 

s = - 1 -  k l ,  s = 2  

Since the pole at s = 2 is in the right-half s plane, the system is unstable whatever K matrix is 
chosen. Hence, quadratic optimal control techniques cannot be applied to this system. 

Let us assume that matrices Q and R in the quadratic performance index are given by 

and that we write MATLAB Program 12-18. The resulting MATLAB solution is 

K = [NaN NaNl 
(NaN means 'not a number.') Whenever the solution to a quadratic optimal control problem does 
not exist, MATLAB tells us that matrix K consists of NaN. 

MATLAB Program 12-1 8 

yo - - ---- - - - - Design of quadratic optimal regulator system ---------- 

A = [-I  1 ;O 21; 
B = [I  ;0]; 
Q = [I 0;o I I; 
R = [ l ] ;  

K = lqr(A,B,Q,R) 

Warning: Matrix is singular to working precision. 

K = 

NaN NaN 

O/O ***** If we enter the command [K,P,E] = Iqr(A,B,Q,R), then ***** 

[K,P,El = Iqr(A,B,Q,R) 

Warning: Matrix is singular to working precision. 

K = 

NaN NaN 

P = 

-Inf -Inf 
-Inf -Inf 

E = 

-2.0000 
-1.41 42 
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EXAMPLE 12-1 1 Consider the system described by 

where 

The performance index J is given by 

where 

Assume that the following control u is used. 

u = -Kx 

Determine the optimal feedback gain matrix K. 
The optimal feedback gain matrix K can be obtained by solving the following Riccati equation 

for a positive-definite matrix P: 

A'P + PA - PBR-'B'P + Q = 0 

The result is 

Substituting this P matrix into the following equation gives the optimal K matrix: 

Thus, the optimal control signal is given by 

4 1 -e = -x 
1 - x2 

MATLAB 12-19 also yields the solution to this problem. 

I MATLAB Program 12-1 9 

I % ---------- Design of quadratic optimal regulator system ---------- I 
A =  [O 1;o -I] ;  
B = [0;11; 
Q =  [ I  0;O 11; 
R = [l] ;  
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I EXAMPLE 12-1 2 Consider the system given by 

x = Ax + Bu 
where 

The performance index J is given by 

where 

Obtain the positive-definite solution matrix P of the Riccati equation, the optimal feedback gain 
matrix K, and the eigenvalues of matrix A - BK. 

MATLAB Program 12-20 will solve this problem. 

MATLAB Program 12-20 

yo -- - - -- - - -- Design of quadratic optimal regulator system ---------- 
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Next, let us obtain the response x of the regulator system to the initial condition x(O), where 

With state feedback u = -Kx, the state equation for the system becomes 

Then the system, or sys, can be given by 

MATLAB Program 12-21 produces the response to the given initial condition. The response 
curves are shown in Figure 12-38. 

MATLAB Program 12-21 

% Response to initial condition. 

A = [O 1 0;O 0 1 ;-35 -27 -91; 
B = [O;O; 1 I ;  
K = [0.0143 0.1 107 0.06761; 
sys = ss(A-B*K, eye(3),eye(3),eye(3)); 
t = 0:0.01:8; 
x = initial(sys,[l ;O;Ol,t); 
XI = [ I  0 01*x1; 
x2 = [O 1 01*x1; 
X3 = [O 0 I l*xf; 

subplot(2,2,1); plot(t,xl); grid 
xlabel('t (sec)'); ylabel('x1 '1 

subplot(2,2,2); plot(t,x2); grid 
xlabel('t (sec)'); ylabel('x2) 

subplot(2,2,3); plot(t,x3); grid 
xlabel('t (sec)'); ylabel('x3') 

Consider the system shown in Figure 12-39. The plant is defined by the following state-space 
equations: 

x = Ax + Bu 
y = Cx + Du 

where 

A=[:: '1, *=[;I, [ I  0 01, .= ;o ;  
0 -2 -3 

The control signal u is given by 

u = k,(r - x , )  - (k2x2 + k3x3)  = k l r  - ( k l x l  + k2x2 + k3x3)  
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Figure 12-38 
Response curves to 
initial condition.. 
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In determining an optimal control law, we assume that the input is zero, or r = 0. 
Let us determine the state-feedback gain matrix K, where 

such that the following performance index is minimized: 

where 

Figure 12-39 
Control system. 
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To get a fast response, qI1  must be sufficiently large compared with q,,, q33, and R. In this problem, 
we choose 

q,, = 100, qz* = 933 = 1, R = 0.01 

To solve this problem with MATLAB, we use the command 

MATLAB Program 12-22 yields the solution to this problem. 

MATLAB Program 12-22 

% - - - - - - - - - - Design of quadratic optimal control system ---------- 

A = [O I 0;o 0 1;o -2 -31; 
B = [0;0;1]; 
Q =  [I00 0 0;o 1 0;o 0 I ] ;  
R = 10.01 I; 

K = lqr(A,B,Q,R) 

K = 

100.0000 53.1 200 11.671 1 

Next we shall investigate the step-response characteristics of the designed system using the 
matrix K thus determined.The state equation for the designed system is 

and the output equation is 

To obtain the unit-step response, use the following command: 

where 

A A = A - B K ,  B B = B k l ,  C C = C ,  D D = D  

MATLAB Program 12-23 produces the unit-step response of the designed system. Figure 12-40 
shows the response curves x , ,  x,, and x3 versus t on one diagram. 
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Figure 12-40 
Response curves x, 
versus t, x, versus t, 
and x, versus t. 

I MATLAB Program 12-23 1 
- - - - --- - - - Unit-step response of designed system ---------- 

% ***** Define the state matrix, control matrix, output matrix, 
% and direct transmission matrix of the designed systems as AA, 
% BB, CC, and D D  ***** 

A A =  A -  B*K; 
BB = B*kl; 
CC = C; 
D D  = D; 
t = 0:0.01:8; 
[y,x,t] = step (AA,BB,CC,DD,l ,t); 

plot(t,x) 
grid 
title('Response Curves x l ,  x2, x3, versus t ' )  
xlabel('t Sec') 
ylabel('x1 ,x2,x3') 
text(2.6,1.35,'~1 '1 
text(1.2,1.5,'~2') 
text(0.6,3.5,'~3') 
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Concluding Comments 

1. Given any initial state x ( t o ) ,  the optimal regulator problem is to find an allowablt 
control vector u( t )  that transfers the state to the desired region of the state space 
and for which the performance index is minimized. For the existence of an optimal 
contrc: vector u( t ) ,  the system must be completely state controllable. 

2. The system that minimizes (or maximizes, as the case may be) the selected 
performance index is, by definition, optimal. Although the controller may have 
nothing to do with "optimality" in many practical applications, the important point 
is that the design based on the quadratic performance index yields a stable control 
system. 

3. The characteristic of an optimal control law based on a quadratic performance 
index is that it is a linear function of the state variables, which implies that we need 
to feed back all state variables.This requires that all such variables be available for 
feedback. If not all state variables are available for feedback, then we need to 
employ a state observer to estimate unmeasurable state variables and use the es- 
timated values to generate optimal control signals. 

Note that the closed-loop poles of the system designed by the use of the 
quadratic optimal regulator approach can be found from 

Since these closed-loop poles correspond to the desired closed-loop poles in the 
pole-placement approach, the transfer functions of the observer controllers can 
be obtained from either Equation (12-74) if the observer is of full-order type or 
Equation (12-108) if the observer is of minimum-order type. 

4. When the optimal control system is designed in the time domain, it is desirable to 
investigate the frequency-response characteristics to compensate for noise effects. 
The system frequency-response characteristics must be such that the system at- 
tenuates highly in the frequency range where noise and resonance of components 
are expected. (To compensate for noise effects, we must in some cases either modify 
the optimal configuration and accept suboptimal performance or modify the 
performance index.) 

5. If the upper limit of integration in the performance index J given by Equation 
(12-114) is finite, then it can be shown that the optimal control vector is still a 
linear function of the state variables, but with time-varying coefficients. (Therefore, 
the determination of the optimal control vector involves that of optimal time- 
varying matrices.) 

EXAMPLE PROBLEMS AND SOLUTIONS 

A-12-1. Consider the system defined by 

Suppose that this system is not completely state controllable.Then the rank of the controllability 
matrix is less than n, or 

rank [B j AB i ... j A"-'B] = q < n (12-121) 
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This means that there are q  linearly independent column vectors in the controllability matrix. Let 
us define such q  linearly independent column vectors as f,, f,, . . . , f,. Also, let us choose n - q 
additional n-vectors v, + v, + ,, . . . , v, such that 

, L P = [ f l  ; f2 / ... j f, j Yq+l ; vq+Z ! ... j v,] 

is of rank n. By using matrix P as the transformation matrix, define 

Show that A can be given by 

where A,, is a q  X q matrix, A,, is a q  X (n - q )  matrix, A,, is an (n - q )  X ( n  - q )  matrix, and 
0 is an (n - q )  X q  matrix. Show also that matrix B can be given by 

where B,I is a q X 1 matrix and 0 is an (n - q) X 1 matrix. 

Solution. Notice that 

[ ~ f ,  I Af, / ... I Af, j Av,,, / ... j AV,] 

8 0 8 ,  = [ f l  i f2 j ... j fq j vq+l j ... j v,]A 

Also, 

Since we have q  linearly independent column vectors fl , f,, . . . , f,, we can use the Cayley-Hamilton 
theorem to express vectors Afl , Af2, . . . , Af, in terms of these q  vectors. That is, 

Af, = alqfl + a2,f2 + ... + a,,f, 
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Define 

Hence, Equation (12-122) may be written as follows: 

[ ~ f ,  I Af2 j ... / Af, 1 Av,+, ! ... / AV,] 

L anq+1 . .  am _I 
Then Equation (12-122) can be written as 

[ ~ f ,  j Af2 / . . .  j A f ,  A",+, j . . .  / AV,,] 

, a L m 

=[f l  j f2 j / f q  / V q + l  j j v , ]  . . .  ... 

912 Chapter 12 / Design of Control Systems in State Space 

-- 

- - ... a l l  ... alq %,+I a ~ n  
a2, "' a2q a2q+1 "' a2n  

. /  . 
: . 
j . 

! ... 
aql "' a1,q 1 aqq+l aqn 
........................... " . . . .  ............................................. 

... '0 ... 0 I aq+lq+l a r l + l n  
: . 
. :  . 
: . 

I ... 0 ... 0 I a n q + ~  ann _ - 



Thus, 

Hence, 

Next, referring to Equation (12-123), we have 

Referring to Equation (12-121), notice that vector B can be written in terms of q linearly 
independent column vectors fl . f,, .... f,. Thus, we have 

B = bllfl + bZlf2 + ... f bylfq 

Consequently, Equation (12-124) may be written as follows: 

Thus, 

where 

A-12-2. Consider a completely state controllable system 

x = Ax + Bu 
Define the controllability matrix as M: 

M = [B / AB j ... / A"-'B] 

Example Problems and Solutions 



Show that 

where a,, a,, . . . , a, are the coefficients of the characteristic polynomial 

Solution. Let us consider the case where n = 3. We shall show that 

AM = M 1 0 -a2 

The left-hand side of Equation (12-125) is 

[:: ::I 
AM = A[B j AB j A2B] = [AB j A2B j A ~ B ]  

The right-hand side of Equation (12-125) is 

The Cayley-Hamilton theorem states that matrix A satisfies its own characteristic equation or, in 
the case of n = 3, 

+ a,A2 + a2A + a31 = 0 (12-127) 

Using Equation (12-127), the third column of the right-hand side of Equation (12-126) becomes 

Thus, Equation (12-126), the right-hand side of Equation (12-125), becomes 

Hence, the left-hand side and the right-hand side of Equation (12-125) are the same. We have 
thus shown that Equation (12-125) is true. Consequently, 

The preceding derivation can be easily extended to the general case of any positive integer n. 

A-12-3. Consider a completely state controllable system 

Define 
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where the a,'s are coefficients of the characteristic polynomial 

Is1 - A1 = sn + alsn-' + ... + a,-,s + a, 
Define also 

T = M W  
Show that 

Solution. Let us consider the case where rl = 3. We shall show that 

T-[AT = (MW)-,A(MW) = w - ~ ( M - ~ A M ) w  = L o  o k " (12-12x) 
-a3 -a2 -al 

Referring to Problem A-12-2, we have 

Hence, Equation (12-128) can be rewritten as 

0 1 -a, -a3 -a2 -a, 

Therefore, we need to show that 

The left-hand side of Equation (12-129) is 

1 0 -a, - - 
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The right-hand side of Equation (12-129) is 

1 0  

Clearly, Equation (12-129) holds true. Thus, we have shown that 

T- AT = 

-a3 -a2 -a, 

Next, we shall show that 

Note that Equation (12-130) can be written as 

Noting that 

we have 

The derivation shown here can be easily extended to the general case of any positive integer n. 

A-12-4. Consider the state equation 

x = Ax + Bu 

where 

The rank of the controllability matrix M, 

is 2.Thus, the system is completely state controllable.Transform the given state equation into the 
controllable canonical form. 

Solution. Since 
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we have 

Define 

where 

Then 

and 

Define 

x = TSt 

Then the state equation becomes 

;i = T - ~ A T ~  + T-'BU 

Since 

and 

we have 

which is in the controllable canonical form. 

A-UF5. Consider a system defined by 

where 
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The characteristic equation of the system is 

The eigenvalues of matrix A are -1 and -2. 
It is desired to have eigenvalues at -3 and -5 by using a state-feedback control u = -Kx. 

Determine the necessary feedback gain matrix K and the control signal u. 

Solution. The given system is completely state controllable, since the rank of 

is 2. Hence, arbitrary pole placement is possible. 
Since the characteristic equation of the original system is 

s2 + 3s + 2 = s2 + a l s  + a2 = 0 

we have 

a ,  = 3,  u2 = 2 

The desired characteristic equation is 

( s  + 3 ) ( s  + 5 )  = s2 + 8s + 15 = s2 + a l s  + a2 = 0 

Hence, 

It is important to point out that the original state equation is not in the controllable canonical 
form, because matrix B is not 

Hence, the transformation matrix T must be determined. 

Hence, 

Referring to Equation (12-13), the necessary feedback gain matrix is given by 

K = [ a 2  - u2 1 a1 - a l ]T- '  

Thus, the control signal LL becomes 
- - 
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A-12-6. A regulator system has a plant 

Define state variables as 

XI = Y 

x2 = il 

X3 = i2 

By use of the state-feedback control u = -Kx, it is desired to place the closed-loop poles at 

s = - 2 + j 2 * ,  s = - 2 - j 2 d ,  s = - 1 0  

Obtain the necessary state-feedback gain matrix K with MATLAB. 

Solution. The state-space equations for the system become 

Hence, 

(Note that, for the pole placement, matrices C and D do not affect the state-feedback gain 
matrix K.) 

Two MATLAB programs for obtaining state-feedback gain matrix K are given in MATLAB 
Programs 12-24 and 12-25. 
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MATLAB Program 12-25 

A= [O 1 0;O 0 1; -6 -11 -61; 
B = [0;0;101; 
J = [-2+j*2*sqrt(3) -2-J*2*Sqrt(3) -1 01; 
K = place(A,B,J) 
place: ndigits= 1 5  

K = 

15.4000 4.5000 0.8000 

A-12-7. Consider a completely observable system 

Define the observability matrix as N: 

Show that 

where al , a,, . . . 

1 0 ... 

N*A(N*)-' = 

... 
-a, an_ ,  -a,-2 ... -al 

, a, are the coefficients of the characteristic polynomial 

Solution. Let us consider the case where n = 3. Then Equation (12-131) can be written as 

1 
(12-132) 

-a3 -a2 -a, 

Equation (12-132) may be rewritten as 

N * A  = 

-ag -LIZ -a,  

We shall show that Equation (12-133) holds true. The left-hand side of Equation (12-133) is 

NZgA = [f21A = (12-134) 
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The right-hand side of Equation (12-133) is 

I 

-a3 -a2 -a, 

C A  

= 

CA2 
-a, C - a, C A  - al CA2 

The Cayley-Hamilton theorem states that matrix A satisfies its own characteristic equation, or 

A3 + u1A2 + a 2 A  + a31 = 0 

Hence, 

Thus, the right-hand side of Equation (12-135) becomes the same as the right-hand side of 
Equation (12-134). Consequently, 

N*A = [" :' I N *  
-a3 -a2 -a, 

which is Equation (12-133).This last equation can be modified to 

1 

-a3 -a2 -a, 

The derivation presented here can be extended to the general case of any positive integer n. 

A-l2-8. Consider a completely observable system defined by 

Define 

N = [c* j A*C* i ... 1 (A*)E-'C*] 

and 

where the a's are coefficients of the characteristic polynomial 

Is1 - A /  = s" + alsn-I + ... + a,-,s t- a,  

Define also 

Q = (WN*)-' 
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Show that 

where the bk's ( k  = 0,1,2,. . . , n )  are those coefficients appearing in the numerator of the transfer 
function when C(s1 - A)-'B + D is written as follows: 

where D = b,. 

Solution. Let us consider the case where n = 3. We shall show that 

Note that, by referring to Problem A-12-7, we have 

Hence, we need to show that 

0 0 -a, 
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The left-hand side of Equation (12-339) is 

The right-hand side of Equation (12-139) is 

0 1 -a, 

Thus, we see that Equation (12-139) holds true. Hence, we have proved Equation (12-138). 
Next we shall show that 

Notice that 

Hence, we have shown that 

Next define 

Then Equation (12-136) becomes 

and Equation (12-137) becomes 

For the case of n = 3, Equation (12-140) becomes 
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The transfer function G(s )  for the system defined by Equations (12-140) and (12-141) is 

Noting that 

we have 

Note that D = boa Since 

we have 

Hence, 

Thus, we have shown that 

Note that what we have derived here can be easily extended to the case when n is any positive 
integer. 

A-12-9. Consider a system defined by 
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where 

The rank of the observability matrix N, 

is 2. Hence, the system is completely observable. Transform the system equations into the ob- 
servable canonical form. 

Solution. Since 

JsI - AJ = s2 + 2s + 1 = s2 + a l s  + a, 

we have 

a ,  = 2, a, = 1 

Define 

Q = (WN*)-' 

where 

Then 

and 

Define 

x = Q i  

Then the state equation becomes 

The output equation becomes 
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Equations (12-142) and (12-143) are in the observable canonical form. 

A-12-10. For the system defined by 
x = Ax + Bu 

consider the problem of designing a state observer such that the desired eigenvalues for the 
observer gain matrix are p,, p2,. . . , p,. 

Show that the observer gain matrix given by Equation (12-61), rewritten as 

can be obtained from Equation (12-13) by considering the dual problem. That is, the matrix K, 
can be determined by considering the pole-placement problem for the dual system, obtaining the 
state-feedback gain matrix K, and taking its conjugate transpose, or K, = K*. 

Solution. The dual of the given system is 

i = A*z $. C*v (12-145) 

Using the state-feedback control 

v = -Kz 

Equation (12-145) becomes 

z = (A* - C*K)z 

Equation (12-13), which is rewritten here, is 

K = [a, - a, a,_, - a,-1 j ... I a2 - a2 I a,  - a , ] ~ - '  (12-146) 

where 

For the original system, the observability matrix is 

Hence, matrix T can also be written as 

T = NW 

Since W = W*, we have 
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and 

Taking the conjugate transpose of both sides of Equation (12-146), we have 

a n - 1  - an-, ffn-I - an-I 

K* = ( ~ - l ) *  = (T*)-' = (wN*)-I 

ff1 - a1 f f l  - a1 

Since K, = K*, this last equation is the same as Equation (12-144).Thus, we obtained Equation 
(12-144) by considering the dual problem. 

A - 1 - 1 1  Consider an observed-state feedback control system with a minimum-order observer described 
by the following equations: 

where 

(x ,  is the state variable that can be directly measured, and %, corresponds to the observed state 
variables.) 

Show that the closed-loop poles of the system comprise the closed-loop poles due to pole 
placement [the eigenvalues of matrix (A - BK)] and the closed-loop poles due to the minimum- 
order observer [the eigenvalues of matrix (A,, - K, A,,)] 

Solution. The error equation for the minimum-order observer may be derived as given by 
Equation (12-94), rewritten thus: 

e = (A,, - K,A,,)~ (12-149) 

where 
- 

e = x , -  X ,  

From Equation (12-147) and (12-148), we obtain 

Combining Equations (12-149) and (12-150) and writing 

we obtain 

Example Problems and Solutions 



Equation (12-151) describes the dynamics of the observed-state feedback control system with a 
minimum-order observer. The characteristic equation for this system is 

The closed-loop poles of the observed-state feedback control system with a minimum-order 
observer consist of the closed-loop poles due to pole placement and the closed-loop poles due to 
the minimum-order observer. (Therefore, the pole-placement design and the design of the 
minimum-order observer are independent of each other.) 

A-1212. Consider a completely state controllable system defined by 

where x = state vector (n-vector) 

u = control signal (scalar) 

y = output signal (scalar) 

A = n X n constant matrix 

B = n X 1 constant matrix 

C = 1 X n constant matrix 

Suppose that the rank of the following (n f 1) X (n + 1 )  matrix 

is n + 1. Show that the system defined by 

where 

is completely state controllable. 

Solution. Define 

Because the system given by Equation (12-152) is completely state controllable, the rank of matrix 
M is n. Then the rank of 

is n + 1. Consider the following equation: 

Since matrix 

[-: BO] 
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is of rank n + 1, the left-hand side of Equation (12-154) is of rank n + 1. Therefore, the right-hand 
side of Equation (12-154) is also of rank n + 1. Since 

A[B i AB j ... i 

-CM 0 -C[B / AB j ... j A"-~B] An-1B1 Bl 0 

AB / A2B ... 
-CB j -CAB j ... 

=['&i i A ~ B  i ... / k B  i B] 
we find that the rank of 

[k i '&k i ir i . .  i k f j ]  

is n + 1. Thus, the system defined by Equation (12-153) is completely state controllable. 

A-12--13. Consider the system shown in Figure 12-41. Using the pole-placement-with-observer approach, 
design a regulator system such that the system will maintain the zero position ( y l  = 0 and y, = 0 )  
in the presence of disturbances. Choose the desired closed-loop poles for the pole placement part 
to be 

s = -2 + j 2 a ,  s = -2 - j2*, s = -10, s = -10 

and the desired poles for the minimum-order observer to be 

s = -15, s = -16 

First, determine the state feedback gain matrix K and observer gain matrix K,. Then, obtain 
the response of the system to an arbitrary initial condition-for example, 

y1(O) = 0.1, ~ ( 0 )  = 0 ,  Ll(0)  = 0 ,  Y2(0) = 0 

e,(O) = 0.1, e,(O) = 0.05 

where el and e, are defined by 

el = Yl - y", 

e2 = Y2 - y"2 

Assume that m ,  = 1 kg, rn, = 2 kg, k = 36 N/m, and b = 0.6 N-s/m 

Solution. The equations for the system are 

m l ~ l  = k(y2 - Y,)  + b ( ~ 2  - ~ 1 )  + u 

m 2 ~ 2  = k(y1 - ~ 2 )  + b(Y1 - Y 2 )  

By substituting the given numerical values for m, ,  m2,  k, and b and simplifying, we obtain 

y1 = -36yl + 36y2 - 0.6y1 + 0.6y2 + u 

y2 = 18yl - 18y2 + 0 . 3 ~ ~  - 0 . 3 ~ ~  

Figure 12-41 
Mechanical system. 

I Regulator 
- - - - - - - - . 
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Let us choose the state variables as follows: 

X I  = Yl 

x 2  = Y2 

x 3  = ~l 

. X4 = y2 
Then, the state-space equations become 

0 1 0 0  

Define 

-36 36 1 -0.6 0.6 
18 -18 j 0.3 -0.3 

The state feedback gain matrix K and observer gain matrix K, can be obtained easily by use of 
MATLAB as follows: . . 

K = [130.4444 -41.5556 23.1000 15.41851 

(See MATLAB Program 12-26.) 

Aab = [ I  0;O I ] ;  
Abb = [-0.6 0.6;0.3 -0.31; 
L = [-I 5 -1 61; 
Ke = place(Abb',Aabl,L)' 
place: ndigits= 15 
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Response to Initial Condition: Next, we obtain the response of the designed system to the given 
initial condition. Since 

x = Ax + Bu 
u = -K% 

,we have 
ir = Ax - B K b  ( A  - BK)x + BK(X - 2 )  

Note that 

where 

Then, Equation (12-155) can be written as 
x = (A - BK)x + BKFe (12-156) 

Since, from Equation (12-94), we have 

= (A,, - K,A,,,)e (12-157) 
by combining Equations (12-156) and (12-157) into one equation, we have 

- BK I BKF ..................... ..................................... 

0 ! Abb - Kc A,,,, 
The state matrix here is a 6 X 6 matrix.The response of the system to the given initial condition 
can be obtained easily with MATLAB. (See MATLAB Program 12-27.) The resulting response 
curves are shown in Figure 12-42. The response curves seem to be acceptable. 

Response to ln~tlai condition Response to ~n~ t l a i  cond~t~on 

0 I 2 3 4 0 1 2 3 4 
f (sec) t (sec) 

0 2 ;-:.:F! -0 4 $ -0 .-.q,,,- 1 - ' 

-0 6 
0 

-0 2 
1 2 3 4 0 1 2 3 4 

t (sec) t (sec) 

Figure 12-42 
Response curves to 
initial condition. i (sec) t (sec) 

Example Problems and Solutions 931 



MATLAB Program 12-27 

% Response to initial condition 

A =  [O 0 1 0;O 0 0 1;-36 36 -0.6 0.6;18 -18 0.3 -0.31; 
B = [0;0;1;01; 
K = [ I  30.4444 -41.5556 23.1 000 15.41 851; 
Ke = [14.4 0.6;0.3 15.71; 
F = [O 0;o 0;l 0;o 1 I; 
Aab = [ I  0;O 11; 
Abb = [-0.6 0.6;0.3 -0.31; 
AA = [A-B*K B*K*F; zeros(2,4) Abb-Ke*Aabj; 
sys = ss(AA,eye(6),eye(6),eye(6)); 
t = 0:0.01:4; 
y = initialkys, [0.1;0;0;0;0.1;0.051,t); 
XI = [ I  0 0 0 0 OI*y1; 
x2 = [O 1 0 0 0 OI*y1; 
x3 = [O 0 1 0 0 OI*y1; 
x4 = [O 0 0 1 0 0]*y1; 
e l  = [ 0  0 0 0 1 O1*y1; 
e2=[O 0 0 0 0 I]*yl; 

subplot(3,2,1); plot(t,xl); grid; title('Response to initial condition'), 
xlabel('t (sec)'); ylabel('x1 ') 
subplot(3,2,2); plot(t,x2); grid; title('Response to initial condition'), 
xlabel('t (sec)'); ylabel('x2') 
subplot(3,2,3); plot(t,x3); grid; xlabel('t (sec)'); ylabel('x3') 
subplot(3,2,4); plot(t,x4); grid; xlabel('t (sec)'); ylabel('x4') 
subplot(3,2,5); plot(t,el); grid; xlabel('t (sec)');ylabel('el ') 
subplot(3,2,6); plot(t,e2); grid; xlabel('t (sec)'); ylabel('e2') 

A-12-14. Consider the system shown in Figure 12-43. Design both the full-order and minimum-order 
observers for the plant. Assume that the desired closed-loop poles for the pole placement part are 
located at 

-y _ Obseryer 4 Y - 
controller s(s + 2) I - 

Figure 12-43 
Regulator system. 

Plant I 
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Assume also that the desired observer poles are located at 

(a) s = -8, s = -8 for the full-order observer 
(b) s = -8 for the minimum-order observer 

Compare the responses to the initial conditions specified below: 

(a) for the full-order observer: 
x,(O) = 1, x , ( O )  = 0, el(0) = 1, ez(0) = 0 

(b) for the minimum-order observer: 

x,(O) = I, x2(0) = 0, el(0) = 1 
Also, compare the bandwidths of both systems. 

Solution. We first determine the state-space representation of the system. By defining state 
variables x, and x2 as 

x1 = Y 
x2 = y 

we obtain 

[::I = [: -:][::I + [3 
Y = 0 1 [ ~ 1 ]  x2 

For the pole-placement part, we determine the state feedback gain matrix K. Using MATLAB, 
we find K to be 

K = [4 0.51 
(See MATLAB Program 12-28.) 

Next, we determine the observer gain matrix K, for the full-order observer. Using MATLAB, 
we find K, to be 

(See MATLAB Program 12-28.) 

MATLAB Program 12-28 

% Obtaining matrices K and Ke. 
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Now we find the response of this system to the given initial condition. Referring to Equation 
(12-70), we have 

A - BK [:I=[ 0 A - K e C  

This equation defines the dynamics of the designed system using the full-order observer. MATLAB 
Program 12-29 produces the response to the given initial condition. The resulting response curves 
are shown in Figure 12-44. 

I MATLAB Program 12-29 1 
O/O Response to initial condition ---- full-order observer 

A =  [O 1;o -21; 
B = [0;41; 
C = [ I  01; 
K = [4 0.51; 
Ke = [14;36]; 
AA = [A-B*K B*K; zeros(2,2) A-Ke*C]; 
sys = ss(AA, eye(4), eye(4), eye(4)); 
t = 0:0.01:8; 
x = initial(sys, [1;0;1;01,t); 
XI = [l 0 0 0]*x1; 
x2 = [O 1 0 OI*x1; 
e l  = [O 0 1 O1*x1; 
e2 = [O 0 0 l1*x1; 

subplot(2,2,4); plot(t,e2); grid 
xlabel('t (sec)'); ylabel('e2') 

To obtain the transfer function of the observer controller, we use MATLAB. MATLAB 
Program 12-30 produces this transfer function. The result is 

num 74s + 256 
-=  - - 74 ( s  + 3.4595) 

den s2 + 18s f 108 ( s  + 9 + j5.1962)(s + 9 - j5.1962) 

Next, we obtain the observer gain matrix K, for the minimum-order observer. MATLAB 
Program 12-31 produces Kc. The result is 
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Figure 12-44 
Response curves 1.0 
initial condition. 

t (sec) 

0 4 

0 2 

0 lzl -0 2 
0 2 4 . 6 8  

I (sec) 

0 2 4 6 8 
t (sec) 

-2 
0 2 4 6 8  

t (sec) 

MATLAB Program 12-30 

% Determination of transfer function of observer controller ---- full-order observer 

A = [O 1 ;0 -21; 
B = [0;4]; 
C = [ I  01; 
K = [4 0.51; 
Ke = [ I  4;361; 
[num,denl = ss2tf(A-Ke*C-B*K, Ke,K,O) 

num = 

0 74.0000 256.0000 

den = 

1 18 108 

MATLAB Program 12-31 

% Obtaining Ke ---- minimum-order observer 

Aab = [ I ] ;  
Abb = [-21; 
LL = 1-81; 
Ke = acker(Abb',Aab',LL)' 

Ke = 

6 
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The response of the system with minimum-order observer to the initial condition can be obtained 
as follows: By substituting u = -Kk into the plant equation given by Equation (12-79) we find 

X = A x -  BKk = A x -  B K x +  B K ( x -  2) 

or 

x = (A - BK)x + BKbe 

The error equation is 

Hence the system dynamics are defined by 

Based on this last equation, MATLAB Program 12-32 produces the response to the given initial 
condition. The resulting response curves are shown in Figure 12-45. 

MATLAB Program 12-32 

% Response to intial condition ---- minimum-order observer 

A = [O 1 ;0 -21; 
B = [0;41; 
K = [4 0.51; 
Kb = 0.5; 
Ke = 6; 
Aab= l ;Abb=-2 ;  
AA = [A-BYK B*Kb; zerodl ,2) Abb-Ke*Aab]; 
sys = ss(AAIeye(3),eye(3),eye(3)); 
t = 0:0.01:8; 
x = initial(sys, [I ;O;l 1,t); 
XI = [I 0 0]*x1; 
x2 = [O 1 0]*x1; 
e = [O 0 l1*x1; 

subplot(2,2,1); plot(t,xl); grid 
xlabel(lt (sec)'); ylabel('x1 ') 

subplot(2,2,2); plot(t,x2); grid 
xlabel('t (sec)'); ylabel('x2') 

subplot(2,2,3); plot(t,e); grid 
xlabel(lt (sec)'); ylabel('el) 
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Figure 12-45 
Response curves to 
initial condition. 
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The transfer function of the observer controller, when the system uses the minimum-order 
observer, can be obtained by use of MATLAB Program 12-33. The result is 

L 

num 7s + 32 7 ( s  + 4.5714) -- - 
den s  + 10 s + 10 

MATLAB Program 12-33 

% Determination of transfer function of observer controller ---- minimum-order observer 

A = [O 1 ;0 -21; 
B = [0;41; 
Aaa=O;Aab= l ;Aba=O;Abb=-2;  
Ba = 0; Bb =4; 
Ka = 4; Kb = 0.5; 
Ke = 6; 
Ahat = Abb - Ke*Aab; 
Bhat = Ahat*Ke + Aba - Ke*Aaa; 
Fhat = Bb - Ke*Ba; 
Atilde = Ahat - Fhat*Kb; 
Btilde = Bhat - Fhat*(Ka + Kb*Ke); 
Ctilde = -Kb; 
Dtilde = -(Ka + Kb*Ke); 
[num,denl = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde) 

I num = 

den = 

1 1 0  
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Bode Diagrams of Systems 

Figure 12-46 
Bode diagrams of System 1 
(system with full-order 
observer) and System 2 
(system with minimum- 
order observer). 
System 1 = 
(296s + 1024)/ 
(s4 + 20s3 + 144s2 
+ 512s + 1024) 

System 2 = (28s + 128)/ 
(s3 + 12s' + 48s + 128) 

1 o0 10' 
Frequency (radisec) 

The observer controller is clearly a lead compensator. 
The Bode diagrams of System 1 (closed-loop system with full-order observer) and of Sys- 

tem 2 (closed-loop system with minimum-order observer) are shown in Figure 12-46. Clearly, the 
bandwidth of System 2 is wider than that of System 1. System 1 has a better high-frequency noise- 
rejection characteristic than System 2. 

A-12-15. Consider the system 

x = Ax 

where x is a state vector (n-vector) and A is an n X n constant matrix. We assume that A is non- 
singular. Prove that if the equilibrium state x = 0 of the system is asymptotically stable (that is, if 
A is a stable matrix), then there exists a positive-definite Hermitian matrix P such that 

where Q is a positive-definite Hermitian matrix. 

Solution. The matrix differential equation. 

x = A*X + XA, X(0) = Q 

has the solution 

X = e A L [ ~ e A r  

Integrating both sides of this matrix differential equation from t  = 0 to t  = co, we obtain 

X(m) - X(0) = A * ( L m X  d t )  + ( i w X  d t )  A 
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Noting that A is a stable matrix and, therefore, X(oo) = 0, we obtain 

Let us put 

Note that the elements of eA1 are finite sums of terms like eA", teAcl . . . , tml-' eAJ, where the A, are 
the eigenvalues of A and rn, is the multiplicity of A,. Since the A, possess negative real parts, 

exists. Note that 

Thus P is Hermitian (or symmetric if P is a real matrix). We have thus shown that for a stable A 
and for a positive-definite Hermitian matrix Q, there exists a Hermitian matrix P such that 
A*P + PA = -Q. We now need to prove that P is positive definite. Consider the following Her- 
mitian form: 

= ~ w ( e * l x ) * ~ ( e ~ l x )  dt > 0, for x + 0 

= 0, for x = 0 

Hence, P is positive definite. This completes the proof. 

A-12-16. Consider the following scalar system: 

where a < 0 and the performance index is given by 

where q > 0 and r > 0. The optimal control law that will minimize the performance index J can 
be given by 

u = - K x  (12-160) 

Substituting Equation (12-160) into Equation (12-158) gives 

x = (a  - b K ) x  
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Also, substituting Equation (12-160) into Equation (12-159) gives 

J = + ~ K ~ ) X '  dt 

Let us set 

which can be simplified to 

[q  + rK2 + 2p(a - bK)]xZ = 0 

For this last equation to hold true for any x(t), we require 

q + rK2 + 2p(a - b K )  = 0 

Referring to Problem A-12-15, if a - bK is stable (meaning that it is negative), then, for a given 
q + rK2, there exists a positive p such that 

which is the same as Equation (12-161). Hence, there exists a p  that satisfies Equation (12-161). 
Show that the optimal control law can be given by 

and p can be determined as a positive root of the following equation: 

Solution. For a stable system, we have x(cm) = 0. Hence, the performance index can be evaluated 
as follows: 

To minimize the value of J [for a given x(0)] with respect to K, we set 

- d p  - - 0  
dK 

where, referring to Equation (12-161), 
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Thus, 

which yields 

Hence, we have 

From Equations (12-164) and (12-165), we obtain 

By substituting Equation (12-166) into Equation (12-161), we obtain 

p2b2 
q + 2 p a - - = 0  

Y 

which is Equation (12-162).The value of p can be determined as a positive root of the quadratic 
equation given by Equation (12-167). 

The same results can be obtained in a different way. First note that Equation (12-161) can be 
modified as follows: 

Then, considering this last equation as a function of K, the minimum of the left-hand side of this 
last equation with respect to K occurs when 

which is Equation (12-166). Thus, the minimization of J with respect to K is the same as the 
minimization of the left-hand side of Equation (12-161) with respect to K. By substituting 
Equation (12-169) into Equation (i2-168), we obtain 

which is Equation (12-162). 
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A-1217. Consider the control system described by 

x = Ax + Bu 

where 

Assuming the linear control law 

determine the constants k1  and k2 so that the following performance index is minimized: 

Consider only the case where the initial condition is 

Choose the undamped natural frequency to be 2 rad/sec. 

Solution. Substituting Equation (12-171) into Equation (12-170), we obtain 

Thus, 

Elimination of x, from Equation (12-172) yields 

Since the undamped natural frequency is specified as 2 rad/sec, we obtain 

kl = 4 

Therefore, 

A - BK is a stable matrix if k2 > 0. Our problem now is to determine the value of k2 so that the 
performance index 
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is minimized, wherc ,he matrix P is determined from Equation (12-115), rewritten 

( A  - BK)*P + P(A - BK) = -(Q + K*RK) 

Since in this system Q = I and R = 0, this last equation can be simplified to 

(A - BK)*P + P(A - BK) = -I (12-173) 

Since the system involves only real vectors and real matrices, P becomes a real symmetric matrix. 
Then Equation (12-173) can be written as 

Solving for the matrix P, we obtain 

The performance index is then 

To minimize J, we differentiate J with respect to k2  and set aJ/ak2 equal to zero as follows: 

Hence, 

With this value of k,, we have d2J/dk; > 0. Thus, the minimum value of J is obtained by substi- 
tuting k2 = d% into Equation (12-174), or 

The designed system has the control law 

The designed system is optimal in that it results in a minimum value for the performance index J 
under the assumed initial condition. 

Example Problems and Solutions 943 



A-12-18. Consider the same inverted-pendulum system as discussed in Example 12-5.The system is shown 
in Figure 12-8, where M = 2 kg, m = 0.1 kg, and 1 = 0.5 m. The block diagram for the system is 
shown in Figure 12-9. The system equations are given by 

x = Ax + Bu 

y = Cx 

u = -Kx + k i t  

l = r - y = r - C x  

where 

Referring to Equation (12-51), the error equation for the system is given by 

where 

and the control signal is given by Equation (12-41): 

where 

K = [ K  i - k l ]  = [k l  k2 k3 k4 i -k l]  
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Using MATLl'&, determine the state feedback gain matrix k such that the following 
performance index J is minimized: 

I = im(e* ~e + u* Ru) dt 

where 

100 0 0 0 0 

Obtain the unit-step response of the system designed. 

Solution. A MATLAB program to determine K is given in MATLAB Program 12-34. 
The result is 

K = [-188.0799 -37.0738 -26.6767 -30.5824 10.0000] 

Hence 

MATLAB Program 12-34 1 
% Design of quadratic optimal control system 1 
A = 10 1 0 0;20.601 0 0 0;O 0 0 1;-0.4905 0 0 01; 
6 = [O;-1;0;0.5]; 
C = [O 0 1 01; 
D = 101; 
Ahat = [A zeros(4,l 1;-C' 01; 
Bhat = [B;O]; 
Q = [ 1 0 0  0 0 0 0;o 1 0  0 0;o 0 1 0  0;o 0 0 10 ;o  0 0 0 11; 
R = [0.01 I; 
Khat = Iqr(Ahat,Bhat,Q,R) 

Khat = I 

Unit-Step Response Once we have determined the feedback gain matrix K and the integral gain 
constant k,, we can determine the unit-step response of the designed system.The system equation 
is 
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[Refer to Equation (12-35).] Since 

u -Kx + k , [  

Equation (12-175) can be written as follows: 

MATLAB Program 12-35 gives the unit-step response of the system given by equation (12-176). 
The resulting response curves are presented in Figure 12-47. It shows response curves 0 [= x , ( t ) ]  

versus t ,  t )  [= xz ( t ) ]  versus t ,  y [= x,(t)]  versus t ,  j [= x,(t)]  versus t ,  and 5 [= xs ( t ) ]  versus t ,  where 
the input r ( t )  to the cart is a unit-step function [ r ( t )  = 1 m]. All initial conditions are set equal 
to zero. Figure 12-48 is an enlarged version of the cart position y [= x3 ( t ) ]  versus t .  The cart 
moves backward a very small amount for the first 0.6 sec or so. (Notice that the cart velocity is 

MATLAB Program 12-35 

O/O Unit-step response 

A =  [O 1 0 0;20.601 0 0 0;O 0 0 1;-0.4905 0 0 01; 
B = [0;-1;0;0.51; 
C = [O 0 1 01; 
D = [O]; 
K = [-I 88.0799 -37.0738 -26.6767 -30.58241; 
kl = -1 0.0000; 
AA = [A-B*K B*kl; -C 01; 
BB = [0;0;0;0;1 I; 
c c =  [C 01; 
D D  = D; 
t = 0:0.01 :I 0; 
[y,x,t] = step(AA,BB,CC,DD,I ,t); 
XI = [ I  0 0 0 OI*x1; 
x2 = [O 1 0 0 OI*x1; 
x3 = [0 0 1 0 0]*x1; 
x4 = [O 0 0 1 OI*x1; 
x5 = [O 0 0 0 l1*x1; 

subplot(3,2,1); plot(t,xl); grid; 
xlabel('t (sec)'); ylabel('x1 '1 

subplot(3,2,2); plot(t,x2); grid; 
xlabel('t (sec)'); ylabel('x2') 

subplot(3,2,3); plot(t,x3); grid; 
xlabel('t (sec)'); ylabel('x3') 

subplot(3,2,4); plot(t,x4); grid; 
xlabel('t (sec)'); ylabel('x4') 

subplot(3,2,5); plot(t,x5); grid; 
xlabel('t (sec)'); ylabel('x5') 
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Figure 12-47 
Response curves to a 
unit-step input. 

Figure 12-48 
Cart position versus t 
curve. 
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negative for the first 0.4 sec.) This is due to the fact that the inverted-pendulum-on-the-cart system 
is a nonminimum-phase system. 

Comparing the step-response characteristics of this system with those of Example 12-5, we 
notice that the response of the present system is less oscillatory and exhibits less maximum 
overshoot in the position response ( x 3  versus t ) .  The system designed by use of the quadratic 
optimal regulator approach generally gives such characteristics-less oscillatory and well damped. 

- 
- 

Cart Position xj versus t 
1.2 
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PROBLEMS 

8-12-1. Consider the system defined by B-12-5. Consider the system defined by 

where 

A=[-; - 0 -3 :], B=[!], C = [ l  1 0 1  

Transform the system equations into (a) controllable canon- 
ical form and (b) observable canonical form. 

B-12-2. Consider the system defined by 

x = Ax + Bu 

where 

Transform the system equations into the observable canon- 
ical form. 

B-12-3. Consider the system defined by 

where 

By using the state-feedback control u = -Kx, it is desired to 
have the closed-loop poles at s = -2 k 14, s = -10. Deter- 
mine the state-feedback gain matrix K. 

B-124. Solve Problem B-12-3 with MATLAB. 

Figure 12-49 . 

Type 1 servo system. 

Show that this system cannot be stabilized by the state- 
feedback control u = -Kx, whatever matrix K is chosen. 

B-12-6. A regulator system has a plant 

Define state variables as 

XI = Y 
X* = x1 

X3 = x2 

By use of the state-feedback control u = -Kx, it is desired 
to place the closed-loop poles at 

Determine the necessary state-feedback gain matrix K. 

B-12-7. Solve Problem B-12-6 with MATLAB. 

B-12-8. Consider the type 1 servo system shown in Figure 
12-49. Matrices A, B, and C in Figure 12-49 are given by 

Determine the feedback gain constants k l ,  k2,  and k, such 
that the closed-loop poles are located at 

Obtain the unit-step response and plot the output 
y (t)-versus-t curve. 

948 Chapter 12 / Design of Control Systems in State Space 



Figure 12-50 
Inverted-pendulum. system. 

B-12-9. Consider lhe inverted-pendulum system shown in 
Figure 12-50. Assume that 

M = 2 kg,, rn = 0.5 kg, 1 = 1 m 

Define state variables as 

x, = 0, X 2  = 0, X3 = X, X q  = x 

and output variables as 

y I = O = x , ,  y 2 = x = x 3  

Derive the state-space equations for this system. 
It is desired to have closed-loop poles at 

s = -4 + j4, s = -4 - j4, s = -20, s = -20 

Design a full-order state observer. The desired observer 
poles are s = -5 and s = -5. 

B-12-11. Consider the system defined by 

where 

Design a full-order state observer, assuming that the desired 
poles for the observer are located at 

B-12-12. Consider the system defined by 

Given the set of desired poles for the observer to be 

design a full-order observer. 

Determine the state:-feedback gain matrix K. B-12-13. Consider the double integrator system defined by 
Using the state-feedback gain matrix K thus determined, 

jj = u 
examine the performance of the system by computer simu- 
lation. Write a MATLAB program to obtain the response of If We choose the state as 

the system to an arbitrary initial condition. Obtain the X I  = Y 
response curves n-, ( t )  versus t ,  x, ( t )  versus t ,  x, ( t )  versus t ,  x2 = y 
and x,(t) versus t  for the following set of initial'condition: 

then the state-space representation for the system becomes 
x,(O) = 0, ~ ~ ( ( 1 )  = 0, ~ ~ ( 0 )  = 0, ~ ~ ( 0 )  = 1 m/s as follows: 

B-12-10. Consider the system defined by 

Problems 



It is desired to design a regulator for this system. Using the The desired observer poles are 
pole-placement-with-observer approach, design an observer = = = for the full-order observer 
controller. 

Choose the desired closed-loop poles for the pole- 
placement part to be 

and assuming that we use a minimum-order observer, choose 
the desired observer pole at 

s = -5 

B-12-14. Consider the system 

x = Ax + Bu 

y = Cx 

where 

Design a regulator system by the pole-placement-with- 
observer approach. Assume that the desired closed-loop 
poles for pole placement are located at 

The desired observer poles are located at 

s = -6, s = -6, s = -6 

Also, obtain the transfer function of the observer controller. 

B-12-15. Using the pole-placement-with-observer approach, 
design observer controllers (one with a full-order observer and 
the other with a minimum-order observer) for the system 
shown in Figure 12-51. The desired closed-loop poles for the 
pole-placement part are 

controller A($ + 4) (A + 6 )  

Figure 12-51 
Control system with observer controller in the 
feedforward path. 

s = -10, s = -10 for the minimum-order observer. 

Compare the unit-step responses of the designed systems. 
Compare also the bandwidths of both systems. 

B-12-16. Using the pole-placement-with-observer approach, 
design the control systems shown in Figures 12-52(a) and (b). 
Assume that the desired closed-loop poles for the pole place- 
ment are located at 

and the desired observer poles are located at 

Obtain the transfer function of the observer controller. 
Compare the unit-step responses of both systems. [In System 
(b), determine the constant N so that the steady-state out- 
put y (m)  is unity when the input is a unit-step input.] 

B-12-17. Consider the system defined by 

where 

A = 

-1 -2 -a 

a = adjustable parameter > 0 

Observer I Y(s) 

controller S(S + I) 

1 I Y(s) * 
S(S + 1) 

Plant 

Observer 
controller 

(b) 

Figure 12-52 
Control systems with observer controller: (a) observer 
controller in the feedforward path; (b) observer controller 
in the feedback path. 
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Determine the value of the parameter u so as to minimize 
the following performance index: 

J = d m X T x  dl 

Assume that the initial state x(0) is given by 

B-12-18. Conside:r the system shown in Figure 12-53. 
Determine the val~le of the gain K so that the damping ratio 
5 of the closed-loojp system is equal to 0.5. Then determine 
also the undamped natural frequency w, of the closed-loop 
system. Assuming that e(0) = 1 and e ( 0 )  = 0, evaluate 

B-12-19. Determine the optimal control signal u for the 
system defined by 

where 

such that the follovving performance index is minimized: 

B-1220. Consider the system 

It is desired to find the optimal control signal LL such that 
the performance index 

is minimized. Determine the optimal signal u( t ) .  

B-12-21. Consider the inverted-pendulum system shown 
in Figure 12-50. It is desired to design a regulator system 
that will maintain the inverted pendulum in a vertical posi- 
tion in the presence of disturbances in terms of angle 6 
and/or angular velocity e. The regulator system is required 
to return the cart to its reference position at the end of each 
control process. (There is no reference input to the cart.) 

The state-space equation for the system is given by 

where 

r o 1 0 0 1  

We shall use the state-feedback control scheme 

Using MATLAB, determine the state-feedback gain matrix 
K = [ k ,  kz k, k,] such that the following performance 
index J is minimized: 

where 

Then obtain the system response to the following initial 
condition: 

Plot response curves 0 versus t ,  $, versus t ,  x versus t ,  and k 
versus t .  

Figure 12-53 
Control system. 

Problems 
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table of, 17-18 

Lead compensation, 620,645 
Lead compensator, 418,421,478,621-22 

Bode diagram of, 622 
design by frequency-response method, 

622-24 
design by root-locus method, 422-23 
polar plot of, 621 

Lead network, 100-01,418,422,458, 
495-96 

electronic, 421 
mechanical, 456-57 

Linear system, 54 
constant coefficient, 54 

Linear time-invariant system, 54 
Linear time-varying system, 54 
Linear transformation, 759 
Linearization: 

of hydraulic servo system, 177-180 
of nonlinear systems, 112-14 

Liquid-level control system, 153-58 
Liquid-level systems, 153,155-56,192-96 
Logarithmic decrement, 301 
Logarithmic plot, 497 
Log-magnitude versus phase plot, 539 
Loop, 104 

gain, 104 

M 
M circles, 576 
Magnitude condition, 339 
Manipulated variable, 2 
Mapping theorem, 544-45,594 
Mason, S.J., 104 
Mason's gain formula, 104,109-11 
Mathematical model, 53-54 
MATLAB: 

obtaining maximum overshoot with, 
252-53, 307 

obtaining peak time with, 252-53, 307 
obtaining response to initial condition, 

263-68 
partial-fraction expansion with, 36-39 
plotting Bode diagram with, 51 6-23 
plotting root loci with, 358-68 
writing text in diagrams, 247-49, 652 

MATLAB commands: 
[A,B,C,D] = tf2ss(num,den), 83,760 
abs, 651 
acker, 83940,877 
angle, 651 
bode 516 
bode(A,R,C,D), 516,522 
bode(A,B,C,D, iu), 522 
bode(sys), 516 
bode(A,B,C,D,w), 516 
bode(num,den), 516 
bode(num,den,w), 516 
c = step(num,den,t), 249 
for loop, 308,314,693 
[Gm,pm,wcp,wcg,l = margin(sys),567 
gtext ('text'), 249 
impulse(A,B,C,D), 254 
impulse(num, denl.254 

Index 



MAJLAB commands (Cont.) 
logspace(d1 ,d2,n), 516-517 
Iqr(A,B,Q,R), 901 
isrm(A,B,C,D,u,t), 260 
Is~m(num,den,r,t), 260 
magdB = 20*log1 O(mag), 516,519 
[mag,phase,w] = bode(A,B,C,D), 516 
[mag,phase,w] = bode(A,B,C,D,ru,w), 

516 
[mag,phase,w] = bode(A,B,C,D,w), 

516 
[mag,phase,w] = bode(num,den), 516 
[mag,phase,w] = bode(num,den,w), 

516,519,574 
[mag,phase,w] = bode(sys),516 
[mag,phase,w] = bode(sys,w), 574 
mesh, 250-52,314 
[Mp,kl = max(mag), 574 
NaN, 903 
[num,den] = feedback(num1 ,denl, 

num2,den2), 61 
[num,den] = parallel(num1 ,den1 , 

num2,den2), 61 
[num,den] = resrdue(r,p,k), 3s 
[num,den] = serles(num1 ,den1 , 

num2,den2), 61 
[num, den] = sstZtf(A,B,C,D), 84,364, 

761 
[num,den] = ss2tf(A,B,C,D,ru), 84,761 
[NUM,den] = ssZtf(A,B,C,D,lu), 128, 

763 
nyqu~st(A,B,C,D), 532,536,538 
nyqurst(A,B,C,D,iu), 537 
nyquist(A,B,C,D,ru,w), 532,537 
nyqu~st(A,B,C,D,w), 532 
nyqurst(num,den), 532 
nyqulst(num, den,w), 532 
nyqurst(sys), 532 
place, 839-40,877 
polar, 651-52 
pnntsys(num,den), 61,249 
pr~ntsys(num,den,'s'), 38,249 
r = abs(z), 651 
[r,K] = rlocus(A,B,C,D), 359 
[r,K] = rlocus(A,B,C,D,K), 359 
[r,l<] = rlocus(num,den), 358 
[r,K] = rlocus(num,den,K), 358 
[r,K] = rlocus(sys), 359 
[r,p,K]= residue(num,den), 37 
[re,rm,wj = nyquist(A,B,C,D), 532 

[re,im,w] = nyquist(sys), 532 
residue, 37 
resonant-frequency = w(k), 574 
resonant-peak = 20*logl O(Mp), 574 
rlocfind, 369-70 
rlocus(A,B,C,D), 358 
rlocus(A,B,C,D,K), 358 
rlocus(num,den), 358 
rlocus(num,den,K), 358 
semilogx, 519-20 
sgrid, 365 
step(A,B,C,D), 244,246 
step(num,den), 244 
step(num,den,t), 244 
step(sys), 244 
sys = ss(A,B,C,D), 244 
sys = tf(num,den), 244 
text, 247 
theta = angle(z), 651 
y = Isim(A,B,C,D,u,t), 260 
y = Isim(num,den,r,t), 260 
[y, x, t] = impulse(A,B,C,D),254 
[y, x, t] = impulse(A,B,C,D,iu),254 
[y, x, t] = impulse(A,B,C,D,iu,t),254 
[y, x, t] = impulse(num,den), 254 
[y, x, t] = impulse(num,den,t),254 
[y, x, t] = step(A,B,C,D,iu), 244 
[y, x, t] = step(A,B,C,D,iu, t),244 
[y, x, t] = step(num,den,t), 244,249 
z = re+j*im, 651 

Matrix exponential, 765,773 
closed solution for, 768 
computation of, 773-77 

Matrix Riccati equation, 902 
Maximum overshoot: 

in unit-impulse response, 239 
in unit-step response, 230,232 
versus 5 curve, 234 

Maximum percent overshoot, 230 
Maximum phase lead angle, 622 
Measuring element, 63 
Mechanical vibratory system, 271 

computer simulations of, 274-75 
Mercury thermometer system, 210 
Minimal polynomial, 773,805,808 
Minimum-order observer, 871-77 

based controller, 881 
Minimum-order state observer, 856 
Minimum-phase system, 371,509-10 
Minimum-phase transfer function, 

509,584 
Mixed node, 104 
Modern control theory, 70 
Modified Nyquist path, 559 
Modified s-plane contour, 559 
Motor torque constant, 139 



Motorcycle suspension system, 132 
Multiple-loop system, 554 

N 
N circles, 578 
Newton's second law, 81 
Nichols chart, 581 
Nichols plots, 539 
Node, 104 
Nonbleed-type relay, 163 
Nonhomogeneous state equation: 

solution of, 770-71 
Noninverting amplifier, 97 
Nonlinear mathematical models: 

linear approximation of, 112-14 
Nonlinear system, 112 
Nonminimum-phase systems, 371,509-11 
Nonminimum-phase transfer function, 509 
Nontouching loop, 104 
Nonuniqueness: 

of a set of state variables, 759-60 
Nozzle-flapper amplifier, 162 
Number-decibel conversion line, 498 
Nyquist, H., 1,542 
Nyquist path, 545 
Nyquist plot, 523 

of positive-feedback system, 603-05 
of system defined in state space, 

536-39 
Nyquist stability analysis, 550-61 
Nyquist stability criterion, 540,54647,550 

0 
Observability, 779,786 

complete, 780-85 
matrix, 787 

Observable canonical form, 754,796 
Observation, 856 
Observed-state feedback control system, 

865 
Observer, 856 

mathematical model of, 856 
Observer-based controller: 

transfer function of, 865-66 
Observer-controller matrix, 866 
Observer-controller transfer function, 866 
Observer error equation, 857 
Observer gain matrix, 856-57 
Octave, 499 
Offset, 322 
On-off control action, 63-64 
One-degree-of-freedom control system, 703 
op amps, 96 
Open-loop control system, 6 

advantages of, 7 
disadvantages of, 8 

Open-loop frequency response curve: 
reshaping of, 620 , 

Open-loop transfer function, 60 
Operational amplifier, 96 
Operational amplifier circuits: 

for lead or lag compensator, 100-01 
table of, 103 

Optimal regulator problem, 910 
Ordinary point, 12 
Output controllability, 785,819 
Output equation, 72 
Output matrix, 72 
Output node, 104 
Overdamped system, 228-29 
Overlapped spool valve, 201 
Overlapped valve, 182 

P 
Pade approximation, 384 

second-order, 410 
Parallel compensation, 417 

technique, 451-52 
Partial-fraction expansion, 32-36 

with MATLAB, 36-40 
Path, 104 
PD controller, 725 
Peak time, 230,232 
Performance index, 897 
Performance specifications, 416 
Periodic function, 4546  
Phase crossover frequency, 564 
Phase margin, 539,56263 

versus 5 curve, 570 
PI controller, 724 
PID control schemes, 681 
PID control system, 701 

basic, 700 
with input filter, 732 
two-degrees-of-freedom, 703 

PID controller, 725 
modified, 726 
using operational amplifiers, 101-02 

PI-D control, 700 
Pilot valve, 176,182 
PI-PD control, 703 
PID-PD control, 703 
Plant, 2 
Pneumatic actuating valve, 169-70 
Pneumatic controllers, 162-75 
Pneumatic nozzle-flapper amplifier, 162 
Pneumatic on-off controller, 167 
Pneumatic pressure system, 197-99 
Pneumatic proportional controller, 164-68 

force-balance type, 16768 
force-distance type, 164-65 

Pneumatic proportional-plus-derivative 
control action, 170-72 

Index 961 



Pneumatic proportional-plus-integral 
control action, 172-74 

Pneumatic proportional-plus-integral- 
plus-derivative control action, 
174-75 

Pneumatic relay, 163 
bleed type, 163 
nonbleed type, 163 
reverse acting, 164 

Pneumatic systems, 158-61 
Pneumatic two-position controller, 167 
Polar plot, 523-27 
Pole: 

of order n, 12 
simple, 12 

Pole placement, 827-39 
design of system by, 827-39 
technique, 827 

Pole assignment technique, 827 
Pole-placement problem, 829 

solving with MATLAB, 839-40 
Polytropic exponent, 160 
Positive-feedback system, 373,376-77 

Nyquist plot for, 603-05 
root loci for, 373-77 

Positional servo system, 139-41 
Pressure system, 159-61 
Primary branch, 382 
Principle of causality, 53 
Principle of duality, 791 
Principle of superposition, 54 
Process, 3 
Proportional control, 282,286 

of system with inertia load, 283-84 
Proportional control action, 65 
Proportional gain, 65,102 
Proportional-plus-derivative control: 

of second-order system, 287-88 
of system with inertia load, 286-87 

Proportional-plus-derivative control 
action, 66,286-87 

Proportional-plus-integral control action, 
66 

Proportional-plus-integral-plus-deriva- 
tive control action, 66 

Pulse function, 20 

Quadratic factor, 504 
log-magnitude curves of, 505 
phase-angle curves of, 505 

Quadratic optimal control problem: 
optimal control law to, 899 

Quadratic optimal regulator system, 
897-99 

Index 

R 
Ramp response, 257 

MATLAB approach to obtain, 257-60 
Real differentiation theorem, 23-24 
Real-integration theorem, 26-27 
Reduced characteristic equation, 356 
Reduced-matrix Riccati equation, 899 
Reduced-order observer, 856 
Reduced-order state observer, 856 
Regulator poles, 829 
Regulator system with observer, 882-90 
Relative stability, 220 
Residue, 33 
Residue theorem, 595 
Resistance: 

laminar-flow, 153 
liquid flow, 153 
of pressure system, 159 
of thermal system, 189 
turbulent-flow, 154 

Resonant frequency, 506,526,568,574 
Resonant peak: 

versus 5 curve, 507 
Resonant peak magnitude, 507,568 
Response: 

to arbitrary input, 260 
to initial condition, 263-70 
to torque disturbance, 283-85 

Reverse-acting relay, 163-64 
Riccati equation, 899 
Rise time, 230-31 

obtaining with MATLAB, 252-53, 
307 

Robust pole placement, 839 
Root loci: 

general rules for constructing, 351-55 
for positive-feedback system, 373 
for system with transport lag, 379-83 

Root locus, 339 
method, 337-38 

Routh's stability criterion, 275-81 

S 
Satellite attitude control system, 56 
Schwarz matrix, 335 
Second-order system, 224 

impulse response of, 238-39 
standard form of, 226 
step response of, 225-29 
transient-response specification of, 

229-35 
unit-step response curves of, 229 

Sensor, 63 
Series compensation, 417 
Servo system, 224 

design of type 1,843-50 



Servo system, (Cont.) 
with velocity feedback, 235 

Servomechanism, 2 
Set-point kick, 700 
Settling time, 230,232-33 

obtaining with MATLAB, 252-53,307 
versus 5 curve, 234 

Sign inverter, 97 
Signal flow graph, 104 

algebra, 105 
Simple pole, 12 
Singular points, 12 
Sink 104 
Sinusoidal signal generator, 584 
Sinusoidal transfer function, 495 
Smith, Otto, J. M., 411 
Smith predictor, 411-13 
Source, 104 
Space vehicle control system, 478 
Speed control system, 204-05,324 
Spool valve: 

linealized mathematical model of, 179 
Spring-loaded pendulum system, 

148-49 
Square-law nonlinearity, 112 
S-shaped curve, 683 
Stability analysis, 550-60 

in the complex plane, 242-43 
Stabilizability, 792 
Stack controller, 167 
Standard second-order system, 249 . 
State, 70 
State controllability: 

complete, 780-85 
State equation, 72 

solution of homogeneous, 764,767 
solution of nonhomogeneous, 770-71 
Laplace transform solution of, 767-68, 

771-72 
State feedback, 828 
State-feedback gain matrix, 828 

MATLAB approach to determine, 
839-40 

State matrix, 72 
State observation: 

necessary and sufficient conditions for, 
858-59 

State observer, 855-57 
design with MATLAB, 877 

State observer gain matrix: 
Ackermann's formula to obtain, 

834-36 
direct substitution approach to obtain, 

860 
transformation approach to obtain, 

859 

State space, 71 
State-space equation, 71-73 

correlation between transfer function 
and, 74-75 

solution of, 764-72 
State-space representation: 

in canonical forms, 753-55 
of nth order system, 76-80 

State-transition matrix, 768 
properties of, 769 

State variable, 70-71 
State vector, 71 
Static acceleration error constant, 

291,515 
determination of, 515-16 

Static position error constant, 289,513 
Static velocity error constant, 290,514 

determination of, 514-15 
Steady-state error: 

in terms of gain K, 293 
Steady-state response, 220 
Step function, 15 
Step response, 803-04 

of second-order system, 225-29 
Summing point, 59 
Suspension system: 

automobile, 131 
motorcycle, 132 

Sylvester's interpolation formula, 812-16 
System,3 , 

type 0,288,293,513,529,586 
type 1,288,293,514,529,586 
type 2,288,293,515,529,586 

System response to initial condition: 
MATLAB approach to obtain, 263-70 

T 
Tachometer, 236 

feedback, 452 
Taylor series expansion, 112-14 
Temperature control systems, 4 
Thermal capacitance, 189 
Thermal resistance, 189 
Thermal systems, 188-91 
Thermometer system, 210-11 
Three-degrees-of-freedom system, 749 
Three-dimensional plot 250 

of unit-step response curves, 252,315 
Traffic control system, 7 
Transfer function: 

of cascaded elements, 91 
of cascaded systems, 61 
closed-loop, 60 
of closed-loop system, 61 
of dead time, 379 
experimental determination of, 587 



Transfer function, (Cont.) 
expression in terms of A, B, C, and D, 75 
of feedback system, 61 
feedforward, 60 
of minimum-order observer-based 

controller, 881 
of nonloading cascaded elements, 95 
observer-controller, 866,884-86 
open-loop, 60 
of parallel systems, 61 
sinusoidal, 495 
of transport lag, 379 

Transfer matrix, 76,245,590 
Transformation: 

from state space to transfer function, 
761 

from transfer function to state space, 
760 

Transient response, 220 
analysis with MATLAB, 243-70 
of higher-order system, 240 
specifications, 229-30 

Translated function, 19 
Transmittance, 104 
Transport lag, 379,511,586-87 

approximation of, 383 
phase angle characteristics of, 511 

Tuning rules, 681 
Turbulent-flow resistance, 154 
Two-degrees-of-freedom control system, 

704-06,709,719,740-41,749-51 
Two-position control action, 63-64 
Type 0 system, 288,293,586 

log-magnitude curve for, 513 
polar plot of, 529 

Type 1 servo system: 
design of, 843-55 
pole-placement design of, 843-50 

Type 1 system, 288,293,586 
log-magnitude curve for, 514 
polar plot of, 529 

Type 2 system, 288,293,586 
log-magnitude curve for, 515 
polar plot of, 529 

U 
Uncontrollable system, 785 
Undamped natural frequency, 225 
Underdamped system, 226-27 

Underlapped spool valve, 201 
Underlapped valve, 177,182 
Unit-doublet function, 44 
Unit-impulse [unction, 21 
Unit-impulse response: 

of first-order system, 223 
of second-order system, 238-39 

Unit-impulse response curves: 
a family of, 238 
obtained by use of MATLAB, 254-56 

Unit-ramp response: 
of first-order system, 222-23 
of second-order system, 257-260 
of system defined in state space, 

258-60 
Unit-step function, 15 
Unit-step response: 

of first-order system, 221 
of second-order system, 225-29 

Unit-step response curves: 
of second-order system, 225-35 

Universal gas constant, 160 

v 
Valve: 

overlapped, 182 
underlapped, 182 
zero-lapped, 182 

Valve coefficient, 179 
Vectors: 

linear dependence of, 779 
linear independence of, 778 

Velocity error, 290 
Velocity feedback, 236,452,646 

W 
Watt's speed governor, 3 
Weighting function, 57 

z 
Zero, 12 

of order m, 12 
Zero-lapped valve, 182 
Zero placement, 705,707,722 

approach to improve response charac- 
teristics, 705 

Ziegler-Nichols tuning rules, 682-83 
first method, 683-84 
second method, 684-86 




